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Abstract Theorems on the Fredholm alternative and well-posedness of the characteristic initial-value
problem

∂2u(t, x)
∂t∂x

= �(u)(t, x) + q(t, x),

u(t, c) = ϕ(t) for t ∈ [a, b], u(a, x) = ψ(x) for x ∈ [c, d],

are established, where � : C(D; R) → L(D; R) is a linear bounded operator, q ∈ L(D; R), ϕ : [a, b] → R,
ψ : [c, d] → R are absolutely continuous functions and D = [a, b] × [c, d]. Some solvability conditions of
the problem considered are also given.
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1. Introduction

On the rectangle D = [a, b] × [c, d], we consider the linear partial functional-differential
equation

∂2u(t, x)
∂t∂x

= �(u)(t, x) + q(t, x), (1.1)

where � : C(D; R) → L(D; R) is a linear bounded operator and q ∈ L(D; R). As usual,
C(D; R) and L(D; R) denote the Banach spaces of continuous and Lebesgue integrable
functions, respectively, equipped with the standard norms.

A function u ∈ C∗(D; R) is said to be a solution to Equation (1.1) if it satisfies the
equality (1.1) almost everywhere on the set D.

Various initial- and boundary-value problems for hyperbolic differential equations and
their systems have been studied in the literature (see, for example, [3, 6, 7, 9–12, 16,
19–21] and the references therein). We shall consider the so-called characteristic initial-
value problem (Darboux problem). In this case, the values of the solution u of (1.1) are
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prescribed on both characteristics t = a and x = c, i.e. the initial conditions are

u(t, c) = ϕ(t) for t ∈ [a, b], u(a, x) = ψ(x) for x ∈ [c, d], (1.2)

where ϕ : [a, b] → R, ψ : [c, d] → R are absolutely continuous functions such that
ϕ(a) = ψ(c).

The aim of the paper is to prove the Fredholm alternative and well-posedness of prob-
lem (1.1), (1.2) (see §§ 4 and 6). Moreover, in § 5 some conditions are given under which
problem (1.1), (1.2) has a unique solution. The results obtained are applied for the equa-
tion with deviating arguments

∂2u(t, x)
∂t∂x

= p(t, x)u(τ(t, x), µ(t, x)) + q(t, x), (1.1′)

where p, q ∈ L(D; R) and τ : D → [a, b], µ : D → [c, d] are measurable functions.
Let us note that analogous results for the ‘ordinary’ functional-differential equations

and their systems are given in [1,8,13,14].

2. Notation and definitions

The following notation is used throughout the paper.
N is the set of all natural numbers; R is the set of all real numbers; Ent(x) denotes the

entire part of the number x ∈ R.
D = [a, b] × [c, d], where −∞ < a < b < +∞ and −∞ < c < d < +∞.
C(D; R) is the Banach space of continuous functions v : D → R equipped with the

norm
‖v‖C = max{|v(t, x)| : (t, x) ∈ D}.

C̃([α, β]; R), where −∞ < α < β < +∞, is the set of absolutely continuous functions
u : [α, β] → R.

C∗(D; R) is the set of functions v : D → R admitting the representation

v(t, x) = v1(t) + v2(x) +
∫ t

a

∫ x

c

h(s, η) dη ds for (t, x) ∈ D,

where v1 ∈ C̃([a, b], R), v2 ∈ C̃([c, d], R) and h ∈ L(D; R). Equivalent definitions of the
class C∗(D; R) are given in Remark 2.2, below.

L(D; R) is the Banach space of Lebesgue integrable functions p : D → R equipped
with the norm

‖p‖L =
∫∫

D
|p(t, x)| dt dx.

L(D) is the set of linear bounded operators � : C(D; R) → L(D; R).
The Lebesgue measure of the set A ⊂ R

2 is denoted by meas A.
If X, Y are Banach spaces and T : X → Y is a linear bounded operator, then ‖T‖

denotes the norm of the operator T , i.e.

‖T‖ = sup{‖T (z)‖Y : z ∈ X, ‖z‖X � 1}.
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Definition 2.1. An operator � ∈ L(D) is said to be an (a, c)–Volterra operator if, for
arbitrary rectangle [a, t0] × [c, x0] ⊆ D and function v ∈ C(D; R) such that

v(t, x) = 0 for (t, x) ∈ [a, t0] × [c, x0],

the relation

�(v)(t, x) = 0 for a.e. (t, x) ∈ [a, t0] × [c, x0]

is fulfilled.

Remark 2.2. One can verify (see, for example, [5,18]) that v ∈ C∗(D; R) if and only
if the function v satisfies the following conditions:

(i) v(· , x) ∈ C̃([a, b], R) for every x ∈ [c, d], v(a, ·) ∈ C̃([c, d], R);

(ii) vt(t, ·) ∈ C̃([c, d], R) for almost all t ∈ [a, b];

(iii) vtx ∈ L(D; R).

Using Fubini’s theorem, it is clear that the order of the integration can be changed in
the integral representation of the function v ∈ C∗(D; R) and thus the conditions stated
above can be replaced by the following symmetric ones:

(i′) v(· , c) ∈ C̃([a, b], R), v(t, ·) ∈ C̃([c, d], R) for every t ∈ [a, b];

(ii′) vx(· , x) ∈ C̃([a, b], R) for almost all x ∈ [c, d];

(iii′) vxt ∈ L(D; R).

Note also that the set C∗(D; R) coincides with the class of functions of two variables,
which are absolutely continuous on D in Carathéodory’s sense (see, for example, [2,5,
15,20]).

3. Auxiliary statements

The following proposition plays a crucial role in the proofs of statements given in §§ 4–6.

Proposition 3.1. Let � ∈ L(D). Then the operator T : C(D; R) → C(D; R) defined
by

T (v)(t, x) def=
∫ t

a

∫ x

c

�(v)(s, η) dη ds for (t, x) ∈ D, v ∈ C(D; R) (3.1)

is completely continuous.

The statement above can easily be proved in the case where the operator � is strongly
bounded, i.e. if there exists a function η ∈ L(D; R+) such that

|�(v)(t, x)| � η(t, x)‖v‖C for a.e. (t, x) ∈ D and all v ∈ C(D; R). (3.2)

Schaefer proved, however, that there exists an operator � ∈ L(D) which is not strongly
bounded (see [17]). To prove Proposition 3.1 without the additional requirement (3.2)
we need a number of notions and statements from functional analysis. Note here that
the proof is analogous to the proof of Proposition 2.9 in [8].
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Definition 3.2. Let X be a Banach space and let X∗ be its dual space.
We say that a sequence {xn}+∞

n=1 ⊆ X is weakly convergent if there exists x ∈ X such
that f(x) = limn→+∞ f(xn) for every f ∈ X∗. The element x is said to be a weak limit
of this sequence.

A set M ⊆ X is called weakly relatively compact if every sequence of elements from
M contains a subsequence which is weakly convergent in X.

A sequence {xn}+∞
n=1 of elements from X is said to be weakly fundamental if the

sequence {f(xn)}+∞
n=1 is fundamental in R for every f ∈ X∗.

We say that the space X is weakly complete if every weakly fundamental sequence of
elements from X possesses a weak limit in X.

Definition 3.3. Let X and Y be Banach spaces, and let T : X → Y be a linear
bounded operator. The operator T is said to be weakly completely continuous if it maps
a unit ball of X into a weakly relatively compact subset of Y .

Definition 3.4. We say that a set M ⊆ L(D; R) has an absolutely continuous integral
property if, for every ε > 0, there exists δ > 0 such that the relation∣∣∣∣

∫∫
E

p(t, x) dt dx

∣∣∣∣ < ε for every p ∈ M

is true whenever a measurable set E ⊆ D is such that meas E < δ.

The following three lemmas can be found in [4].

Lemma 3.5 (Theorem IV.8.6). The space L(D; R) is weakly complete.

Lemma 3.6 (Theorem VI.7.6). A linear bounded operator mapping the space
C(D; R) into a weakly complete Banach space is weakly completely continuous.

Lemma 3.7 (Theorem IV.8.11). If a set M ⊆ L(D; R) is weakly relatively compact
then it has a property of absolutely continuous integral.

Proof of Proposition 3.1. Let M ⊆ C(D; R) be a bounded set. We will show that the
set T (M) = {T (v) : v ∈ M} is relatively compact in C(D; R). According to the Arzelà–
Ascoli lemma, it is sufficient to show that the set T (M) is bounded and equicontinuous.

(i) Boundedness. It is clear that

|T (v)(t, x)| �
∫ t

a

∫ x

c

|�(v)(s, η)| dη ds � ‖�(v)‖L � ‖�‖ ‖v‖C

for (t, x) ∈ D and every v ∈ M . Therefore, the set T (M) is bounded in C(D; R).

(ii) Equicontinuity. Let ε > 0 be arbitrary but fixed. Lemmas 3.5 and 3.6 yield that
the operator � is weakly completely continuous, that is, the set �(M) = {�(v) : v ∈ M}
is weakly relatively compact subset of L(D; R). Therefore, Lemma 3.7 guarantees that
there exists δ > 0 such that the relation∣∣∣∣

∫∫
E

�(v)(t, x) dt dx

∣∣∣∣ < 1
2ε for v ∈ M (3.3)

holds for every measurable set E ⊆ D satisfying meas E < max{b − a, d − c}δ.
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On the other hand, for (t1, x1), (t2, x2) ∈ D and v ∈ M , we have

|T (v)(t2, x2) − T (v)(t1, x1)| =
∣∣∣∣
∫ t2

a

∫ x2

c

�(v)(s, η) dη ds −
∫ t1

a

∫ x1

c

�(v)(s, η) dη ds

∣∣∣∣
�

∣∣∣∣
∫∫

E1

�(v)(s, η) ds dη

∣∣∣∣ +
∣∣∣∣
∫∫

E2

�(v)(s, η) ds dη

∣∣∣∣,
where measurable sets E1, E2 ⊆ D are such that meas E1 � (d−c)|t2−t1| and meas E2 �
(b − a)|x2 − x1|. Hence, by virtue of (3.3), we get

|T (v)(t2, x2) − T (v)(t1, x1)| < ε

for (t1, x1), (t2, x2) ∈ D, |t2 − t1| + |x2 − x1| < δ and v ∈ M,

i.e. the set T (M) is equicontinuous in C(D; R). �

4. Fredholm property

The main result of this section is the following statement on the Fredholmity of prob-
lem (1.1), (1.2).

Theorem 4.1. For the unique solvability of problem (1.1), (1.2) it is sufficient and
necessary that the homogeneous problem

∂2u(t, x)
∂t∂x

= �(u)(t, x), (1.10)

u(t, c) = 0 for t ∈ [a, b], u(a, x) = 0 for x ∈ [c, d], (1.20)

has only the trivial solution.

Proof. Let u be a solution to problem (1.1), (1.2). It is clear that u is a solution to
the equation

v = T (v) + f (4.1)

in the space C(D; R), where the operator T is given by (3.1) and

f(t, x) def= −ϕ(a) + ϕ(t) + ψ(x) +
∫ t

a

∫ x

c

q(s, η) dη ds for (t, x) ∈ D. (4.2)

Conversely, if v ∈ C(D; R) is a solution to Equation (4.1) with f given by (4.2), then
v ∈ C∗(D; R) and v is a solution to problem (1.1), (1.2). Hence, problem (1.1), (1.2) and
Equation (4.1) are equivalent in this sense.

Note also that u is a solution to the homogeneous problem (1.10), (1.20) if and only if
u is a solution to the homogeneous equation

v = T (v) (4.3)

in the space C(D; R).
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According to Proposition 3.1, the operator T is completely continuous. It follows from
the Riesz–Schauder theory that Equation (4.1) is uniquely solvable for every f ∈ C(D; R)
if and only if the homogeneous Equation (4.3) has only the trivial solution. Therefore,
the assertion of the theorem is true. �

Definition 4.2. Let the problem (1.10), (1.20) have only the trivial solution. An
operator Ω : L(D; R) → C(D; R) which assigns to every q ∈ L(D; R) the solution u of
the problem (1.1), (1.20) is called the Darboux operator of the problem (1.10), (1.20).

Remark 4.3. It is clear that the Darboux operator Ω is linear.

If the homogeneous problem (1.10), (1.20) has a non-trivial solution then, by virtue of
Theorem 4.1, there exist functions q, ϕ and ψ such that problem (1.1), (1.2) has either no
solution or infinitely many solutions. However, as follows from the proof of Theorem 4.1,
a stronger assertion can be shown in this case.

Proposition 4.4. Let problem (1.10), (1.20) have a non-trivial solution. Then, for
arbitrary ϕ ∈ C̃([a, b], R) and ψ ∈ C̃([c, d], R) satisfying ϕ(a) = ψ(c), there exists a
function q ∈ L(D; R) such that problem (1.1), (1.2) has no solution.

Proof. Let u0 be a non-trivial solution to the problem (1.10), (1.20) and let ϕ ∈
C̃([a, b], R) and ψ ∈ C̃([c, d], R) be such that ϕ(a) = ψ(c).

It follows from the proof of Theorem 4.1 that u0 is also a non-trivial solution to
the homogeneous Equation (4.3). Therefore, by the Riesz–Schauder theory, there exists
f ∈ C(D; R) such that Equation (4.1) has no solution.

Then problem (1.1), (1.2) has no solution for q ≡ �(z), where

z(t, x) = f(t, x) + ϕ(a) − ϕ(t) − ψ(x) for (t, x) ∈ D.

Indeed, if the problem indicated has a solution u, then the function u + z is a solution
to Equation (4.1), which is a contradiction. �

5. Existence and uniqueness theorems

In this section, we shall establish some efficient condition guaranteeing the unique solv-
ability of the problems (1.1), (1.2) and (1.1′), (1.2). We will prove, in particular, that
problem (1.1), (1.2) has a unique solution provided that the operator � is an (a, c)–
Volterra one. We first formulate all the results; their proofs are given later.

We introduce the following notation.

Notation 5.1. Let � ∈ L(D). Define operators ϑk : C(D; R) → C(D; R), k =
0, 1, 2, . . . , by setting

ϑ0(v) def= v, ϑk(v) def= T (ϑk−1(v)) for v ∈ C(D; R), k ∈ N, (5.1)

where the operator T is given by (3.1).
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Theorem 5.2. Let there exist m ∈ N and α ∈ [0, 1[ such that the inequality

‖ϑm(u)‖C � α‖u‖C (5.2)

is satisfied for every solution u of the homogeneous problem (1.10), (1.20). Then prob-
lem (1.1), (1.2) is uniquely solvable.

Remark 5.3. The assumption that α ∈ [0, 1[ in the previous theorem cannot be
replaced by the assumption that α ∈ [0, 1] (see Example 7.1).

Corollary 5.4. Let there exist j ∈ N such that∫∫
D

pj(t, x) dt dx < 1, (5.3)

where p1 ≡ |p| and

pk+1(t, x) def= |p(t, x)|
∫ τ(t,x)

a

∫ µ(t,x)

c

pk(s, η) dη ds for a.e. (t, x) ∈ D, k ∈ N. (5.4)

Then the problem (1.1′), (1.2) is uniquely solvable.

Remark 5.5. Example 7.1 shows that the strict inequality (5.3) in Corollary 5.4
cannot be replaced by the non-strict one.

Theorem 5.6. Let � be an (a, c)–Volterra operator. Then problem (1.1), (1.2) has a
unique solution.

Corollary 5.7. Let

|p(t, x)|(τ(t, x) − t) � 0 for a.e. (t, x) ∈ D (5.5)

and

|p(t, x)|(µ(t, x) − x) � 0 for a.e. (t, x) ∈ D. (5.6)

Then problem (1.1′), (1.2) has a unique solution.

5.1. Proofs

Proof of Theorem 5.2. According to Theorem 4.1, it is sufficient to show that the
homogeneous problem (1.10), (1.20) has only the trivial solution.

Let u be a solution to the problem (1.10), (1.20). Then it is clear that

u(t, x) =
∫ t

a

∫ x

c

�(u)(s, η) dη ds = T (u)(t, x) = ϑ1(u)(t, x) for (t, x) ∈ D.

Using the above relation, we get

u(t, x) = T (ϑ1(u))(t, x) = ϑ2(u)(t, x) for (t, x) ∈ D,

and thus u = ϑk(u) for every k ∈ N. Therefore, (5.2) implies that

‖u‖C = ‖ϑm(u)‖C � α‖u‖C ,

which guarantees u ≡ 0. �
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Proof of Corollary 5.4. Let � ∈ L(D) be defined by

�(v)(t, x) def= p(t, x)v(τ(t, x), µ(t, x)) for a.e. (t, x) ∈ D and all v ∈ C(D; R). (5.7)

It is clear that

|ϑk(v)(t, x)| �
∫ t

a

∫ x

c

|p(s, η)ϑk−1(v)(τ(s, η), µ(s, η))| dη ds

� ‖v‖C

∫ t

a

∫ x

c

pk(s, η) dη ds for (t, x) ∈ D, k ∈ N, v ∈ C(D; R).

Therefore, the assumptions of Theorem 5.2 are satisfied with m = j and

α =
∫∫

D
pj(t, x) dt dx.

�

To prove Theorem 5.6 we need the following lemma.

Lemma 5.8. Let � ∈ L(D) be an (a, c)–Volterra operator. Then

lim
k→+∞

‖ϑk‖ = 0, (5.8)

where the operators ϑk are defined by (5.1).

Proof. Let ε ∈ ]0, 1[. According to Proposition 3.1, the operator ϑ1 is completely
continuous. Therefore, by virtue of the Arzelà–Ascoli lemma, there exists δ > 0 such
that

∣∣∣∣
∫ t2

a

∫ x2

c

�(w)(s, η) dη ds −
∫ t1

a

∫ x1

c

�(w)(s, η) dη ds

∣∣∣∣ � ε‖w‖C

for (t1, x1), (t2, x2) ∈ D, |t2 − t1| + |x2 − x1| < δ, w ∈ C(D; R). (5.9)

Put

n = max
{

Ent
(

2(b − a)
δ

)
, Ent

(
2(d − c)

δ

)}
,

ti = a + i
b − a

n + 1
, xi = c + i

d − c

n + 1
for i = 0, 1, . . . , n + 1,

Di = [a, ti] × [c, xi] for i = 1, 2, . . . , n + 1.

It is clear that, for any j, r = 0, 1, . . . , n, we have

|t̃2 − t̃1| + |x̃2 − x̃1| < δ for (t̃1, x̃1), (t̃2, x̃2) ∈ [tj , tj+1] × [xr, xr+1]. (5.10)
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If w ∈ C(D; R), then we define

‖w‖i = ‖w‖C(Di;R) for i = 1, 2, . . . , n + 1.

Let v ∈ C(D; R) be arbitrary but fixed. We shall show that the relation

‖ϑk(v)‖i � αi(k)εk‖v‖C for k ∈ N (5.11)

holds for every i = 1, 2, . . . , n + 1, where

αi(k) = αik
i−1 for k ∈ N, i = 1, 2, . . . , n + 1, (5.12)

α1 = 1, αi+1 = i + 1 + iαi for i = 1, 2, . . . , n. (5.13)

By virtue of (5.9) and (5.10), it is easy to verify that, for any w ∈ C(D; R), we have∣∣∣∣
∫ tj

a

∫ xr

c

�(w)(s, η) dη ds

∣∣∣∣ � min{j, r}ε‖w‖C for j, r = 0, 1, . . . , n + 1. (5.14)

Firstly, note that
‖ϑ1(v)‖i � iε‖v‖C for i = 1, 2, . . . , n + 1. (5.15)

Indeed, according to (5.9), (5.10) and (5.14), it is obvious that

‖ϑ1(v)‖i = max
{∣∣∣∣

∫ t

a

∫ x

c

�(v)(s, η) dη ds

∣∣∣∣ : (t, x) ∈ Di

}

=
∣∣∣∣
∫ t∗

i

a

∫ x∗
i

c

�(v)(s, η) dη ds

∣∣∣∣
�

∣∣∣∣
∫ t∗

i

a

∫ x∗
i

c

�(v)(s, η) dη ds −
∫ tj0(i)

a

∫ xr0(i)

c

�(v)(s, η) dη ds

∣∣∣∣
+

∣∣∣∣
∫ tj0(i)

a

∫ xr0(i)

c

�(v)(s, η) dη ds

∣∣∣∣
� ε‖v‖C + (i − 1)ε‖v‖C

= iε‖v‖C for i = 1, 2, . . . , n + 1,

where (t∗i , x
∗
i ) ∈ Di and

j0(i) =

⎧⎪⎪⎨
⎪⎪⎩

t∗i − t0
t1 − t0

− 1 if
t∗i − t0
t1 − t0

∈ N,

Ent
(

t∗i − t0
t1 − t0

)
otherwise,

r0(i) =

⎧⎪⎪⎨
⎪⎪⎩

x∗
i − x0

x1 − x0
− 1 if

x∗
i − x0

x1 − x0
∈ N,

Ent
(

x∗
i − x0

x1 − x0

)
otherwise.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.16)
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Furthermore, on account of (5.9) and the fact that � is an (a, c)–Volterra operator, we
have

|ϑk+1(v)(t, x)| =
∣∣∣∣
∫ t

a

∫ x

c

�(ϑk(v))(s, η) dη ds

∣∣∣∣ � ε‖ϑk(v)‖1

for (t, x) ∈ D1 and k ∈ N. Hence, by virtue of (5.15), we get

‖ϑk(v)‖1 � εk‖v‖C for k ∈ N,

i.e. (5.11) is true for i = 1.
Now suppose that the relation (5.11) holds for some i ∈ {1, 2, . . . , n}. We will show

that the relation indicated is true also for i + 1. With respect to (5.9), (5.10), (5.14) and
the fact that � is an (a, c)–Volterra operator, we obtain

‖ϑk+1(v)‖i+1 = max
{∣∣∣∣

∫ t

a

∫ x

c

�(ϑk(v))(s, η) dη ds

∣∣∣∣ : (t, x) ∈ Di+1

}

=
∣∣∣∣
∫ t∗

k

a

∫ x∗
k

c

�(ϑk(v))(s, η) dη ds

∣∣∣∣
�

∣∣∣∣
∫ t∗

k

a

∫ x∗
k

c

�(ϑk(v))(s, η) dη ds −
∫ tj0(k)

a

∫ xr0(k)

c

�(ϑk(v))(s, η) dη ds

∣∣∣∣
+

∣∣∣∣
∫ tj0(k)

a

∫ xr0(k)

c

�(ϑk(v))(s, η) dη ds

∣∣∣∣
� ε‖ϑk(v)‖i+1 + iε‖ϑk(v)‖i

� ε‖ϑk(v)‖i+1 + iαi(k)εk+1‖v‖C for k ∈ N,

where (t∗k, x∗
k) ∈ Di+1 and j0(k), r0(k) are given by (5.16). Whence, we get

‖ϑk+1(v)‖i+1 � ε(ε‖ϑk−1(v)‖i+1 + iαi(k − 1)εk‖v‖C) + iαi(k)εk+1‖v‖C for k ∈ N.

To continue this procedure, on account of (5.15), we obtain

‖ϑk+1(v)‖i+1 � (i + 1 + i(αi(1) + · · · + αi(k)))εk+1‖v‖C for k ∈ N. (5.17)

With respect to (5.12) and (5.13), it is easy to verify that

i + 1 + i(αi(1) + · · · + αi(k)) = i + 1 + iαi(1i−1 + · · · + ki−1)

� i + 1 + iαikki−1

= i + 1 + iαik
i

� (i + 1 + iαi)ki

= αi+1k
i

� αi+1(k + 1).

Therefore, (5.15) and (5.17) imply that

‖ϑk(v)‖i+1 � αi+1(k)εk‖v‖C for k ∈ N.
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Thus, by induction, we have proved that the relation (5.11) is true for every i =
1, 2, . . . , n + 1.

Now it is already clear that, for any k ∈ N, the estimate

‖ϑk(v)‖C = ‖ϑk(v)‖n+1 � αn+1k
nεk‖v‖C for v ∈ C(D; R)

holds. Therefore,
‖ϑk‖ � αn+1k

nεk for k ∈ N.

Since we suppose that ε ∈ ]0, 1[, the last relation yields (5.8). �

Proof of Theorem 5.6. According to Lemma 5.8, there exists m0 ∈ N such that
‖ϑm0‖ < 1. Moreover, it is clear that

‖ϑm0(v)‖C � ‖ϑm0‖ ‖v‖C for v ∈ C(D; R),

because the operator ϑm0 is bounded. Therefore, the assumptions of Theorem 5.2 are
satisfied with m = m0 and α = ‖ϑm0‖. �

Proof of Corollary 5.7. The assumptions (5.5) and (5.6) guarantee that the operator
� given by (5.7) is an (a, c)–Volterra one. Therefore, the validity of the corollary follows
immediately from Theorem 5.6. �

6. Well-posedness

In this part, the well-posedness of the problems (1.1), (1.2) and (1.1′), (1.2) is investi-
gated. We first formulate all the results; their proofs are given later.

For any k ∈ N, along with problem (1.1), (1.2) we consider the perturbed problem

∂2u(t, x)
∂t∂x

= �k(u)(t, x) + qk(t, x), (1.1k)

u(t, c) = ϕk(t) for t ∈ [a, b], u(a, x) = ψk(x) for x ∈ [c, d], (1.2k)

where �k ∈ L(D), qk ∈ L(D; R) and ϕk ∈ C̃([a, b]; R), ψk ∈ C̃([c, d]; R) are such that
ϕk(a) = ψk(c).

We introduce the following notation.

Notation 6.1. Let � ∈ L(D). Denote by M(�) the set of all functions y ∈ C∗(D; R)
admitting the representation

y(t, x) = −z(a, c) +
∫ t

a

∫ x

c

�(z)(s, η) dη ds for (t, x) ∈ D,

where z ∈ C(D; R) and ‖z‖C = 1.

Theorem 6.2. Let problem (1.1), (1.2) have a unique solution u,

lim
k→+∞

λk = 0, (6.1)
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where

λk = sup
{∣∣∣∣

∫ t

a

∫ x

c

(�k(y)(s, η) − �(y)(s, η)) dη ds

∣∣∣∣ : (t, x) ∈ D, y ∈ M(�k)
}

for k ∈ N,

and let

lim
k→+∞

(1 + ‖�k‖)
∫ t

a

∫ x

c

(�k(y)(s, η) − �(y)(s, η)) dη ds = 0

uniformly on D for every y ∈ C∗(D; R). (6.2)

Moreover, let

lim
k→+∞

(1 + ‖�k‖)
∫ t

a

∫ x

c

(qk(s, η) − q(s, η)) dη ds = 0 uniformly on D (6.3)

and
lim

k→+∞
(1 + ‖�k‖)‖ϕk − ϕ‖C = 0, lim

k→+∞
(1 + ‖�k‖)‖ψk − ψ‖C = 0. (6.4)

Then there exists k0 ∈ N such that, for every k > k0, the problem (1.1k), (1.2k) has a
unique solution uk and

lim
k→+∞

‖uk − u‖C = 0. (6.5)

If we suppose that the operators �k are uniformly bounded in the sense of (6.6), then
we obtain the following statement.

Corollary 6.3. Let problem (1.1), (1.2) have a unique solution u, let there exist a
function ω ∈ L(D; R+) such that

|�k(y)(t, x)| � ω(t, x)‖y‖C for a.e. (t, x) ∈ D and all y ∈ C(D; R), k ∈ N, (6.6)

and let

lim
k→+∞

∫ t

a

∫ x

c

(�k(y)(s, η) − �(y)(s, η)) dη ds = 0 uniformly on D (6.7)

for every y ∈ C∗(D; R). Moreover, let

lim
k→+∞

∫ t

a

∫ x

c

(qk(s, η) − q(s, η)) dη ds = 0 uniformly on D, (6.8)

and
lim

k→+∞
‖ϕk − ϕ‖C = 0, lim

k→+∞
‖ψk − ψ‖C = 0. (6.9)

Then the conclusion of Theorem 6.2 holds.

Remark 6.4. Assumption (6.6) in the previous corollary is essential and cannot be
omitted (see Example 7.2).

Corollary 6.3 yields the following.
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Corollary 6.5. Let the homogeneous problem (1.10), (1.20) have only the trivial
solution. Then the Darboux operator∗ of the problem (1.10), (1.20) is continuous.

Now we shall give a statement on the well-posedness of the problem (1.1′), (1.2). For
any k ∈ N, along with Equation (1.1′) we consider the perturbed equation

∂2u(t, x)
∂t∂x

= pk(t, x)u(τk(t, x), µk(t, x)) + qk(t, x), (1.1′
k)

where pk, qk ∈ L(D; R) and τk : D → [a, b], µk : D → [c, d] are measurable functions.

Theorem 6.6. Let the problem (1.1′), (1.2) have a unique solution u, let there exist
a function ω ∈ L(D; R) such that

|pk(t, x)| � ω(t, x) for (t, x) ∈ D, k ∈ N, (6.10)

and let

lim
k→+∞

∫ t

a

∫ x

c

(pk(s, η) − p(s, η)) dη ds = 0 uniformly on D. (6.11)

Moreover, let conditions (6.8) and (6.9) be satisfied and let

lim
k→+∞

ess sup{|τk(t, x) − τ(t, x)| : (t, x) ∈ D} = 0, (6.12)

lim
k→+∞

ess sup{|µk(t, x) − µ(t, x)| : (t, x) ∈ D} = 0. (6.13)

Then there exists k0 ∈ N such that, for every k > k0, problem (1.1′
k), (1.2k) has a unique

solution uk and (6.5) holds.

Remark 6.7. Assumption (6.10) in the previous theorem is essential and cannot be
omitted (see Example 7.2).

6.1. Proofs

To prove Theorem 6.2 we need the following lemma.

Lemma 6.8. Let problem (1.10), (1.20) have only the trivial solution and let condi-
tion (6.1) be satisfied. Then there exist k0 ∈ N and r0 > 0 such that

‖z‖C � r0ρk(z) for k > k0, z ∈ C∗(D; R), (6.14)

where
ρk(v) def= |v(a, c)| + (1 + ‖�k‖)‖Γk(v)‖C for v ∈ C∗(D; R) (6.15)

and

Γk(v)(t, x) def= v(t, c) + v(a, x) +
∫ t

a

∫ x

c

(
∂2v(s, η)

∂s∂η
− �k(v)(s, η)

)
dη ds (6.16)

for (t, x) ∈ D and v ∈ C∗(D; R).
∗ The notion of Darboux operator is given in Definition 4.2.
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Proof. Let T, Tk : C(D; R) → C(D; R) be operators defined by (3.1) and

Tk(v)(t, x) def=
∫ t

a

∫ x

c

�k(v)(s, η) dη ds for (t, x) ∈ D, v ∈ C(D; R), k ∈ N. (6.17)

Obviously,
‖Tk(y)‖C � ‖�k‖ ‖y‖C for y ∈ C(D; R), k ∈ N.

Therefore, the operators Tk, k ∈ N, are linear and bounded and the relation

‖Tk‖ � ‖�k‖ for k ∈ N (6.18)

holds. Moreover, the condition (6.1) can be rewritten in the form

sup{‖Tk(y) − T (y)‖C : y ∈ M(�k)} → 0 as k → +∞. (6.19)

Assume that, on the contrary, the assertion of the lemma is not true. Then there
exist an increasing sequence {km}+∞

m=1 of natural numbers and a sequence {zm}+∞
m=1 of

functions from C∗(D; R) such that

‖zm‖C > mρkm(zm) for m ∈ N. (6.20)

For any m ∈ N and (t, x) ∈ D, we set

ym(t, x) =
zm(t, x)
‖zm‖C

, (6.21)

vm(t, x) = ym(t, c) + ym(a, x) +
∫ t

a

∫ x

c

(
∂2ym(s, η)

∂s∂η
− �km

(ym)(s, η)
)

dη ds, (6.22)

y0m(t, x) = ym(t, x) − vm(t, x), (6.23)

wm(t, x) = Tkm(y0m)(t, x) − T (y0m)(t, x) + Tkm
(vm)(t, x). (6.24)

Obviously,

‖ym‖C = 1 for m ∈ N, (6.25)

y0m(t, x) = −ym(a, c) + Tkm(ym)(t, x) for (t, x) ∈ D, m ∈ N, (6.26)

and

y0m(t, x) = −ym(a, c) + T (y0m)(t, x) + wm(t, x) for (t, x) ∈ D, m ∈ N. (6.27)

On the other hand, from (6.15), (6.16), (6.18), (6.21) and (6.22), by virtue of (6.20), we
get

‖vm‖C � ρkm(zm)
‖zm‖C(1 + ‖�km‖)

<
1

m(1 + ‖�km‖)
for m ∈ N, (6.28)

‖Tkm(vm)‖C � ‖Tkm‖ ‖vm‖C <
‖�km‖

m(1 + ‖�km‖)
<

1
m

for m ∈ N, (6.29)
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and

|ym(a, c)| � ρkm
(zm)

‖zm‖C
<

1
m

for m ∈ N. (6.30)

The relations (6.25) and (6.26) guarantee that y0m ∈ M(�km
) for m ∈ N and, therefore,

in view of (6.19), we obtain

lim
m→+∞

‖Tkm(y0m) − T (y0m)‖C = 0. (6.31)

According to (6.29) and (6.31), it follows from (6.24) that

lim
m→+∞

‖wm‖C = 0, (6.32)

and, by virtue of (6.25) and (6.28), the equality (6.23) implies

‖y0m‖C � ‖ym‖C + ‖vm‖C < 2 for m ∈ N.

Since the sequence {‖y0m‖C}+∞
m=1 is bounded and the operator T is completely continuous

(see Proposition 3.1), there exists a subsequence of {T (y0m)}+∞
m=1 which is convergent.

Without loss of generality we can assume that the sequence {T (y0m)}+∞
m=1 is convergent,

i.e. there exists y0 ∈ C(D; R) such that

lim
m→+∞

‖T (y0m) − y0‖C = 0.

Then it is clear that

lim
m→+∞

‖y0m − y0‖C = 0 (6.33)

because the functions y0m admit the representation (6.27) and (6.30) and (6.32) are
satisfied.

However, the estimate (6.28) holds for vm and, thus, the equality (6.23) yields

lim
m→+∞

‖ym − y0‖C = 0,

which, together with (6.25), guarantees that

‖y0‖C = 1.

Since the operator T is continuous and the conditions (6.30), (6.32) and (6.33) are ful-
filled, the representation (6.27) of y0m results in

y0(t, x) = T (y0)(t, x) for (t, x) ∈ D.

Consequently, y0 ∈ C∗(D; R) and y0 is a non-trivial solution to the problem (1.10),
(1.20). However, this is a contradiction because, according to our assumption, the problem
indicated has no non-trivial solution. �
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Proof of Theorem 6.2. Let r0 > 0 and k0 ∈ N be numbers appearing in Lemma 6.8.
If, for some k ∈ N, u0 is a solution to the equation

∂2u(t, x)
∂t∂x

= �k(u)(t, x) (6.33k)

satisfying (1.20), then ρk(u0) = 0, where ρk is given by (6.15) and (6.16). Therefore,
Lemma 6.8 guarantees that, for every k > k0, the homogeneous problem (6.33k), (1.20)
has only the trivial solution. Hence, for every k > k0, the problem (1.1k), (1.2k) has
a unique solution uk. We shall show that (6.5) is satisfied, where u is a solution to
problem (1.1), (1.2).

For any k > k0, we set

vk(t, x) = uk(t, x) − u(t, x) for (t, x) ∈ D.

Then it is clear that vk ∈ C∗(D; R) for k > k0,

∂2vk(t, x)
∂t∂x

= �k(vk)(t, x) + q̃k(t, x) for a.e. (t, x) ∈ D, k > k0, (6.34)

and
vk(t, c) = ϕ̃k(t) for t ∈ [a, b], k > k0,

vk(a, x) = ψ̃k(x) for x ∈ [c, d], k > k0,

}
(6.35)

where

q̃k(t, x) = �k(u)(t, x) − �(u)(t, x) + qk(t, x) − q(t, x) for a.e. (t, x) ∈ D, k > k0,

ϕ̃k(t) = ϕk(t) − ϕ(t) for t ∈ [a, b], k > k0,

ψ̃k(x) = ψk(x) − ψ(x) for x ∈ [c, d], k > k0.

For any k > k0, we set

δk = (1 + ‖�k‖) max
{∣∣∣∣ϕ̃k(t) + ψ̃k(x) +

∫ t

a

∫ x

c

q̃k(s, η) dη ds

∣∣∣∣ : (t, x) ∈ D
}

.

Assumptions (6.2), (6.3) and (6.4) yield

lim
k→+∞

δk = 0 and lim
k→+∞

|vk(a, c)| = 0. (6.36)

On the other hand, using Lemma 6.8, we get

‖vk‖C � r0ρk(vk) = r0(|vk(a, c)| + δk) for k > k0. (6.37)

Therefore, (6.36) and (6.37) result in

lim
k→+∞

‖vk‖C = 0,

i.e. the relation (6.5) is satisfied. �
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Proof of Corollary 6.3. We will show that the assumptions of Theorem 6.2 are
satisfied. Indeed, the relation (6.6) yields

‖�k‖ � ‖ω‖L for k ∈ N.

Therefore, it is clear that, by virtue of (6.7)–(6.9), the assumptions (6.2)–(6.4) of Theo-
rem 6.2 are fulfilled. It remains to show that the condition (6.1) is true.

Assume that, on the contrary, the condition (6.1) does not hold. Then there exist
ε0 > 0, an increasing sequence {km}+∞

m=1 of natural numbers and a sequence {ym}+∞
m=1

such that
ym ∈ M(�km

) for m ∈ N (6.38)

and

max
{∣∣∣∣

∫ t

a

∫ x

c

(�km(ym)(s, η)−�(ym)(s, η)) dη ds

∣∣∣∣ : (t, x) ∈ D
}

� ε0 for m ∈ N. (6.39)

From (6.38) and Notation 6.1 we get

ym(t, x) = −zm(a, c) +
∫ t

a

∫ x

c

�km(zm)(s, η) dη ds for (t, x) ∈ D, m ∈ N,

where zm ∈ C(D; R) and ‖zm‖C = 1 for m ∈ N. Since we suppose that the operators �k

are uniformly bounded in the sense of condition (6.6), we obtain

‖ym‖C � 1 + ‖ω‖L for m ∈ N.

Furthermore, for any (t1, x1), (t2, x2) ∈ D and m ∈ N, we get

|ym(t2, x2) − ym(t1, x1)| =
∣∣∣∣
∫ t2

a

∫ x2

c

�km
(zm)(s, η) dη ds −

∫ t1

a

∫ x1

c

�km
(zm)(s, η) dη ds

∣∣∣∣
�

∫∫
E1

ω(s, η) ds dη +
∫∫

E2

ω(s, η) ds dη,

where the measurable sets E1, E2 ⊆ D are such that meas E1 � (d − c)|t2 − t1| and
meas E2 � (b − a)|x2 − x1|.

Consequently, the sequence {ym}+∞
m=1 is bounded and equicontinuous in C(D; R). Thus,

according to the Arzelà–Ascoli lemma, we can assume without loss of generality that the
sequence indicated is convergent. Therefore, there exists p0 ∈ N such that

‖ym − yp0‖C <
ε0

2(‖ω‖L + ‖�‖ + 1)
for m � p0. (6.40)

Since yp0 ∈ C∗(D; R) and the relation (6.7) holds, there exists p1 ∈ N such that

max
{∣∣∣∣

∫ t

a

∫ x

c

(�k(yp0)(s, η) − �(yp0)(s, η)) dη ds

∣∣∣∣ : (t, x) ∈ D
}

< 1
2ε0 for k � p1.

(6.41)
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Now choose a number M ∈ N satisfying M � p0 and kM � p1. Then

max
{∣∣∣∣

∫ t

a

∫ x

c

(�kM
(yM )(s, η) − �(yM )(s, η)) dη ds

∣∣∣∣ : (t, x) ∈ D
}

� (‖ω‖L + ‖�‖)‖yM − yp0‖C

+ max
{∣∣∣∣

∫ t

a

∫ x

c

(�kM
(yp0)(s, η) − �(yp0)(s, η)) dη ds

∣∣∣∣ : (t, x) ∈ D
}

<
ε0

2
‖ω‖L + ‖�‖

‖ω‖L + ‖�‖ + 1
+

ε0

2

< ε0,

which contradicts (6.39). �

To prove Theorem 6.6 we need the following statement, which is a two-dimensional
analogy of the well-known Krasnoselskii–Krein lemma.

Lemma 6.9. Let p, pk ∈ L(D; R) and let α, αk : D → R be measurable and essentially
bounded functions for k ∈ N. Assume that the relations (6.10) and (6.11) are satisfied
and that

lim
k→+∞

ess sup{|αk(t, x) − α(t, x)| : (t, x) ∈ D} = 0. (6.42)

Then

lim
k→+∞

∫ t

a

∫ x

c

(pk(s, η)αk(s, η) − p(s, η)α(s, η)) dη ds = 0 uniformly on D. (6.43)

Proof. Without loss of generality we can assume that

|p(t, x)| � ω(t, x) for a.e. (t, x) ∈ D. (6.44)

Let ε > 0 be arbitrary but fixed. According to (6.42), there exists k0 ∈ N such that∫∫
D

ω(t, x)|αk(t, x) − α(t, x)| dt dx < 1
4ε for k � k0. (6.45)

Since the function α is measurable and essentially bounded, there exists a function w ∈
C(D; R), which has continuous derivatives up to second order and such that∫∫

D
ω(t, x)|α(t, x) − w(t, x)| dt dx < 1

4ε. (6.46)

For any k ∈ N, we set

fk(t, x) =
∫ t

a

∫ x

c

(pk(s, η) − p(s, η)) dη ds for (t, x) ∈ D.

Clearly, (6.11) can be rewritten in the form

lim
k→+∞

‖fk‖C = 0. (6.47)
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It can be verified by direct computation that∫ t

a

∫ x

c

(pk(s, η) − p(s, η))w(s, η) dη ds

= fk(t, x)w(t, x) −
∫ t

a

fk(s, x)
∂w(s, x)

∂s
ds −

∫ x

c

fk(t, η)
∂w(t, η)

∂η
dη

+
∫ t

a

∫ x

c

fk(s, η)
∂2w(s, η)

∂s∂η
dη ds for (t, x) ∈ D, k ∈ N.

Consequently, using (6.47), we get

lim
k→+∞

∫ t

a

∫ x

c

(pk(s, η) − p(s, η))w(s, η) dη ds = 0 uniformly on D.

Hence, there exists k1 � k0 such that∣∣∣∣
∫ t

a

∫ x

c

(pk(s, η) − p(s, η))w(s, η) dη ds

∣∣∣∣ < 1
4ε for (t, x) ∈ D, k � k1. (6.48)

On the other hand, it is clear that, for any (t, x) ∈ D and k ∈ N,∫ t

a

∫ x

c

(pk(s, η)αk(s, η) − p(s, η)α(s, η)) dη ds

=
∫ t

a

∫ x

c

pk(s, η)(αk(s, η) − α(s, η)) dη ds

+
∫ t

a

∫ x

c

(pk(s, η) − p(s, η))w(s, η) dη ds

+
∫ t

a

∫ x

c

(pk(s, η) − p(s, η))(α(s, η) − w(s, η)) dη ds.

Therefore, in view of (6.10), (6.44)–(6.46) and (6.48), we get∣∣∣∣
∫ t

a

∫ x

c

(pk(s, η)αk(s, η) − p(s, η)α(s, η)) dη ds

∣∣∣∣
�

∫∫
D

ω(s, η)|αk(s, η) − α(s, η)| dη ds +
∣∣∣∣
∫ t

a

∫ x

c

(pk(s, η) − p(s, η))w(s, η) dη ds

∣∣∣∣
+ 2

∫∫
D

ω(s, η)|α(s, η) − w(s, η)| dη ds

<
ε

4
+

ε

4
+ 2

ε

4
= ε for (t, x) ∈ D, k � k1,

that is, the relation (6.43) holds. �

Proof of Theorem 6.6. Let � ∈ L(D) be defined by (5.7). For any k ∈ N, we set

�k(v)(t, x) def= pk(t, x)v(τk(t, x), µk(t, x)) for a.e. (t, x) ∈ D and all v ∈ C(D; R).
(6.49)
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We will show that (6.7) is satisfied for every y ∈ C∗(D; R). Indeed, let y ∈ C∗(D; R) be
arbitrary but fixed. For any k ∈ N, we set

αk(t, x) = y(τk(t, x), µk(t, x)), α(t, x) = y(τ(t, x), µ(t, x)) for (t, x) ∈ D.

Then it is clear that (6.12) and (6.13) guarantee the condition (6.42). Therefore, it follows
from Lemma 6.9 that the condition (6.43) holds, i.e. the condition (6.7) is true.

Consequently, the assumptions of Corollary 6.3 are satisfied. �

7. Counter-examples

Example 7.1. Let p ∈ L(D; R+) be such that∫∫
D

p(t, x) dt dx = 1

and let � ∈ L(D) be defined by

�(v)(t, x) def= p(t, x)v(b, d) for a.e. (t, x) ∈ D and all v ∈ C(D; R).

Then the condition (5.2) with α = 1 is satisfied for every m ∈ N and v ∈ C(D; R).
Moreover, ∫∫

D
pj(s, η) dη ds = 1 for every j ∈ N,

where pj is given by (5.4).
On the other hand, the problem (1.10), (1.20) has a non-trivial solution

u(t, x) =
∫ t

a

∫ x

c

p(s, η) dη ds for (t, x) ∈ D.

This example shows that the assumption α ∈ [0, 1[ in Theorem 5.2 cannot be replaced
by the assumption α ∈ [0, 1], and the strict inequality (5.3) in Corollary 5.4 cannot be
replaced by the non-strict one.

Example 7.2. Let

gk(t) = k cos(k2t), hk(t) = k sin(k2t) for t � 0, k ∈ N, (7.1)

and

yk(t) = −k

∫ t

0
exp

(
sin(k2t)

k
− sin(k2s)

k

)
sin(k2s) ds for t � 0, k ∈ N. (7.2)

It is not difficult to verify that, for every k ∈ N,

y′
k(t) = gk(t)yk(t) + hk(t) for t � 0 (7.3)

and
|yk(t)| � 1 + e + te2 for t � 0, (7.4)
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because

yk(t) =
1
k

cos(k2t) − 1
k

exp
(

sin(k2t)
k

)
+ 1

2

∫ t

0
exp

(
sin(k2t)

k
− sin(k2s)

k

)
ds

+ 1
2

∫ t

0
exp

(
sin(k2t)

k
− sin(k2s)

k

)
cos(2k2s) ds for t � 0. (7.5)

Moreover,
lim

k→+∞
yk(t) = 1

2 t for t � 0. (7.6)

Now, let p ≡ 0, q ≡ 0, ϕ ≡ 0, ψ ≡ 0 and

τ(t, x) = t, µ(t, x) = x for (t, x) ∈ D.

For any k ∈ N, we set ϕk ≡ 0, ψk ≡ 0,

pk(t, x) = gk(t − a)gk(x − c) for (t, x) ∈ D,

qk(t, x) = hk(t − a)y′
k(x − c) + y′

k(t − a)hk(x − c) − hk(t − a)hk(x − c) for (t, x) ∈ D,

and
τk(t, x) = t, µk(t, x) = x for (t, x) ∈ D.

According to (7.1), (7.3) and (7.4), it is clear that the assumptions of Theorem 6.6
are satisfied except for (6.10). Let �, �k ∈ L(D) be operators defined by (5.7) and (6.49),
respectively. Then it is not difficult to verify that the assumptions of Corollary 6.3 are
satisfied except for (6.6).

On the other hand,
u(t, x) = 0 for (t, x) ∈ D

and
uk(t, x) = yk(t − a)yk(x − c) for (t, x) ∈ D, k ∈ N,

are solutions to problems (1.1′), (1.2) and (1.1′
k), (1.2k), respectively, as well as problems

(1.1), (1.2) and (1.1k) and (1.2k), respectively. However, in view of (7.6), we get

lim
k→+∞

(uk(t, x) − u(t, x)) = lim
k→+∞

yk(t − a)yk(x − c)

=
(t − a)(x − c)

4
for (t, x) ∈ D,

that is, the relation (6.5) is not true.
This example shows that the assumptions (6.6) in Corollary 6.3 and (6.10) in Theo-

rem 6.6 are essential and they cannot be omitted.
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