
Twin registries form an exceptionally rich source
of information that is largely unexploited for phe-

notypic analyses. One obstacle to straightforward
phenotypic statistical analysis is the inherent depen-
dency, which is due to the clustering of cases within
families. The present simulation study gauges the
degree of the bias produced by the dependency of
family data on the estimates of standard errors and
chi-squared, when they are treated as independent
observations in a phenotypic model, and assesses
the efficiency of an estimator, which corrects for
dependency. When family-clustered data are used
for phenotypic analysis, in treating individuals as
independent, and using standard maximum likeli-
hood estimation, there is a tendency for the
chi-square statistic to be overestimated, and the
standard errors of the parameters to be underesti-
mated. The bias increases with family resemblance,
due to heritability or shared environment. The
source of family resemblance — either heritability
(h2) and/or shared environment (c2) — interacts with
the composition of the sample. In the absence of c2,
samples with twins, parents and spouses show the
lowest bias, whereas in the presence of c2 samples
with only twins show the lowest bias. In all condi-
tions the bias remained below 15%. The use of the
‘complex option’ available in Mplus (clustering cor-
rected robust maximum likelihood estimation)
reduces the bias to the levels observed when only
independent cases are considered. Thus with the
use of robust estimates the bias due to family
dependency becomes practically negligible in all
conditions of dependency. In conclusion, the
present study shows that the bias due to depen-
dency in family data does not form a serious
obstacle to phenotypic data analysis.

Twin registries form an exceptionally rich source of
information due to a unique combination of character-
istics. First, they generally comprise many thousands of
cases. Second, the variety of measured phenotypes is
large, including many psychological, biological, and
clinical traits as well as important sociological and
demographical information. In addition, increasingly,
next of kin of twins are included (i.e., parents, sib-

lings, spouses, children of the twins, and so on). This
allows for the study of cohort effects, cultural trans-
mission, and rater bias, and also increases the
generalizability of the results to the general popula-
tion. Finally, a very useful aspect of registries is that
they often include longitudinal data. As Busjahn
stated, ‘The virtue of a twin register is not so much
determined by the existing database of measures but
by the ability to get back to the twins to add pheno-
types in a hypothesis-driven manner’ (Busjahn, 2002,
p. vi). At present twin registries have been established
in several countries around the world (see Boomsma,
1998; Twin Research Special Issue, 2002 [volume 5,
number 5]), and more often than not these registries
include similar or even identical phenotypic measures,
which facilitates replication, and allows for cross-
cultural comparisons.

Twin registries were established primarily to
advance the study of genetic and environmental con-
tributions to phenotypic individual differences.
However, given the amount of information and the
sample sizes, they form a rich, yet largely unexploited,
source of information for phenotypic analyses (i.e.,
not addressing genetic or environmental sources of
variance). One obstacle to straightforward phenotypic
statistical analysis is the inherent dependency, which
is due to the clustering of cases within families. It is
generally known that simply treating dependent data
as independent in phenotypic analyses results in bias
in standard errors and other test (e.g., goodness-of-fit)
statistics (Laplante & Hebert, 2001).

Published articles in which family data serve purely
phenotypic analyses are scarce (Brown et al., 2002; Kirk
et al., 1999), whereas it is quite common to apply some
kind of phenotypic factor analysis (i.e., exploratory
factor analysis, principal components analysis, or confir-
matory factor analysis) to the measures studied, prior
to the intended genetic modeling (Edwards et al.,
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1994; Eley et al., 2003; Jonnal et al., 2000; Tozzi et
al., 2004; Wade et al., 2003). When confronted with
the problem of nonindependence of the data, the
researchers usually either ignore it, adopt complicated
(yet still approximate) methods for accommodating
dependency (van der Sluis et al., in press), or opt for
splitting the sample and analyzing data of independent
individuals only. In most cases, splitting the sample
may amount to discarding as much as half of the data.
This is clearly a drawback, which is exacerbated when
data on multiple family members is available, since
not only the size of the sample is reduced, but also the
representativeness of the sample may be diminished.

The aim of the present simulation study is to gauge
the degree of the bias produced by the dependency of
family data on parameters, standard errors and chi-
square estimates, when they are treated as
independent observations in a phenotypic model, and
to assess the efficiency of an estimator, which corrects
for dependency. The study was designed to be repre-
sentative of large and small twin registers, with and
without extended family data. We consider a common
factor model, with two correlated latent factors; such
a model is often employed in preliminary data reduc-
tion to investigate the structure of the measures under
study, and the relationship between latent constructs.
We consider the effects of heritability, shared environ-
ment, family size, and estimation method on the
accuracy of the parameter estimates (factor loadings,
residual variances, and variance-covariance structure
of the latent factors), their standard errors, and the
chi-square (likelihood ratio) goodness-of-fit test. We
hypothesized that (1) larger family resemblance due to
heritability or shared environment will produce a
decrease in the accuracy of the estimates of standard
errors and chi-square; (2) when family resemblance is
exclusively due to heritability, including other
members of the family besides the twins, like parents
or spouses, will decrease the similarity among the
members of each cluster, and thus reduce the depen-
dency and subsequent bias in the estimates of standard
errors and chi-square; and (3) the use of normal
theory maximum likelihood estimation (ML; Azzelini,
1996; Bollen, 1989) will lead to less accurate estimates
than robust maximum likelihood estimation corrected
for clustering (MLR; Muthén & Satorra, 1995).

Method
The procedure that we followed consists of two steps:
(1) simulation of family (clustered) data using a
common pathway model, and (2) phenotypic analysis
of the simulated data, fitting a phenotypic factor
model with two correlated latent factors.

Simulation of Family Data

A common pathway model (Neale & Cardon, 1992)
with two common factors was used to generate family
(clustered) data. Figure 1 shows the path diagram of

the simulated model, for a family of dizygotic (DZ)
twins, their parents and spouses.

In the simulated model, the covariance between six
observed variables (V1–V6) is explained by two phe-
notypic correlated latent factors (F1–F2). The first three
variables are indicators of the first factor, and the last
three variables are indicators of the second factor. The
values of the factor loadings and residual variances
were chosen in order to have reasonable and varying
signal-noise ratios: the percentage of variance
explained by the latent factors was 83% for V1 and
V4, 60% for V2 and V5 and 40% for V3 and V6. The
same measurement model was generated for all family
members: Twin 1 (T1), Twin 2 (T2), Father (F),
Mother (M), and spouses of the twins (S1 and S2).

In the first set of simulations familial clustering of
the data was explained by an additive genetic compo-
nent (A1 for F1 and A2 for F2). The variance of each
latent factor was additionally explained by a unique
environmental component (E1 for F1 and E2 for F2). A
genetic correlation of .5 between the two additive
genetic components of the two phenotypic factors was
modeled, assuming that both latent factors are corre-
lated due to common genetic variance. Parents and
offspring share 50% of the additive genetic variance, as
do DZ twins on average (Falconer, 1989). Monozygotic
(MZ) twins share the totality of the genetic variance,
and thus the MZ model contains an additional correla-
tion of .5 between the genetic factors of the twins
A1T1↔A1T2 and A2T1↔A2T2 (not depicted in the figure),
which, added to the .5 shared through the parents,
makes the expected additive genetic correlation of 1.

In a second set of simulations, a general shared envi-
ronmental factor ‘C’ was added to the variance
components A and E. This factor was meant to represent
environmental conditions such as socioeconomic status,
or diet that might increase family resemblance across
parents and their offspring, and between spouses. The
general latent factor C had loadings on all the pheno-
typic factors F1 and F2 in all the family members.

The means of the observed variables (intercepts) as
well as the means of the latent factors were fixed to zero
in the simulated model. The observed variables and
latent factors were multivariate normally distributed.

The simulated model includes a number of features
that affect the dependency generated among family
members. These features were chosen so as to resemble
the empirical results found for most psychological vari-
ables studied in adult samples. Specifically, in the first
set of simulations family resemblance is due to genetic
factors, and effects of shared environment are absent.
Under these conditions parents and twins, and the
twins pairs themselves form dependent cases, whereas
the spouses are mutually independent. These conditions
apply to personality variables measured in adult
samples (Bouchard & McGue, 2003). In the second set
of simulations, the possible effects of shared environ-
ment and assortative mating were added to the model
through a general shared environmental factor. Under
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this condition all family members, including the
spouses, form dependent cases. The results of this con-
dition apply to cognitive abilities (Bouchard & McGue,
2003), and to social attitudes (Eaves et al., 1999).

Two factors were varied in the simulation study:
(1) The degree of family resemblance through the her-
itability of the latent factors, and the inclusion of the
C factor, and (2) family size and composition.
Regarding (1), in the first set of simulations three
levels of heritability were chosen: A40–A40 (.40 for
both F1 and F2), A60–A40 (.60 for F1 and .40 for F2)
and A60–A60 (.60 for F1 and F2). In the second set of
simulations heritability was chosen to equal .35 for
both factors, and the amount of variance explained by
the C factor was .25 for both factors (A35–C25). In
this second set of simulations the degree of resem-
blance between twins was equivalent to that of the
A60–A60 condition, with the difference that part of it
is due to shared environment, which also produces
resemblance across the other family members. With
regards to (2), three levels of family size (FS) were
chosen: FS = 6 (twins, parents and spouses of the
twins), FS = 4 (twins and parents), and FS = 2 (twins).

For the first set of simulations sample size was also
varied to represent typical sample sizes of large and
small twin registries (Twin Research Special Issue,
2002 [volume 5, number 5]). Simulations that repre-
sented large twin registries had a sample size of 2000
families (1000 MZ, 1000 DZ), and included nine con-
ditions (three conditions of heritability × three
conditions of FS). Simulations that represented small
twin registries had a sample size of 500 families (250
MZ, 250 DZ), and included the three levels of heri-
tability — family size was not varied as small twin
registries often do not include other family members.

First, we carried out 1000 replications for each heri-
tability condition with FS = 6 and a sample size of 2000.
We created conditions FS = 4 and FS = 2 by selecting a
subset of the generated sample, as would be done with a
real data set. Second, we carried out 1000 replications
for each heritability condition with FS = 2 and sample
size = 500. Finally, we carried out 1000 replications for
the A35–C25 condition with FS = 6 and a sample size
of 2000. We created the conditions FS = 4 and FS = 2
by selecting a subset of the generated sample. We
created missing data in percentages similar to those
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Figure 1
Simulated common pathway model. 
Note: Path diagram depicted for conditions: FS = 6 (twins, parents and spouses), Heritability = 60–40. Model depicted for DZ twin families. DZ twins share 50% of their additive

genetic variance inherited from their parents, as showed in the figure. MZ twins share 100% of their additive genetic variance and thus, the MZ model includes and additional
correlation path of .5 across genetic factors A1T1↔A1T2 and A2T1↔A2T2. T1: Twin 1, T2: Twin 2, F: Father, M: Mother, S1: Spouse of Twin 1, S2: Spouse of Twin 2. V1–V6: observed
variables, F1, F2: Common factors 1 and 2, A: Additive genetic effects, E: Nonshared environmental effects.
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observed in the adult sample of the Netherlands Twin
Registry (NTR) as a function of family membership:
5% for twins, 35% for parents, and 60% for spouses.

The datasets were generated1 using a Monte Carlo
procedure in Mplus Version 3.13 (Muthén & Muthén,
2005). The same model used to generate the data was
fitted to the 1000 data sets using the internal Monte
Carlo procedure in Mplus to ensure that the parame-
ter values were correctly recovered. Replications that
did not converge or gave inadmissible parameter esti-
mates were excluded from further analyses.

Phenotypic Analysis of Family Data: 
Analysis of Bias

First, the generated data sets were restructured so that
each member of the family was treated as an indepen-
dent case, while retaining information about family
membership. Thus, the new data sets contained six
observed variables (V1–V6), and a cluster variable
(family identification number). The sample size for each
condition is equal to the number of families times the
family size (e.g., number of families = 2000 and FS = 6
gave rise to a new sample size of 12,000).

Subsequently, we analyzed these newly created
datasets in Mplus using the Monte Carlo procedure. A
phenotypic factor model with two correlated latent
factors was fitted using two types of estimation. The
first was ML estimation, which assumes that the data
are normally, identically, and independently distrib-
uted. The second type of estimation used was MLR in
combination with the ‘Complex’ option in Mplus,
which takes into account clustering of the data. The
parameter estimates are ML estimates, whereas the
standard errors are corrected for the dependency in
the data. The correction is made by using a weight
matrix that involves fourth-order moments and con-
tains cluster information. The chi-square statistic is
scale-corrected. The scale is a function of the same
weight matrix and the degrees of freedom of the
model (for further details about the correction, see
Muthén & Satorra, 1995). The family was used as the
cluster unit for the correction.

We compared the bias produced in the parameter
estimates, standard errors, and chi-square statistic by
the dependence of family data across heritability and
FS conditions, and across the two types of estimation
methods. For the first set of simulations, we expected
the largest bias for the condition A60–A60 and FS = 2,
and the smallest bias for the condition A40–A40 and
FS = 6. For the second set of simulations, for condi-
tion A35–C25, we expected the bias for FS = 2 to be
equivalent to that of the condition A60–A60.
However, we expected the bias for FS = 4 or 6 to be
larger than in the first set of simulations, due to the
family resemblance produced by the general C. Given
that the assumptions of the ML estimation are not
met, we expected that it would provide biased esti-
mates of standard error and the chi-square statistic.

We expected the MLR estimation with correction for
clustering to reduce the bias in all conditions.

The percentage relative bias was used to evaluate
the accuracy of the chi-square statistic, parameter esti-
mates, and standard errors. The percentage relative
bias is computed as �(θ̂ –θ)�θ�*100, where θ̂ is the
mean estimated value of chi-square, parameter esti-
mates and standard errors across replications and θ is
the true population value. Figure 2 shows the fitted
model including the true parameter values (factor
loadings, residual variances, and variance–covariance
of the latent factors) as chosen in the simulation study.
The latent factors were scaled by fixing the first factor
loading to 1, and the variances of the latent factors
were freely estimated. The means of the observed vari-
ables were zero in the model. The expected value of the
chi-square statistic equals the number of degrees of
freedom (df) asymptotically. The df of the model equal
14, that is, 27 (observed statistics) minus 13 (estimated
parameters). To assess the effects of the standard errors,
we compare the means of the standard error over repli-
cations with the standard deviations of the parameter
estimates over replications. The mean standard devia-
tion provides the criterion in assessing the accuracy of
the standard errors, as given that the assumptions of
the ML estimation are satisfied, the latter should equal
the former asymptotically.

We considered both the mean chi-square, and the
distribution of the chi-square by comparing the pro-
portion of replications for which the critical values are
exceeded with the expected proportions (.05 and .01)
under a chi-square distribution, when fitting the
correct model.

Finally, we fitted the phenotypic factor model to
the data of a single member of the family (Twin 1).
This enables the comparison of the results for data
with different degrees of dependency with the results
for data that are independent.

Results
The Monte Carlo procedure in Mplus (which both
simulates and analyzes the data) showed that the true
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Figure 2
Phenotypic two correlated latent factor model. 
Note: The diagram contains the true population values based on the simulation model.

The three correlations between the latent factors correspond respectively to the
conditions A40–A40, A60–A40, A60–A60 and A35–C25.
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parameter values were correctly recovered in more
than 95% of the replications in all simulation condi-
tions. For the replications with sample size equal to
2000, 4.5% of the replications of the 40–40 heritabil-
ity condition, 3.7% of the 60–40 condition, 4.1% of
the 60–60 condition, and 2.3% of the A35–C25 con-
dition were excluded from further analyses, because of
nonconvergence or inadmissible estimates. For replica-
tions with family size equal to 500 all replications
converged and gave acceptable parameter estimates.

Table 1 shows the relative bias in the estimation of
the chi-squared statistic.

The analyses of dependent family data as indepen-
dent using ML result in an overestimation of the
chi-square statistic. In addition, the probability of the
true model being rejected (error type I) tends to be
larger than expected under a central chi-squared dis-
tribution. For the first set of simulations, the bias
increases with higher heritability, and it tends to be
larger when twins and parents are analyzed. For the
second set of simulations, with a general C compo-
nent, the size of the bias in the chi-square for FS = 2
was equivalent to that of the A60–A60 condition.
However, the pattern of results for FS was inverted,
so that the amount of bias increased with the inclu-
sion of parents and spouses in the sample. However,
it should be noted that overall the bias in the chi-
squared statistic is quite small, ranging from 2% to
11% across all conditions. The same pattern of
results is shown for sample sizes 2000 and 500,
although the overestimation of the chi-square for FS =
2 appears to be larger for the smaller sample size.
This result does not seem to be a consequence of the
sample size, but probably a random product of the
simulation process. This can be inferred from the
observation of the relative bias when only Twin 1 was
analyzed (FS = 1). For all heritability conditions, for
N = 500 and FS = 1 the relative bias was slightly posi-
tive, whereas for N = 2000 and FS = 1 the relative
bias was negative. The difference in relative bias
between conditions FS = 2 and FS = 1 is equivalent
for N = 2000 and N = 500 (4.1/4.1, 4.9/5.2, 6.1/6.3
for the three heritability conditions respectively).

When the clustered data are analyzed using the
complex estimation in Mplus, the bias due to depen-
dency is corrected for all conditions, and the estimates
of the chi-square return to the levels obtained under
independent sampling (see FS = 1 in Table 1), and the
distribution of the chi-square, in terms of nominal and
observed error rates, is well approximated.

Table 2 shows the percentage of relative bias of the
parameter estimates. In all, 13 parameters were freely
estimated in the factor model (six residual variances,
four factor loadings, two latent factor variances and
one correlation). The tables show the mean bias across
all parameter estimates in relative and absolute values.
The parameter estimates were perfectly recovered
across all conditions, with percentages of absolute bias
always below 1%.
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Table 3 shows the percentage of relative bias on the
standard errors averaged across all parameter estimates.

When the family data are analyzed using ML the
standard errors of the parameter estimates tend to be
underestimated, judging by the mean relative values.
For the first set of simulations, the bias is larger when
the heritability is greater, and when only twins are
analyzed, compared to conditions where parents and
spouses are included. For the second set of simula-
tions, the pattern is again inverted so that the bias is
lowest when only twins are analyzed. The size of the
bias for the A35–C25 condition for FS = 2 is similar to
that for the A60–A60 condition, whereas the size of
the bias gets larger for FS = 4 or 6. However, again the
bias is quite small: under no condition does the

average exceed 15%, or the maximum exceed 20%.
The bias fluctuates across parameter estimates, as it
can be appreciated in the difference between the rela-
tive and the absolute value of the mean bias.
Furthermore, the pattern of results and the size of the
bias are comparable for sample sizes equal to 2000
and 500.

When the complex estimation method of Mplus is
used to estimate the factor model, the negative bias in
the standard error is corrected across all conditions, so
that the mean percentage relative bias shows values close
to zero or slightly positive, that is, comparable to the
values obtained when the data are independent, that is,
data of single family members. However, the size of bias
of the standard error was not equal across all parameter
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Table 2

Percentage Relative Bias on Parameter Estimates 

Family size Mean bias (mean |bias|)a

A40–A40 A60–A40 A60–A60 A35–C25

N(families) = 2000

6: Twins, parents and spouses
(N = 11,806)b –0.126(0.231) –0.119(0.234) –0.122(0.234) 0.021(0.077)

4: Twins and parents
(N = 7992) –0.129(0.253) –0.117(0.255) –0.119(0.256) 0.026(0.089)

2: Twins (N = 4000) –0.095(0.248) –0.089(0.268) –0.093(0.263) 0.054(0.115)
1: Twin 1 (N = 2000) –0.167(0.234) –0.154(0.262) –0.156(0.267) –0.002(0.103)

N(families) = 500

2: Twins (N = 1000) –0.267(0.288) –0.276(0.297) –0.283(0.309)
1: Twin 1 (N = 500) –0.388(0.472) –0.394(0.489) –0.412(0.514)

Note: Not affected by estimation method.
a Mean bias: Mean of parameter bias across all parameter estimates. Mean |bias|: Mean of parameter bias in absolute value across all parameter estimates.
b Actual sample size, smaller than number of families × family size due to missingness.

Table 3

Percentage Relative Bias on Standard Errors Across All Parameter Estimates

Family Size Estimation method (Mplus)c Mean bias (mean |bias|)a

A40–A40 A60–A40 A60–A60 A35–C25

N(families) = 2000

6: Twins, parents and spouses General –0.496(2.011) –0.408(2.182) –0.689(2.581) –2.206(4.243)
(N = 11,806)b Complex 0.125(1.996) 0.345(1.734) 0.541(1.813) 0.519(2.208)

4: Twins and parents General –0.405(2.335) –0.744(2.722) –1.055(3.007) –2.567(4.120)
(N = 7992) Complex 0.382(1.548) 0.416(1.562) 0.406(1.423) 0.155(1.508)

2: Twins (N = 4000) General –0.786(2.448) –1.122(2.664) –1.429(3.013) –1.932(3.367)
Complex –0.086(2.172) –0.132(2.234) –0.172(2.167) –0.289(2.137)

1: Twin 1 (N = 2000) General –0.581(1.748) 0.024(1.837) –0.053(1.976) –0.194(2.131)

N(families) = 500

2: Twins (N = 1000) General –0.609(1.494) –0.902(1.844) –1.065(2.155)
Complex –0.029(1.546) 0.005(1.673) 0.208(1.764)

1: Twin 1 (N = 500) General –0.999(1.930) –0.969(1.927) –0.952(1.972)

Note: a Mean bias: Mean bias across the standard error of all parameter estimates. Mean |bias|: Mean bias in absolute value across the standard error of all parameter estimates.
b Actual sample size, smaller than number of families × family size due to missingness.
c General: ML. Complex: MLR with cluster correction.
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estimates. The estimates of the variances and covariance
of the common factors display the largest bias. Table 4
shows the mean percentage relative bias and the percent-
age of total bias in these three parameters.

When the family clustered data are analyzed using
ML estimation, the standard error of the parameter esti-
mates of the latent factors are consistently
underestimated between 2.7 and 7.5% across conditions
in the first set of simulations, and between –8.9 and
11.45% in the second set of simulations. The pattern
across heritability and family size conditions resembles
the one observed for all the parameters. In the first set,
the bias is larger for higher heritability values and for
FS = 2 or 4. For the second set, the bias is smallest for
FS = 2.

When the Mplus complex estimation method is
used to correct for clustering, the bias is reduced to
values comparable to those obtained with FS = 1,
remaining under 2%.

Discussion
The results of the simulation study indicated there is a
tendency for the chi-square statistic to be overesti-
mated, and the standard errors of the parameters
underestimated when standard ML estimation is used
to analyze family clustered data, and dependent indi-
viduals are treated as independent cases. Furthermore,
the distribution of the chi-square is affected, resulting
in an increase in Type I errors. When fitting a model
with common latent factors, most of the bias is local-
ized in the standard error of the variances and
covariances of the common factors.

Figure 3 shows an overview of the results across
conditions. It can be observed how, under ML estima-

tion, the positive bias in the chi-square and the nega-
tive bias in standard error increase with family
resemblance. Family size and the source of family
resemblance interact. In the absence of C, samples
with twins, parents and spouses show the lowest bias,
whereas in the presence of C, samples with only twins
show the lowest bias. The effect of family resemblance
on the bias is independent of sample size. The results
for A60–A60 and A35–C35 conditions suggest that it
is the total amount of family resemblance, and not its
nature, that determines the amount of bias produced
in the standard error when only twins are analyzed.

Figure 3 clearly depicts how the use of the cor-
rected MLR (complex) estimation reduces the bias
across all conditions to levels observed when only
independent cases are considered.

These results were concordant with the hypotheses,
except for the bias on the chi-square across family size
conditions in the first set of simulations. We expected the
largest bias in both standard error and chi-square in the
FS = 2 condition. Whereas the standard error bias
follows the predicted pattern, the chi-square bias turned
out to be lowest in this condition, and highest for FS = 4.
However, with such a small amount of bias, we do not
consider these slight differences between FS conditions to
be a cause of concern.

It must be noted that the scope of the present
study is somewhat limited by the assumptions of the
simulated model and sampling conditions. Further
simulations will reveal whether varying certain con-
ditions will give rise to significantly different results.
Such conditions may pertain to different kinds of
phenotypic analysis or theoretical models, larger
number of observed variables, the inclusion of other
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Table 4

Percentage Relative Bias on Standard Errors for Variances and Covariance of the Latent Factors

Family size Estimation Mean bias(mean |bias|)a % of standard error bias in the model
method due to the bias on variances and
(Mplus)c covariance of the latent factors

A40–A40 A60–A40 A60–A60 A35–C25 A40–A40 A60–A40 A60–A60 A35–C25

N(families) = 2000

6: Twins, parents and General –2.743(2.743) –3.526(3.526) –5.240(5.240) –11.452(11.452) 31.48% 37.28% 46.84% 62.28%
spouses (N = 11,806)b Complex 0.145(2.480) –0.031(1.813) 0.088(1.911) 0.354(2.636) 28.67% 24.12% 24.32% 27.54%

4: Twins and parents General –4.107(4.107) –5.847(5.847) –7.517(7.517) –12.665(12.665) 40.58% 49.57% 57.68% 70.94%
(N = 7992) Complex –0.956(0.956) –0.823(0.823) –0.920(0.920) –0.868(1.346) 14.25% 12.15% 14.92% 20.60%

2: Twins (N = 4000) General –3.625(4.638) –5.093(5.093) –7.192(7.192) –8.912(8.912) 43.73% 44.11% 55.09% 61.08%
Complex –0.803(3.234) –1.028(3.000) –1.756(3.542) –1.612(3.403) 34.36% 30.99% 37.71% 36.74%

1: Twin 1 (N = 2000) General –1.040(1.295) –0.495(1.033) –1.047(1.047) –0.974(0.974) 17.079% 12.97% 12.23% 10.55%

N(families) = 500

2: Twins (N = 1000) General –1.537(1.537) –2.729(2.729) –4.081(4.081) 23.73% 34.14% 43.70%
Complex 1.171(1.559) 1.416(1.986) 1.644(2.218) 23.28% 27.38% 29.01%

1: Twin 1 (N = 500) General 1.566(1.566) 1.701(1.701) 1.834(1.834) 18.73% 20.37% 21.46%

Note: a Mean bias: Mean bias across the standard error of variances and covariance of the latent factors. Mean |bias|: Mean bias in absolute value across the standard error of
variances and covariance of the latent factors.

b Actual sample size, smaller than number of families × family size due to missingness.
c General: ML. Complex: MLR with cluster correction.
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kinds of relatives (siblings, children of twins, and so
on), or unbalanced number of MZ and DZ families.
On the other hand, the good outcome of the MLR
correction due to clustering might be due to aggre-
gatability. According to Muthén and Satorra (1995)
a two-level factor model is aggregatable if the factor
loading matrices are equal on the within-cluster and
between cluster levels. In the present paper we have
used a common pathway model that assumes that
the measurement model for the E factor and the A
factor has the same structure. The results might not
apply when the variance decomposition of the phe-
notype is better explained by an independent
pathway model, for which the factor structures of A
and E differ significantly.

Although the results appear to be quite acceptable,
the method for correcting for dependency (i.e., the
‘complex’ option in Mplus) is approximate as the
cluster unit used is the family. This implies that the
correction is undertaken assuming that the depen-
dency is homogeneous across family members, so the
same correction is applied, for example, to MZ and
DZ families, or to spouses, parents and twins.
However, the problem of different model structures
for different family members could to some extent be
handled in a multiple group analysis. Alternative

strategies to obtain adjusted estimates are possible: for
example, replication methods like bootstrap (Laplante
& Hebert, 2001), or treating each family as a case and
fitting the model in the diagonal within- person part
of the matrix, estimating the off diagonal elements as
nuisance parameters (for a detailed explanation of this
method using Mx [Neale et al., 2003], see van der
Sluis et al., in press). However, the complex option in
Mplus does arguably provide the easiest, if approxi-
mate, way to correct for dependency.

Multilevel structural equation modeling and hier-
archical linear mixed modeling is often used to handle
data clustering (Hox & Maas, 2001; Muthén &
Satorra, 1995). With these methods the variance-
covariance matrix is decomposed into within and
between cluster components. Using the family as a
cluster implies that all the variance due to the differ-
ences among the members of the same family is
analyzed in the within-level part of the model,
whereas the variance due to the differences between
different families is analyzed in the between-level part
of the model. In real settings the exact sources of
resemblance between family members may be
unknown, and therefore it is also unknown which
components of the variance (genetic, shared environ-
ment, nonshared environment, assortative mating,
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N = 2000: Mean Bias on SE across Variances and Covariance of 
Latent Factors
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N = 500: Mean Bias on SE across Variances and 
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N = 2000: Percentage Relative Bias on Chi-Square
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 N = 500: Percentage Relative Bias on Chi-Square
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Figure 3
Summary of results. 
Note: Percentage relative bias on chi-squared statistic, and mean bias on the standard error of parameter estimates of the latent factors F1 and F2 are depicted across conditions.

tw: twins, p: parents, sp: spouses, tw1: Twin 1.
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etc.) are placed in the within and between parts of the
model. Under these conditions, it is unclear how the
parameter estimates within each level can be inter-
preted, or how they can be related to the true values
obtained under phenotypic analysis with independent
sampling. This problem is exacerbated when data
from extended pedigrees are analyzed, because the
sources of differences and resemblance between each
pair of members of the family are different, and the
family is treated as a homogeneous cluster in multi-
level modeling. Therefore, multilevel modeling
assumes that the family members are statistically
equivalent, whereas with the multivariate approach it
would be possible to give different parameter values to
different family members.

Summing up, through the use of robust estimates
the bias due to family dependency becomes practically
negligible. Even if no correction is applied, the point
estimates are correct, and if the chi-square statistic
indicates a good model fit (p > .05), it is certain that
the same conclusion would be attained with indepen-
dent data. However certain precautions should be
taken when interpreting the results of uncorrected
solutions. It is possible that certain parameters appear
to be statistically significant, whereas they may actu-
ally be nonsignificant in the analysis of truly
independent observations. If the chi-square statistic
indicates poor model fit (p < .05), there is a small
probability that a good model fit would have been
obtained with independent data, because of the
increase in Type I error due to dependency. If family
data are used for phenotypic analysis with no correc-
tion for the inherent dependency, one should take into
account that the nature of the family resemblance for
the given trait, and the family composition of the
sample interact to result in larger or smaller amounts
of bias in the standard error. When variation in the
phenotype under study is exclusively due to genetic
and nonshared environmental effects, an extended
family sample will result in a smaller bias, whereas if
family resemblance in the phenotype under study is
also due to shared environment, cultural transmission
or assortative mating, the use of an extended family
sample will result in a larger amount of bias.

In conclusion, the present study shows that the
gains of using the richness of family data from twin
registers for phenotypic analysis outweighs the rela-
tively small drawbacks of the slight bias in standard
error and chi-square statistic. More importantly, it
shows that irrespective of the source of family resem-
blance or dependency, the bias is successfully
corrected by the MLR estimation with clustering cor-
rection of the Mplus program.

Endnote
1 The Mplus scripts used to generate and analyze

the data are available upon request to the first
author.
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