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Abstract

Accurate geospatial information about the causes and consequences of climate change, including energy systems
infrastructure, is critical to planning climate changemitigation and adaptation strategies.When up-to-date spatial data
on infrastructure is lacking, one approach to fill this gap is to learn from overhead imagery using deep-learning-based
object detection algorithms. However, the performance of these algorithms can suffer when applied to diverse
geographies, which is a common case. We propose a technique to generate realistic synthetic overhead images of an
object (e.g., a generator) to enhance the ability of these techniques to transfer across diverse geographic domains. Our
technique blends example objects into unlabeled images from the target domain using generative adversarial
networks. This requires minimal labeled examples of the target object and is computationally efficient such that it
can be used to generate a large corpus of synthetic imagery. We show that including these synthetic images in the
training of an object detection model improves its ability to generalize to new domains (measured in terms of average
precision) when compared to a baseline model and other relevant domain adaptation techniques.

Impact Statement

Existing methods of gathering information about energy and climate-related infrastructure and their impacts rely
on self-reported information from organizations and governments, large-scale surveys, or crowd-sourced
information. Object detection using overhead imagery offers a fast and low-cost way of identifying climate-
related objects and other characteristics visible from above. These techniques, if scaled up, could democratize
access to climate and energy infrastructure information cheaply and globally. Yet, aswe show, the performance of
object detection models can suffer when applied to geographically different regions, hindering the wider
application of these models. To aid the broader applicability of detecting important climate infrastructure, we
propose a domain adaptation technique that uses easy-to-generate synthetic overhead images across a range of
diverse geographies.We show that this technique outperformsmany alternative domain adaptation techniques, is
simple to implement, and can be widely applied to other object detection problems.
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1. Introduction

From power plants to wildfires, many of the causes and consequences of climate change are visible from
overhead imagery. Accurate geospatial information about the causes of climate change, including energy
infrastructure systems, is critical to planning climate changemitigation and adaptation strategies. However,
spatial data on current energy infrastructure is often lacking. The datamay not be publicly available,maybe
incomplete, or may not be of a sufficiently high resolution (Stowell et al., 2020). Recent research has
demonstrated the potential of using satellite imagery to fill the data gaps by monitoring energy systems at
unprecedented frequencies and scale (Donti andKolter, 2021; Ren et al., 2022). Two remaining challenges
to detecting climate objects at scale include (1) a lack of large datasets with labeled data for relevant
applications, and (2) the difficulty of applying these techniques across diverse geographic domains.

The first roadblock is the substantial number of labeled examples required to successfully train amachine
learning model. Building a large dataset of overhead images can be challenging because of the labor-
intensive nature of sifting through images and accurate data labeling (Tan et al., 2018). When the object of
interest is rare and few instances may exist, the difficulty of detecting such an object is exacerbated. This is
common for data related to energy and climate systems.

The second challenge is aligning the distribution of training images and testing images. It is frequently
the case that the training and testing samples are not independently and identically distributed. The divide
in the distribution of the images we use to train versus those we use to test our models is known as the
domain gap. For example,wemay only have training samples of an object in arid landscapes, butwemight
want to detect the object inmountainous or forestland landscapes aswell.When the training samples come
from different distributions than the testing samples, object detection performance deteriorates. Deep
neural network models can be unreliable in cases where a domain gap exists (Tuia et al., 2016).
Throughout this paper, we use the term geographic domain to refer to a landscape or region with an
underlying distribution of visual properties that is regionally similar, but potentially distinct from other
regions. In this case, when training on samples that originate from one geographic domain and testing on
another, the potential for deteriorated object detection or segmentation performance, whichwe refer to as a
domain gap, exists. Example images from diverse geographic domains can be found in Figure 2.

In their work, Tuia et al. (2016) lay out four general strategies for domain adaptationmethods for remote-
sensed classification: invariant feature selection, adapting the data distributions, adapting the model/
classifier, and selective sampling. These strategies can be combined together or used separately for domain
adaptation. Our contribution is a new technique that falls under the category of adapting data distributions
proposed by Tuia et al. Changing the data distributions canmean expanding or transforming the training set
in a way that enhances the ability of the algorithm to perform well on alternative domains (Shorten and
Khoshgoftaar, 2019). In remote sensing applications, this enables the overhead imagery in a training dataset
to becomemore representative of the data in the testing domains. This category of techniques also includes
incorporating additional synthetic imagery to help close the domain gap by exposing a model to a broader
variety of data (e.g., Synthinel-1, Kong et al., 2020; SIMPL, Hu et al., 2021; Xu et al., 2022).

Image transformation techniques are often color or pixel-based transformations, which leave image
content unchanged but vary the color of pixels in an image,mapping pixels of each color to a new value. For
example, histogram equalization adjusts image pixel intensity values such that they follow a uniform
distribution to standardize image appearance regardless of domain. These pixel-wise techniques aim to
better align the training and testing image sets. These techniques have the benefit of being able to transform a
dataset in place without additional labels while alternative techniques generate unique synthetic images to
add to the training set. Generative adversarial network (GAN)-based synthetic generation methods may
modify both the pixel values and the information content of an image. These are neural models that learn a
highly complex and expressive mapping between two domains. Examples of GAN-based models that have
been used to generate synthetic training samples include CyCADA (Hoffman et al., 2018) and CycleGAN
(Zhu et al., 2017).

In this work, we confine our comparisons to transformation and augmentation-based approaches.
Within the subclass of color-based image transformation techniques, we compare to popular methods
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such as the grayworldmapping (which assumes each color channel averages to gray) (Kanan andCottrell,
2012), histogrammatching (Abramov et al., 2020), and color equalization (Mustafa andKader, 2018).We
also compare the GAN-based synthetic image generation techniques to CycleGAN and CyCADA. We
chose CycleGAN and CyCADA because our experiments simulate the detection of a rare climate object
with minimal access to labeled data from the source domain and no labeled data from the target domain.
While many other GAN-based techniques require labeled examples from both domains (a supervised
context), CycleGAN and CyCADA do not have this requirement. Example images generated using each
technique we compare to can be found in Figure 1.

We contribute to the field of domain adaptation in remotely sensed data by proposing a new technique
to generate synthetic overhead images that require minimal labeled examples of the target object. Our
technique takes advantage of unlabeled overhead images to reduce the number of labeled examples
required. Unlabeled remote sensed images are often easily acquirable through public datasets such as the
National Agriculture Imagery Program (NAIP). Using the detection of wind turbines as a case study, we
run a series of experiments and benchmarks demonstrating the benefit of our technique in augmenting
training datasets. Our experiments show the potential of our technique to improve downstream model
performance as compared to other domain adaptation techniques in this space—especially in situations
with limited training data or when applying a model to new geographies.

2. Methodology

2.1. Dataset creation

To train our object detection models and test our domain adaptation technique, we created a dataset of
overhead images containing wind turbines. Wind turbines were selected as an example of climate

Original Image CyCADA CycleGAN Gray 
World
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Color 
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Figure 1. Example images from selected domain adaptation methods. For each domain mapping, the
original image is shown in the first column, while each image to the right shows that same image
transformed by the technique to look like it came from the target domain. A detailed mapping of the
domains can be found in Figure 2.
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infrastructure for three reasons. First, they are relatively homogeneous in appearance which helps to
minimize intra-class variance and aid object detection. Second, they are found in a diverse variety of
geographies and contexts (mountains, fields, etc.). Finally, they are relatively rare in occurrence, as the
official 2021 U.S. Wind Turbine Database (Hoen et al., 2018) contains only 68,714 turbines across the
entire United States.

We collected geographically diverse images from the Northwest, Southwest, and Eastern Midwest
regions of the United States. We selected these regions, shown in Figure 2, with the intention of creating
visually distinct domains. Since visual distinctiveness does not guarantee the presence of a domain gap,
we also verified the presence of a domain gap experimentally (see Figure 6).

In each domain, we collected a set of training and testing images containing wind turbines using
coordinates from theU.S.Wind Turbine Database. These covered the three geographiesmentioned earlier
(Northwest, Southwest, and Eastern Midwest regions of the United States). Overhead images over the
selected coordinates were collected from the National Agriculture Imagery Program dataset (NAIP,
1 meter per pixel resolution) using Google Earth Engine (Gorelick et al., 2017).

To ensure that the training and testing sets had similar levels of variation in each domain, we used
stratified geographic sampling. In this way, the coordinates of the labeled wind turbines from each region
were first clustered using DBSCAN (Ester et al., 1996), and subsequently, the training and testing
coordinates were selected using stratified random sampling to ensure representative sampling within each
region. This avoided, for example, having aNortheast domain with training data only fromMassachusetts
and testing data only from New York.

Since we were using the coordinates of wind turbines for capturing overhead images, we wanted to
ensure that the turbine was not in the center of every image in the dataset. To avoid this issue, we shifted

Northwest

Southwest

Eastern Midwest

Figure 2. Sample images and corresponding locations from our chosen geographic domains: the
Northwest, Southwest, and Eastern Midwest United States.
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the coordinate center of each image uniformly randomly up to 75 meters both horizontally and vertically.
The dimensions of each of the final images are 608 × 608 pixels.

Finally, each image was quality-checked manually to ensure that wind turbines were present in the
image and that the training and test datasets had no overlap.

We also collected a supplementary set of images without turbines for each domain which we call
“background” images. Our synthetic image generation technique uses these unlabeled images as a canvas
onwhich to blend the object of interest.We captured images at a distance between four and six kilometers
away from a known turbine location within the same domain, which were manually inspected to ensure
that no wind turbines were present. The close distance was chosen to ensure visual similarity to the
domain. The total distribution of images across domains and the number of labeled wind turbines
contained within those images used for training, image generation, and validation can be referenced in
Table E1 in Appendix E.

2.2. Generation of synthetic images

Our image generation process aims to produce synthetic images that are as similar as possible to real
labeled data from any potential target domain.We use a pre-trained GP-GAN image blending model from
Wu et al. (2019) to blend background target domain images together with source domain target objects.
TheGP-GANmodel was pre-trained onwebcam images depicting diverse seasonal, weather, and lighting
settings from the Transient Attributes dataset by Laffont et al. (2014). Our process consists of four steps, as
shown in Figure 3:

1. Sample a random background image from the target domain.
2. Sample objects from a set of source labeled domain objects (in our case wind turbines) from any

domain.
3. Randomize the location, orientation, and size of the objects.
4. Blend the randomized objects into the target domain background image using GP-GAN.

One benefit of our technique is its ability to generate synthetic images while using only a few examples
of the object. Namely, a small number of target object examples can be blended into as many contexts as
desired. Second, the synthetic images can be stylized to look similar to any target domain given only

(b) Place sampled turbines on 
canvas in random location and size

es on
and size

Image 
Blending 

(GP-GAN)

(d) Synthetic image

(c) Background from target 
domain

(a) Sample wind turbines 
from source domain

Figure 3.Diagram depicting our process to generate GP-GAN synthetic images. In brief, sampling target
objects, randomizing their locations, selecting a background image, and blending via GP-GAN.
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unlabeled images from that domain. Acquiring unlabeled datasets of overhead imagery is an easier task
thanmanually labeling a dataset from the target domain. Althoughwemanually inspected the background
images to ensure that no turbines were present, for rare objects, it may be reasonable to assume that
randomly captured snapshots from the target domain do not include the objects. In such cases, images
from the target domain could be directly used as backgrounds without manual inspection. A final
advantage is our technique’s customizability along important dimensions, such as the number of object
instances blended in. This stands in contrast to fixed color-mapping techniques, which simply transform
an image in place and cannot control the number of object instances. Other controllable hyper-parameters
include the spacing, size, and scale of the objects. Overall, our technique has unique advantages that could
make it beneficial for domain adaptation contexts where the object is rare.

In our experiments, we used the background images from each domain as our GP-GAN canvases. We
blended turbine examples from the source domain into target domain backgrounds. Our turbine examples
included the shadows, as we thought this could give the object detection algorithm important contextual
information.We customized the size and placement of the synthetically added turbines such that the wind
turbines never overlapped one another, the size of the examples remained unchanged, and each synthetic
image contained three turbines. Three turbines were chosen because we wanted the synthetic images to
include ample examples to learn from and, for each source domain, three was the 90th percentile of the
number of turbines in our training images.

Some of the generated synthetic images contain artifacts including artificially bright spots and blurred
blending borders or turbines, as can be seen in Figure 4. While not all of the data are visually perfect, this
work evaluates whether or not these synthetic images are effective in overcoming performance differ-
ences between domains from an object detection perspective. Additional refinements to the image
blending process would likely further enhance the performance improvements achieved through this
work.

2.3. Experimental setup

Our experiments trained object detection models to detect wind turbines across a variety of geographic
domains and to compare the performance of an object detection model trained using synthesized data
versus other image transformation and augmentation approaches. Many types of infrastructure are quite
rare, so this work focused on investigating applications where the objects were also rare. These could
either be objects that are rare in a global sense, if the object is unlikely to be found in a randomly sampled
point on Earth (a stricter requirement), or rare regionallywithin one domain (a likely situation to encounter
when the availability of regional, high-resolution satellite imagery is expensive to collect).

While climate- and energy-relevant infrastructure and resources are often rare in the context of imagery
for any given region, we made the assumption that we would be able to acquire more images from some
domain, even if that is typically not the target domain, and selected that number to be 100, which is on the
high end of past studies. For example, inMartinson et al. (2021) 10–50 images are used for training in the
context of “rare” objects and Wang et al. (2019) used between 10 and 30 images in their investigations.
Many few-shot techniques use as few as 1–10 instances such as inWang et al. (2020)while the highest that
we have seen was from Xu et al. (2022), which varied from 0 to 151.

To simulate detecting a rare object, we assumed access to a small corpus of labeled wind turbine
examples in the training domain and no additional wind turbine labels from the target domain. Each
experiment tested all of the possible source/target domain pairings across the three domains: Northwest,
Eastern Midwest, and Southwest, for nine pairings in total.1 For each pair of domains, we trained and
tested a YOLOv3 model five separate times to account for variation in training and to estimate model
variance.

1With our three domains of Northwest (NW), Eastern Midwest (EM), and Southwest(SW), these pairings are: (1) train NW, test
NW; (2) train NW, test EM; (3) train NW, test SW; (4) train EM, test NW; (5) train EM, test EM; (6) train EM, test SW; (7) train SW,
test NW; (8) train SW, test EM; and (9) train SW, test SW.
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For an experimental baseline, we evaluated model performance using the training data for each pair of
domains without using any domain adaptation methods. The baseline experiments were trained on
100 labeled source domain images and tested on 100 labeled target domain images across all domain
pairs.

Then we compared our approach and other domain adaptation techniques involving image transform-
ation or augmentation to the baseline experiments. We evaluated whether the addition of these different
types of supplementary imagery (including our synthetic images) could improve wind turbine detection
performance across domains. These additional experiments were trained on 100 labeled source domain
images, supplemented with an additional 100 images from the domain adaptation technique under
evaluation, and were tested on 100 labeled target domain images. The experimental configurations are

Original
Image

GP-GAN 
Synthetic

Figure 4. Example GP-GAN blended synthetic images. The upper original images without turbines have
been transformed into the lower GP-GAN synthetic images by blending in turbine examples.
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Figure 5. The experimental setup. First, a pairing of a source and a target domain is selected. For each
pairing, a baseline experiment is run as a benchmark by using labeled source domain images and labeled
test images from the target domain. Then, a series of domain adaptation experiments are run that augment
the baseline training set with additional supplemental images produced from a domain adaptation
method.
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shown in Figure 5. More information about the number of images and turbine labels used from each
domain can be found in Appendix E.

We differentiated betweenwithin-domain experiment trials where the detection model was trained and
tested on imagery from the same geographic domain, versus cross-domain experiment trials in which the
model was trained on one domain and tested on a different domain. As an example, in an experiment, a
within-domain trial may be trained on images of wind turbines from the Northwest U.S. and validated on
other images from the Northwest. In contrast, a cross-domain trial may be trained on images from the
Northwest and tested on images from the Southwest. We expected object detection performance to suffer
in cross-domain contexts due to the presence of a domain gap.

For our wind turbine object detection model, we used a YOLOv3 model architecture with spatial
pyramid pooling (Redmon and Farhadi, 2018). For each experimental trial, a YOLOv3model was trained
from scratch on the available training images.

Lastly, an important note on the experimental design that we want to highlight is that we used a fixed
mixed batch ratio of real-to-synthetic data for all the experiments for this work with a mini-batch size of
eight images. This allowed us to control exactly how many train and supplemental images were in each
mini-batch and thus the relative influences of each image set. In a given mini-batch, seven of the images
were from the baseline set while one imagewas from the supplementary set (the images generated through
the domain adaptation method). One of the challenges we observed with this method is that synthetic data
was not a perfect replacement for real data: if we used all synthetic data rather than real data, the cross-
domain performance dropped substantially as shown in Figure B1 in Appendix B. We selected a real-to-
synthetic mixed batch ratio of 7-to-1 a priori to ensure the presence of synthetic data in every minibatch.
We varied the number of synthetic images in each mixed batch for GP-GAN training and, as seen in
Figure B1 in Appendix B, we found that between 1 and 7 were effective ratios, while 0 or 8 (no synthetic,
or all synthetic) performed markedly worse.

In themixed batch setup, we fixed a number of images seen as an epoch. Since our typical experimental
setup consisted of 100 training and 100 supplemental images, we defined an epoch as having passed
200 images or 25 mini-batches through the training process. Each model was trained over 300 epochs.

We evaluated model performance using average precision (AP). We also reported 95% confidence
intervals (CI) constructed with t-distributions alongside AP results. Where applicable these intervals may
represent the average of multiple confidence intervals—see Appendix C for further details on variability
reporting.

3. Experimental results

We experimentally demonstrated the presence of a domain gap through the results of the baseline
experiment which can be seen in Figure 6. On average, the cross-domain AP performance of our object
detection model was 12% worse than the within-domain AP performance for each test domain.

Figure 6. Baseline experimental results demonstrating evidence of a domain gap. In this plot, all domain
pairings with the same test domain are grouped together and divided into the within- and cross-domain
settings. The gap in performance between within-domain and cross-domain settings is shown in this
figure as the distance between the red and blue points.
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A full comparison of results between the baseline experiment and our synthetic images can be found in
Table 1.Overall, baselinewithin-domain trials achieved anAP of 0.901while baseline cross-domain trials
achieved an average AP of 0.791. For each domain pair, the addition of synthetic images improved
AP. This was especially true in a cross-domain context: on average, synthetic cross-domain trials achieved
a 0.065 higher AP than baseline cross-domain trials, while synthetic within-domain trials achieved a
0.020 higher AP than baseline within-domain trials. Detecting turbines in the Southwest was especially
challenging compared to other domains—we observed many small and clustered wind turbines in this
domain and hypothesize that this could have contributed to weaker object detection performance.

We also compared our synthetic image blending technique to other domain adaptation techniques
including histogram equalization, histogram matching, gray world, CyCADA, and CycleGAN.2

In addition to comparing each of the above techniques to each other and the baseline, we incorporated
two further variations of the baseline experiment. First, to estimate an upper bound on the performance we
might be able to achieve when training with 100 supplemental images, we supplemented the baseline
training dataset with 100 additional real images from the target domain. Second, since we added 100
training samples of augmented or synthetic imagery in every experiment with a domain adaptation
technique, wewanted to test if adding unlabeled imagery improved performance . If this were true then the
domain adaptation techniqueswould not be enhancing performance. To investigate this, we supplemented
the baseline experiment with 100 target domain background images (unlabeled target domain images
without wind turbines present; these were the same images used for image blending in our synthetic case,
but without having blended target objects).

The results of all these experiments are shown in Figure 7, with the estimated upper and lower-bound
experiments shown in light gray. These experiments collectively tested whether adding each set of
supplemental images improved cross-domainmodel performancewhen facedwith highly limited training
data availability (as is common with rare object detection, as is often the case with energy and climate
applications). The results indicate that adding synthetically blended imagery is able to produce the
greatest improvement in average precision of the techniques compared in this study. On average, our

Table 1. Synthetic experiment results compared to the baseline experiment using average precision

Source domain Target domain Baseline CI Synthetic CI

EM EM 0.941 ± 0.018 0.964 ± 0.015
NW 0.905 ± 0.036 0.930 ± 0.023
SW 0.742 ± 0.042 0.836 ± 0.030
EM NW 0.894 ± 0.015 0.936 ± 0.014
NW 0.960 ± 0.012 0.963 ± 0.004
SW 0.818 ± 0.017 0.862 ± 0.026
EM SW 0.647 ± 0.034 0.800 ± 0.016
NW 0.739 ± 0.031 0.772 ± 0.019
SW 0.802 ± 0.027 0.837 ± 0.018
Within-domain average 0.901 ± 0.019 0.921 ± 0.013
Cross-domain average 0.791 ± 0.029 0.856 ± 0.021

Each experiment was run five times and the mean trial result along with 95% confidence interval widths are shown. Bold results indicate the higher
result when comparing between the baseline and synthetic experiments.

2 CycleGAN and CyCADA were trained from scratch for each domain mapping (e.g., from the Southwest to the Northwest
domain). The models were trained using 100 background and 100 real images from the source domain and 100 background images
from the target domain. CycleGAN and CyCADA learn a bidirectional mapping between a pair of domains. Thus, neither
CycleGAN nor CyCADA are generic in their applicability more broadly than the specific domain pairings. Since these methods
require the data for each new application, and such data would not generally be available in the context of rare objects, we limited the
training data to be the same data as all of the rest of the algorithms were received to ensure a fair comparison.
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synthetic image blending technique outperformed baseline trials by 8.2% in cross-domain pairings and
2.2% in within-domain pairings. A full table of results including the within-domain pairings can be found
in Appendix A.3

Thereweremany design choices that need to bemade about these experiments including the number of
synthetic images to include in the analysis, the number of objects per synthetic image, and the total
number of labeled objects from the source domain available to the synthetic image blending tool. We
investigated the sensitivity of the results to the parameters by varying each of them for one pair of
domains: the Northwest and the Southwest. Those experimental results can be found in Appendix D. We
found that as long as some amount of synthetic objects were included in the training process, we observed
a performance improvement, but the results were not exceptionally sensitive to any of these parameters.

4. Conclusions

The automated mapping of climate-relevant infrastructure from overhead imagery can help to fill critical
information gaps, but global applications have been impeded by the challenges of geographic domain
adaptation and a lack of training data. To combat this, we proposed a computationally inexpensive
synthetic imagery generation technique designed to work with minimal labeled examples and help
downstream models become more generalizable. Our approach uses GP-GAN to blend real images of
an object onto unlabeled background images from the target domain. Our experiments provide evidence
that supplementing training data with synthetically blended imagery can improve domain adaptation
while requiring minimal time, no proprietary software, and few labeled object examples. This may aid in
scaling up automated mapping to larger applications.

Future work could further refine our synthetic image generation methodology by adjusting the
parameters of the image blending process and/or applying post-processing to generate evenmore realistic
and well-blended synthetic images. Additionally, this approach could be applied to more energy and

Figure 7. Experimental results displaying the averaged 95% confidence intervals among cross-domain
pairs. See Appendix C for more on how the intervals constructed.

3 The “Baseline + Background” case, which adds additional unlabeled background images from the target domain to the source
domain training data, resulted in a slightly lowermean cross-domainAP as compared to the baseline experiments. However, since on
a domain-by-domain basis, the difference is within the confidence intervals of the two estimates, there was no statistically
meaningful difference between the performance of those two experimental conditions.
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climate objects for further evaluation. Lastly, this approach could be tested beyond one-to-one domain
pairings to evaluate the technique in one-to-many, many-to-one, or many-to-many contexts.
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Appendix A: Additional domain adaptation experiment results
Alongside AP, we measured experiment results using the percentage closure of domain dap (CDG) performance metric (Hu et al.,
2021). CDGmeasures the percent closure of the gap between the within-domain and cross-domain trials that the current experiment
recovers, assuming the within-domain represents the high end of performance for the given scenario. This is calculated as shown in
equation A-1. Here, AP Eð Þ represents the average precision resulting from experiment E.

CDG¼AP cross‐domain experimentð Þ‐AP cross‐domain baselineð Þ
AP within‐domain baselineð Þ‐AP cross‐domain baselineð Þ : (A-1)

A full comparison of techniques using the CDG metric as well as both cross-domain and within-domain AP are shown in
Table A1. Our synthetic imagery achieved the highest cross-domain and within-domain AP out of any experiment except the
estimated upper-bound experiment. Additionally, our synthetic imagery achieved the highest closure of the domain gap out of any
technique compared to in this study.

Appendix B: Mixed batch ratio experiment
All domain adaptation experiments were trained using a mixed batch procedure with a mini-batch size of 8 and a mixing ratio of
7-to-1 real images to supplemental images. While this gave us precise control over the relative influences of the real and
supplemental images across experiments, we conducted additional experiments with our GP-GAN synthetic images using all
possible mixing ratios. The goal was to test how sensitivemodel performancewas to the proportion of synthetic imagery used during
training to see if the mixing ratio used during experiments was a reasonable choice. The results of these experiments can be found in
Figure B1. In all realistic cases, the inclusion of our synthetic imagery improved performance. Only in the experiment where we
trained using mini-batches with entirely synthetic data did performance degrade below baseline levels.

Table A1. Comparison of synthetic imagery to alternative domain adaptation techniques

Experiment Cross-domain Within-domain CDG (%)

Synthetic 0.856 0.921 60.2
CyCADA 0.752 0.877 �39.2
CycleGAN 0.756 0.889 �30.7
Gray world 0.769 0.891 �15.1
Histogram matching 0.796 0.906 13.1
Histogram equalization 0.803 0.909 16.7
Estimated upper bound 0.931 0.938 139.4
Baseline 0.791 0.901 0.0
Baseline + Background 0.778 0.903 �16.3

Outcomes measured in average trial AP and split between the cross-domain and within-domain trials.
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Appendix C: Reporting results
To quantify the variability inherent in the training process and place confidence bounds around our reported results, we followed the
example of Bouthillier et al. (2021) to report variability estimates of our model results. As each trial was repeated five times, we
constructed 95% confidence intervals using a t-distribution with 4 degrees of freedom. In cases such as Table 1 where all the domain
pairs are enumerated, these confidence intervals were exact. The mean of the trials along with the confidence interval bounds were
also reported. In other instances, cross-domain or within-domain results were reported, which average information from multiple
domain pairs and thus average multiple confidence intervals to give a sense of overall performance. These include Figure 7 and the
cross-domain and within-domain reporting in Tables 1 and D1–D3. In this case, the mean of all the cross-domain trials was reported
along with the mean confidence interval width.

Appendix D: Sensitivity analysis
In this section, we present additional experiments to evaluate the sensitivity of object detection performance to various parameters of
the synthetic data generation process. In particular, we varied (1) the number of labeled source domain turbines available to the
image blender for generating the synthetic images, (2) the number of turbines present in each synthetic image, and (3) the number of
synthetic images generated and included in each experiment.

We chose a single pair of domains to run these experiments on, namely the Northwest and Southwest domains. Each experiment
here varied exactly one aspect of the experimental design. The default parameters included using the maximum number of turbine
objects available from the source domain to generate synthetic images (see Table E1 for these numbers), blending in exactly three
turbines per synthetic image, and generating 100 synthetic images per domain.

First, we varied the number of wind turbine objects available to the synthetic image generator. For each of the five trials testingN
objects available to the generator, the N objects were randomly sampled from scratch each time.

Table D1 shows the cross-domain results.When few objects were present (0–5) the performance was lowest, and as long as there
were about 10 or more objects available, a clear gain in performance was generally present. However, there was not a significant
change as the number of objects available continued to increase.

Next, we varied the number of turbines per synthetic image. For all other results presented in this work, we used three per image.
The results of this sensitivity analysis can be found in Table D2. The results show that for this domain pairing, object detection
performance was not highly sensitive to the number of objects in the image as long as there was more than 1 turbine per image. The
range of 2–5 resulted in approximately equally well-performing object detection performance.

The final experiment varied the number of synthetic images included in the supplemental image set. Our technique has no upper
limit on the number of images you can generate given a set of object examples and background images. For the experiments

Number of GP-GAN synthetic images per mini-batch
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Figure B1. Average model performance (AP) over all domain pairs as a function of the number of
GP-GAN synthetic images included in each mini-batch of 8. The case of 0 represents the baseline
experiment as there are no synthetic images per mini-batch, while 8 represents training entirely using
synthetic images. The red line represents the baseline experiment within-domain average, which the
synthetic experiment hopes to approach. The blue line represents the baseline case of training entirely
using non-synthetic imagery.
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presented previously in this work, we generated 100 synthetic images throughout. As shown in Table D3, as long as there were 50 or
more synthetic images present, the performance improvements from the added synthetic data were present. The greatest
performance was in the range of 100–800 images but there was no meaningful difference in performance between adding 100 or
800 synthetic images.

The choice to use mixed-batch training means that during training a fixed number of supplemental images are seen. With one
supplemental image per mini-batch, 25 mini-batches in an epoch, and 300 overall epochs, a total of 7500 synthetic images are seen
per trial. Please refer to the notes on mixed batch training at the end of Section 2.3 for additional discussion of the mixed-batch
training procedure.

Table D3. Synthetic image experiment varying the number of synthetic images included

Synthetic images Cross-domain CI Within-domain CI

0 0.779 ± 0.024 0.881 ± 0.019
50 0.791 ± 0.022 0.893 ± 0.021
100 0.803 ± 0.018 0.900 ± 0.011
200 0.810 ± 0.011 0.896 ± 0.008
400 0.798 ± 0.027 0.887 ± 0.019
800 0.800 ± 0.017 0.894 ± 0.016

Table D1. Synthetic experiment results varying the number of labeled turbine instances accessible by
the synthetic image generator

Objects available Cross-domain CI Within-domain CI

0 0.784 ± 0.026 0.887 ± 0.012
1 0.774 ± 0.039 0.884 ± 0.016
5 0.766 ± 0.040 0.895 ± 0.016
10 0.794 ± 0.022 0.883 ± 0.027
25 0.790 ± 0.032 0.878 ± 0.016
50 0.803 ± 0.028 0.882 ± 0.011
100 0.777 ± 0.020 0.857 ± 0.105
150 0.799 ± 0.029 0.887 ± 0.014

Zero objects available refers to the baseline plus background experiment where the supplemental background images contain no turbines. The within-
domain results for 100 unique objects are dragged down by a single outlier trial which ran to completion successfully but had an AP value of 0.459.

Table D2. Density experiment results varying the number of turbines contained in each synthetic
image

Turbines per Image Cross-domain CI Within-domain CI

0 0.784 ± 0.026 0.887 ± 0.012
1 0.782 ± 0.020 0.877 ± 0.014
2 0.788 ± 0.017 0.895 ± 0.019
3 0.804 ± 0.017 0.877 ± 0.024
4 0.789 ± 0.026 0.893 ± 0.011
5 0.805 ± 0.017 0.888 ± 0.023

Zero objects available references the baseline plus background experiment where the supplemental background images contained no turbines.
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Appendix E: Experimental data
Table E1 gives the complete description of the image data used for experiments by domain. In each domain we collected at least
300 images containing turbines, reserving 100 images for training, 100 for the estimated upper bound experiment, and 100 for
testing.

Train and test sets were generated using a two-part procedure: (1) DBSCAN was utilized to cluster the labeled wind turbine
coordinates and (2) train and test coordinates were sampled using stratified random sampling from the clusters. As an additional data
quality measure, we checked the distance between all train and test image coordinates and manually verified that the images were
nonoverlapping. Each set of imageswas kept consistent across all experiments. The additional upper bound image sets of 100 images
per domain contained an additional 125 labels for EM, 256 labels for NW, and 193 labels for SW, as coordinates were available for
wind turbines in those regions.

Table E1 also indicates the subset of the total available labeled turbines from the training set of 100 images that were made
available for synthetic image generation. To make an object available, we applied a bounding box around both the turbine and the
shadow of the turbine for image blending. If the shadow or wind turbine was only partially visible in an image, the example was not
used for blending. As shown in Appendix D, the results were not shown to be highly sensitive to the number of objects available for
blending as long as there were at least 10, which there are for all conditions in this work.

Cite this article: Kornfein C, Willard F, Tang C, Long Y, Jain S, Malof J, Ren S and Bradbury K (2023). Closing the
domain gap: blended synthetic imagery for climate object detection. Environmental Data Science, 2: e39. doi:10.1017/
eds.2023.33

Table E1. Total number of images and labels used for training, synthetic image generation, and
validation by domain

Domain

Training Synthetic generation Validation

Images Labels Backgrounds Available objects Images Labels

EM 100 123 100 96 100 113
NW 100 270 100 204 100 277
SW 100 194 100 150 100 190
Totals 300 587 300 450 300 580
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