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ON THE ASYMPTOTIC BOUNDARY BEHAVIOR OF

FUNCTIONS ANALYTIC IN THE UNIT DISK

JAMES R. CHOIKE

1. Introduction

In [8] a necessary and sufficient condition was given for determin-
ing the equivalence of two asymptotic boundary paths for an analytic
function w = f(p) on a Riemann surface F. In this paper we give a
necessary and sufficient condition for determining the nonequivalence of
two asymptotic boundary paths for f(z) analytic in |«| < B, 0 < R < + oo.
We shall, also, illustrate some applications of the main result and ex-
amine a class of functions introduced by Valiron.

2. Transcendental singularities and the main result

Let w = f(z) be meromorphic in |s| < .β, 0 < # < + oo. Let z
= φ(w) denote the inverse function of w = f(z) with domain the Riemann
surface Φ. We shall write Q(w, wQ) to denote a functional element with
center w = w0 for z = φ(w). The notation Q(w; wQ) plays a dual role in
this paper, representing not only a functional element of z — φ(w) at
w = w0, but also a point on the Riemann surface Φ lying above w = w0.

Let

with lim w(t) = ω, be a curve on the Riemann surface Φ. Then the curve

yl defines a transcendental singularity β of z = (̂'U?) on Φ, with projec-
tion w = ω, if i) for every positive number δ, δ < 1, the system of func-
tional elements Q(w wit)), 0 < t < δ, defines an analytic continuation
(possibly, of algebraic character), but ii) for any functional element
Q(w ω), rational or algebraic, with center at w = ω, the system Q(w
0 < t < 1, where w(l) = ω, never defines an analytic continuation.
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2 JAMES R. CHOIKE

Let r > 0. Suppose that

A: q(t) - Q(w w(t)) , 0 < t < 1 ,

with lim w(t) = ω, defines a transcendental singularity Ω on Φ. Let tr

t-*l

be the last value for t, 0 < t < 1, such that |w(tr) — α>| = r, counting

from ί = 0. Then by an r-neighborhood of fl, denoted by Ur(Ω), we

mean all points Q(w; c) of Φ such that \c — ω\ < r and Q(w; c) is an

analytic continuation (possibly, of algebraic character) of Q(w w(tr))

along a curve lying inside the disk \w — ω\ < r. If the transcendental

singularity lies above the point w = oo, then the circle we use to define

Ur{Ω) is |w| = r and the disk used is \w\ > r. The r-neighborhoods have

the following properties: i) for rλ < r2, Uri(Ω) c Σ7r2(β), and ii) Π C7r(β)
r>0

= 0 (see Choike [8] for the proof of ii)). Two transcendental singularities

Ωλ and Ω2 are said to be equal if for all r > 0, Ur{Ω^ Γl Ur(Ω2) Φ 0.

The importance of transcendental singularities stems from the result

of Iversen [11, p. 13], later generalized by Noshiro [13, p. 49-53] which

states that there is a one-to-one correspondence between the asymptotic

boundary paths of an analytic function w = f(z) and the transcendental

singularities of z = φ(w), the inverse function of w = f(z). In view of

this result, we shall say that two asymptotic boundary paths Lx and L2

for w — f(z) meromorphic in \z\ <. R, 0 < R < + oo, are equivalent if

Lλ and L2 both correspond (in the sense of the Iversen-Noshiro theorem)

to the same transcendental singularity Ω on the Riemann surface Φ of

the inverse z = φ(w), and, we shall indicate this equivalence by the no-

tation [LJ = [LJ. In [8, p. 32-35] it was shown that [LJ = [L2] if and

only if there exists a sequence {cn} of disjoint arcs in \z\ < R joining

Lλ to L2 such that {cn} converges to \z\~R as n—> + oo, and w — f(z)

converges to the value ω uniformly on cn as n —> + oo (cy, of course, is

the asymptotic value for w = /(«) on Lλ and L2).

The result that we state next establishes a criterion for determining

the non-equivalence of two asymptotic boundary paths for w — f(z). It

also generalizes a result of Bieberbach [6].
THEOREM 1. Let

L,:z = zλ(t) , 0 < t < 1 ,

L 2: z = 32(t) , 0 < ί < 1 ,

δβ asymptotic boundary paths for w = /(z) m |«| < JB, 0 < β < + oo,
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BOUNDARY BEHAVIOR OF FUNCTIONS 3

with asymptotic value a. Suppose Lx and L2 have the same initial point,

but are otherwise disjoint in \z\ < R. Let Dλ and D2 denote the simply-

connected regions of \z\ < R formed by Lγ and L2. // [LJ Φ [L2], then

i) if a — co, there exists B > 0 such that for every ε > 0 there

exist boundary paths Li in Dx and U2 in D2 such that \f(z)\ = B + ε for

all zeL[ U L2

ii) if a Φ oo, there exists b > 0 such that for every ε, 0 < ε < 6,

there exist boundary paths Li in D1 and L2 in D2 such that \f(z) — a

= b — ε for all z e Li U L2.

3. Preliminary lemmas

Suppose that the boundary paths Lx and L2 are free of poles of w

= f(z). For any t0, 0 < ί0 < 1, let

Lj-Aj(t0) = {zj(t)\to<t<l]

for j - 1,2. Let A0(i0) = A ^ ) U A2(ί0). Let

M(t0) = max |/(25)| for « e A0(ΐ0) .

Since L1 and L2 contain no poles for f(z), we have M(t0) < + oo for

t0, 0 < t0 < 1. Let δ be a positive number such that JS > M(t0). We

define the following non-empty open set in Dλ:

It is clear that there exists a component Go of G such that A0(ί0) £ Fr{GQ),

where Fr(A) denotes the frontier set of the set A. In general, the com-

ponent Go is not simply-connected. It follows rather directly from the

maximum principle that each hole of Go contains at least one pole of

Let Go* be the open set in Dλ which consists of the open component

Go of G plus the closure of the holes of Go in Dγ. Then Go* is a simply-

connected region containing Go with Fr(Gf) c: Fr(G0). In the following

lemmas we will examine the frontier of Go*.

LEMMA 1. Fr(Gf) Π {\z\ < R} is locally connected at each of its

points.

Proof. The par t of Fr(G$) which lies within \z\ < R is made up of
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portions of Ll9 of L2, and level curves of f(z). Since the level curves

of f(z) are analytic curves [17, p. 17], the lemma now follows.

LEMMA 2. Every point of Fr(Gf) Π {\z\ < R} is an accessible poim

from Go*.

Proof. If Fr(G$) Π {\z\ = R} = 0, then Fr(G0*) is a bounded continuun

which is locally connected according to Lemma 1. Thus, in this case

every point of Fr(Gf) is accessible from Gf [18, p. 112].

Suppose, on the other hand, that Fr(Gf) Π {|s| = R) Φ 0. Let 3

eFr(G0*), |so | < # . Let rf = |zo| + 1 if # = +oo, and rf = £(|so| + #) U

J? < + oo. Denote by Hn9 n = 1,2,3, the components of the nonempt3

open set H — Gf Π {|#| < r'}. Each component ίfw is simply-connected (anj

hole for i ϊ n is a hole for Go*) and the frontier Fr(Hn) of Hn is locally con

nected being composed of portions of FriGf) and closed arcs of {|#| = r;}

We, also, remark that Fr(Hn) must have some points of {\z\ = r'}, otherwise

we contradict the fact that G* is connected. From this it follows thai

zQ is a frontier point of some component Hno. If not, then we can fine

a sequence of continua lying in Fr(G$) which converges to a non-degen

erate arc of Fr(G£) containing z0 and a point of {\z\ = r'}. This, how

ever, contradicts Lemma 1. Thus, z0 is an accessible point from Hno

Hence, z0 is an accessible point from Go*.

LEMMA 3. // on every curve L lying, except for its endpoints ii

D19 joining a point of Lx — A^Q to a point of L2 — A2(t0), there exis\

points at which \f(z)\ < B, then Fr(Gf) Π {\z\ = R} Φ 0.

Proof. Suppose, on the contrary, that Fr(Gf) Π {\z\ = R} = 0. Then

we have that, for some positive r < R, Fr(Gf) c {|2| < r}, and, accord

ing to Lemma 2, each point of Fr(Gf) is accessible from Go*.

Let us map the simply-connected region G* onto the disk |ζ | < 1 bj

a conformal map ζ = ζ(z). Denote by ^ = ziζ) the inverse map of I

— ζ(z). By Caratheodory's extension of the Riemann mapping theorem

there exists a one-to-one correspondence between points eίθ of |ζ | = ]

and prime ends P = P(eίθ) of G* such that the cluster set of z(ζ) at e*

equals the impression of the prime end P(eiθ) [9, p. 173]. Since ther<

can be at most one accessible point in the impression of a prime enc

[9, p. 177], it follows that each impression of Go* consists of precisely

one point of Fr(Gf). Thus, z = z(ζ) may be extended continuously t(

the closed disk |ζ | < 1.
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BOUNDARY BEHAVIOR OF FUNCTIONS 5

Since \f(zλ(Q)\<B and \f(z2(t0))\ < B, there are points axeFr(Gf)
Π (Lx - AX{Q) and a2eFr(G*) ΓΊ (L2 - A2(ί0)). Let e**1 = ζ(αx) and β^2

= ζ(a2). Denote by β the arc of |ζ| = 1 joining eίθl and eiH which con-

tains no points of ζ(A0(t0)). We may assume, without loss of generality,

that θ1 < θ2 and β = {eίθ \ θx < θ < θ2}. Let

2\ = 0 Π ζ(L, Π Fr(G*))

and

T2 = β Π ζ(L2 Π Fr(G0*)) .

Since Go* £ {|s| < r}, Lx Π Fr(G0*) and L2 Π Fr(G0*) are closed relative to

Fr(Gjf). Hence, Tx and T2 are closed sets on |ζ| — 1. Furthermore, if

eiφx e Tλ and eίφ2 e T2, we must have that φλ < φ2. Otherwise, the image

of the interval [θl9 θ2] under z = z(eίθ) would be a curve in Όx starting

at aιeLι — A^Q proceeding to L2 — A2(t0) at z(eίφl) then back to Lx — A^ίo)

at z(eίφl) and finally terminating at a2 e L2 — A2(ί0). But such a boundary

curve for Fr(G$) contradicts the connectivity of Gf.

Let θf = sup {θ I e" e Tλ) , and

β2* = inf {θ\eiθ eT2) .

Since ei9*sTl and ^ e Γ 2 , we have 0? < θf. Let L be the curve in Dt

defined by z = ^(βi5), θf <θ< θf. Clearly, s(e"ϊ) is a point of Lx - A/ίo)

and z(eίθ*ή is a point of L2 — A2(ί0). From the choice of θf and θf, we,

also, have that z(ei9), θf < θ < θf, is a curve lying in Dλ on the boundary

FriGf) of Go*. But this implies that \f(z(eiθ))\ = B for θf<θ<θf.

This, however, contradicts our hypothesis. Therefore, Fr(Gf) (Ί {|2| = #}

4. Proof of Theorem 1

Let β x and β2 be the transcendental singularities on the Riemann

surface Φ of the inverse function z — φ(w) which correspond to the

boundary paths Lγ and L2, respectively. Since we assume [LJ Φ [L2], it

follows that Ω1 Φ Ω2. We point out that we may alter the boundary

paths Lj and L2 so that, while we still preserve the hypothesis of Theo-

rem 1, we may additionally assume that Lγ and L2 do not contain ap-

points of f(z).

First, we assume that a = oo. Since Ωx Φ Ω2, there exists a positive

number rx such that
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< l ) ϋri{Ωd n uri(Ω2) - 0

(see section 2). Since f(z) —> oo on Lx and L2 as \z\->R, there exists

*0 = toirj such that 0 < ί0 < 1 and |/(^(t o )) | > n for all t > t0, j = 1,2.

Let

( 2 ) M = max \f{z)\ for 2e A0(t0) , and

< 3) 2? = max (n, M) .

Since f(z) has no poles on Lx and L2, ikf < + oo. Let ε > 0. We define

the non-empty open set G in D1 as follows:

Let Go be the open component of G such that AQ(tQ) c Fr(G0). As in

section 2, Go* denotes the simply-connected domain in Dι which consists

of Go plus the closure of the holes of Go.

Let L be any curve lying, except for the endpoints, in Dx joining

a point of Lx — Ax(tQ) to a point L2 — A2(ί0). Because of the selection of

t0, the image of L under f(z) is a path on the Riemann surface Φ join-

ing a point of Urχ(Ω^ to a point of Urι(Ω2). By (1), it follows that there

exist points zeL such that \f(z)\ <rλ<B + ε. Hence, applying Lemma

3, we have Fτ(Gf) Π {\z\ = R} Φ 0.

Let us map Go* onto |ζ | < 1 by a conformal map ζ = ζ(z). We de-

note the inverse map by z — z(ζ). If we analyze the prime ends of Gf

we shall find that each prime end P whose impression is contained in

\z\< R consists of a single point. This follows directly from the two

facts: i) the points of Fr(Gf) Γ\ {\z\ < R} are accessible from Gf (see

Lemma 2), and ii) there can be at most one accessible point in the im-

pression of a prime end [9, p. 177]. Hence, if we let C(z(Q, eίθ) denote

the cluster set of z(ζ) at eiθ, we have that C(z(ζ), eiθ) is a singleton for

those points eίθ of |ζ | = 1 which correspond to prime ends whose im-

pressions contain points of \z\ < R.

Let

V = {θ\C(z(ζ), eiθ) c Fr{Gt) Π {\z\ < R}} .

A rather direct and elementary argument shows V to be an open sub-

set of the interval [0,2τr], Let (θuθ2) be an open component of V. Let

So = \(βx + θ2). Let L be the curve in Dλ given by z = z(eiθ), θ0 < θ < θ2.

https://doi.org/10.1017/S0027763000022509 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022509
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Since Θ2$V, we have that C(z(ζ), eίθz) c {|z| = R}. This implies that L

is a boundary path in \z\ < i?. From the fact that f(z) —> oo on Lx and

L2 as |2| —>R, there exists a positive number δ, δ < R, such that \f(z)\

> B + ε for ze^U L2, δ < \z\ < R. Choose 0', 0O < 0' < 02, such that

^ < |s(e*')| < i2 for 0; < 0 < 02. Let Lί be the boundary path in \z\ < R

defined by z = z(eiθ), θf < θ < θ2. By construction, L[ is a boundary path

in A lying on Fr(G0*). Thus, \f(z(eiθ))\ = B + e for θ' < θ < 02. This

proves Theorem 1 for the case α = oo.

Suppose α is finite. The function

F(z) =

has the property that F(z) —> oo on Lγ and L2 as \z\ -> β. Also, [LJ ^ [ί/2]

with respect to the inverse function of F(z). Otherwise, there would

•exist a sequence of disjoint arcs {cn} joining Lί to L2 converging to an

arc of \z\ = R (to z — oo, if R = +oo) on which F(^) -^ oo uniformly on

cπ as % -* + oo [8, p. 32], On these same arcs, f(z) —> α uniformly with

w—> + oo. This contradicts our assumption that [LJ Φ [L2] with respect

to the inverse of f(z). Apply part i) of Theorem 1 to F(z) and set b

= 1/B where B is the positive number obtained in part i). This com-

pletes the proof of Theorem 1 since the above argument can also be ap-

plied to the region D2.

Remark. If L1 and L2 have different asymptotic values ax and a2,

respectively, then the method of proof of Theorem 1 can be used to prove

the following:

i) if aγ — oo and a2 Φ oo, there exists b > 0 such that for every

£, 0 < ε < 6, there exist boundary paths L[, L[' in Dx and L'2, L" in D2

such that

\f(z)\ = (6 - ε)-1 for all « e L{ U L̂  ,

and

a2\ = b - ε for all s e Lί' U L^ ,

ii) if a:! and a2 are both finite, there exists b > 0 such that for

every ε > 0 , 0 < ε < 6 , there exist boundary paths Li, L[' in Dx and L'29 L"

in Z)2 such that
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_ ay\ = b - ε for all z e Lί U

and

«2| = 6 - ε for all z e L[' U

COROLLARY. Let w — /(z) be meromorphic in\z\< R9 0 < R < + oo.

Lj emd L2 be disjoint boundary paths in \z\ < R such that f(z) -+aτ

finite or infinite, on Lx and L2 as | z | — > # . Then [LJ Φ [L2] if and only

if there exists a positive number b and there exist paths L[ in Dγ and

U2 in D2 such that \f(z) — <x\ — b for all z e L[ LJ L'2.

The next corollary is originally due to Heins [10]. It follows as a
direct application of Theorem 1 and BagemihΓs ambiguous point theorem
[1] (see, also, [9, p. 85]).

COROLLARY. Let f(z) be meromorphic in \z\ < 1. The number of
points eiθ of \z\ — 1 which have the property that they are terminal points
of two or more non-equivalent asymptotic paths is at most countable.

Proof. Let Lι and L2 be non-equivalent asymptotic paths for f(z)
with asymptotic values aγ and a2, respectively, which terminate at eίθ.
If aλ Φ a2, then eίθ is an ambiguous point of f(z). If ax = a2, then by
Theorem 1, since [LJ Φ [L2] we can find two boundary paths L[ and L"
between Lγ and L2 terminating at eiθ having the property that the cluster
set of f(z) along Li is disjoint from the cluster set of f(z) along L".
Thus, in this case, eiθ is again an ambiguous point. By BagemihΓs
theorem the number of such points is at most countable.

Another application of Theorem 1, originally due to Bieberbach, is
found in the next corollary. Bieberbach's original proof was based on
a special case of Theorem 1 and the Denjoy-Carleman theorem. Since
Ahlfors subsequently improved this result, we think it appropriate to
update Bieberbach's result.

COROLLARY. // f(z) is an entire function of order p, then f(z) has
at most 2p non-equivalent asymptotic paths with oo as the asymptotic
value.

Proof. We refer the reader to [6, p. 39-40] for the proof.

5. Some special classes of functions in the unit disk

A boundary path S: z = s(ί), 0 < ί < 1, of |s | < 1 shall be called a.
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spiral path if arg s(t) -* + oo or arg s(t) -> — oo as t —> 1. The end E(L)

of a boundary path L is the set of limit points of L on \z\ = 1. The end

of a spiral path is clearly the circumference \z\ = 1. Just as clear is the

fact that a non-spiral path can also have \z\ — 1 as its end. We shall

say that a function f(z), holomorphic and nonconstant in \z\ < 1, belongs

to the class OS) if it possesses an asymptotic value, finite or infinite, on

a spiral path. We shall say that f(z), holomorphic in \z\ < 1, belongs

to the class (V) if f(z) is unbounded in \z\ < 1 yet remains bounded on

a spiral path. Functions of class (V) were first introduced by Valiron

[15], and they have been studied extensively by Bagemihl and Seidel [2],

[3] and Seidel [14].

Valiron [16] showed that (V) ci (S) by virtue of f{z) e (V) possessing

oo as a spiral asymptotic value. We would like to begin this section

with an elementary proof of this result of Valiron.

The proof that follows was first announced in [7].

LEMMA 4. Let L be a boundary path in \z\ < 1 τvhose end E(L) is

\z\ = 1. Then the simply-connected region {\z\ < 1} — L has exactly one

prime end P whose impression I(P) is \z\ — 1.

Proof. Suppose {\z\ < 1} — L has two prime ends Px and P2 whose

impressions /(P^ and 7(P2) equal the circumference \z\ = 1. Let ζ = ζ(z)

be a one-to-one conformal map of the simply-connected region {\z\ < 1}

— L onto the disk |ζ| < 1. Denote the inverse map of ζ = ζ(z) by z

— z(ζ). By Caratheodory's extension of the Riemann mapping theorem

[9, p. 173] the boundary path L is mapped by ζ = ζ(z) onto an arc γ of

|ζ | = 1 with the initial point of L corresponding to an interior point of

γ. Also, since J\ Φ P2, ζ(Px) = eίθί and ζ(P2) = eίθ* with θ1 Φ θ2.

The points eίθl and eiθ2 separate (ζ| = 1 into two distinct arcs. One

of these arcs is disjoint from γ. Let us denote this arc by γ0. By

Fatou's theorem [9, p. 17] and the Riesz theorem [9, p. 22], there exist

eiθϊ,eiβ** eΪQ, θf Φθf, such t h a t

z(eίθ*) = lim z(reiΰ*) , z(eί6*ή = lim z(reίθ*ή

exist, and z(ei9*) Φ z(eίθ*ή. Since ^ s ^ ^ , \z(et9*)\ = \z(eίe*)\ = 1. Thus,

z(eiθ*) and z(eie*) are accessible points of {|̂ | < 1} — L. This implies that

the impression of P2 and P 2 has two accessible points. But this is im-
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possible [9, p. 177]. Thus, {\z\ < 1} — L has exactly one prime end P

whose impression I(P) is \z\ = 1.

LEMMA 5. Let f(z) be holomorphic in \z\ < 1 and continuous for

\z\ < 1 τvith the exception of the point z = + 1 . Suppose also that \f(eίθ)\

< M < + co for θ Φ 0, and that there exists z0 such that \zo\ < 1 and

\f(zo)\ > M. Then there exists a boundary path U in \z\ < 1 terminat-

ing at z — +1 with f(z) —> oo on U as \z\ —> 1.

Proof. By the Phragmen-Lindelδf theorem [12 p. 43-44], we have

that the properties \f(eίθ)\ < M < + oo for θ Φ 0 and \f(zo)\ > M for

\zo\ < 1 imply /(s) is unbounded in |s | < 1. Then, oo e C(f, 1) - CB(f, 1),

where C(/, 1) is the cluster set of f(z) at z = 1 [9, p. 1] and C β(/, 1) is

the boundary cluster set of f(z) at 2 = 1 [9, p. 81]. Since oo is an

omitted value of f(z) in \z\ < 1, by the Gross-Iversen theorem [9, p. 101],.

oo is an asymptotic value along a boundary path U terminating at z = 1.

THEOREM 2. (Valίron's theorem). Let f(z) be an unbounded holo-

morphic function in \z\ < 1 that is bounded on a boundary path L whose

end is \z\ — 1. Then there exists a boundary path L* along which f(z)<

—> oo as \z\ —» 1. In particular, if L is a spiral, then L* is also a spiral.

Proof. We map the simply-connected region {\z\ < 1} — L in a one-

to-one conformal manner onto the unit disk |ζ | < 1 by a map ζ = ζ(z)

in such a way that the prime end P of {\z\ < 1} — L, whose impression

is \z\ = 1, corresponds to ζ = 1.

We consider the function F(ζ) = f(z(ζ)) in |ζ| < 1, where z = z(ζ) is

the inverse map of ζ = ζ(z). Then F(ζ) is holomorphic and unbounded

in |ζ | < 1, and, since f(z) is bounded, by assumption, on L, F(eiθ) is

bounded for θ Φ 0. Applying Lemma 5, there exists a path U in |ζ| < 1

terminating at ζ — 1 on which F(ζ) —> co as |ζ|—>1. The image of 1/

under z = 2(ζ) is a boundary path L* in \z\ < 1 on which f(z) —> oo a&

|z|—» 1. Since L* is disjoint from L, it is clear that L* is a spiral if

L is a spiral. This concludes the proof.

It is not true, in general, that the boundary path L* in Valiron's

theorem has for its end the circumference \z\ — 1. The following ex-

ample illustrates this situation.

Let

f(z) = exp ( + z
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The function f(z) is holomorphic in \z\ < 1 and has z = oo as an asymp-

totic value along the radial segment from 0 to 1. Let U = {z\ \z — | |

< £}. Then it is easily verified that \f(z)\ < e for all values z, zeD',

\z\ < 1. It is also easy to construct a path L in {\z\ < 1} — D' such that

E(L) = {\z\ = 1}.

THEOREM 3. If w — f(z) e (S) and if the Riemann surface Φ of the

inverse function z — φ(w) has at least two transcendental singularities

with projection tv = oo, then f(z) e (V).

Proof. This is a direct application of Theorem 1.

In connection with Theorem 3 we point out that annular functions,

(see [5]) are functions belonging to class (S)\(V) with the property that

their inverse functions have exactly one transcendental singularity above

w = oo. In [16], Valiron offers a construction of functions in class (V)

with the property that their inverses have precisely k transcendental

singularities above w = oo. The subtleties of Valiron's construction we

feel prompts the need for another approach to the construction of such

functions.

THEOREM 4. Let f(z) e (S). Then every pair of non-equivalent

finite spiral asymptotic paths for f(z) is separated by spirals along which

f(z) —> oo as \z\ —> 1.

Proof. Suppose Sx and S2 are non-equivalent finite asymptotic spiral

paths in \z\ < 1 for f(z). We may suppose that Sλ and S2 have a com-

mon initial point but are otherwise disjoint. They, then, divide \z\ < 1

into two simply-connected regions Dλ and D2. Map D1 in a one-to-one

conformal manner onto the disk |ζ | < 1 by ζ — ζ(z) in such a way that

the prime end P of D19 whose impression is |#| = 1, corresponds to ζ

= 1. The function F(ζ) = /(s(ζ)), where z = z(ζ) is the inverse of ζ

= ζ(z), is holomorphic in |ζ| < 1 and continuous in |ζ | < 1, ζ φ 1. If

F(ζ) were bounded in |ζ| < 1, then, by a well-known theorem of Lindelof,

F(ζ) would be continuous in the closed disk |ζ| < 1. But this would im-

ply [SJ = [S2] which contradicts our hypothesis. Thus, oo e C(F, 1)

- CB{F,1) and oo is omitted by F(ζ) in |ζ| < 1. Hence, by the Gross-

Iversen theorem, oo is an asymptotic value along a path L terminating

at ζ = 1. The image of L under z = z(ζ) is a spiral in Dι along which
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f(z) -• oo as I z I -* 1. To complete the proof, we apply the above argu-
ment to the region D2.

We remark that non-equivalent spirals with oo as an asymptotic
value are not, in general, separated by finite spiral asymptotic paths.
Imitating the pole-sweeping technique of Barth and Schneider, as found
in [4], we can construct a function f(z) e OS) such that f(z) is bounded
on the spirals S1 and S2 and f(z) -^ oo on the spirals Si in Dx and Sf

2

in D2 (D1 and D2 are the regions in \z\ < 1 formed by Sλ and S2), with
oo the only asymptotic value of f(z).
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