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THE POWER CONCAVITY OF SOLUTIONS OF SOME
SEMILINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS

GRANT KEADY

Let Q be a bounded convex domain in R2 with a smooth

boundary. Let 0 <y <1l . Let u € CQ(Q) n C(Q) be a

solution, positive in @ , of

Y

“Au = u in Q ,

u 0 on af .

Then the function u> 1is concave for o = (1-v)/2 .

Let © be a bounded convex domain in R2 with a smooth boundary. To
avoid some minor technicalities, assume that the curvature on 3 is
uniformly bounded away from zero. We give a new proof of the following
theorem, using techniques which generalise those of Makar-Limanov [6]

(y = 0) and of Acker, Payne and Philipin [1]1 (y =1) .
Let u be any positive function on @ . The function u is said to
be a-coneave, for o > 0 , if ua is concave. The function u is said

to be O-concave, or log-concave, if log u 1is concave.

THEOREM 1. Let 0 =<y =<1. Let u € C2(Q) n C(Q) be a solution,

positive in Q , of
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M =u' in Q,
(P)
u=0 on 3.

Then the function u 18 a-concave for 0 = a =< (1-y)/2 .
Concerning the interior regularity needed in the proof, it is known
(e
that any solution u € CZ(Q) is in C (Q)

Theorem 1 was first proved in a University of Adelaide PhD thesis by

Kennington [4]. Kennington's proof actually establishes the theorem in

R’ (with 7n = 2) . Kennington's techniques are clever extensions of those
of Korevaar [5]. Korevaar used his techniques to establish the result in
the case Y =1 . A similar proof, again for y =1 , appears in

Caffarel!li and Spruck [2].

The proof of Theorem 1 below is just one application of the Maximum

Principle (Protter and Weinberger [7], Sperb [8]) in the following form.

MAXIMUM PRINCIPLE. Let © € C(Q) with 020 . Let

z={z¢eq| o(z) =0} .
2 .
Let I € C°(Q) satisfy
A-VI -
AT + 5 + AOI =0,
(1.1) I > 0 1in a neighbourhood of 3Q ,

belong to C(Q) with A, =0 . Suppose that I >0 at

where A and A o

0
points of Z. Then I =20 in Q.

Note that the only use of the hypothesis on the curvature of 3Q is
to guarantee (1.1). In the application to Problem (P), with y > 0 , the

boundary condition is
I(z) >+ as 2z + 30 .

(Note also that the coefficient Ao is singular at the boundary.)

The quantity I is the most obvious generalisation of that used in

(6] and [1], namely I = Ia with o = (1-y)/2 . Here, if 0 <a <1,
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2
2 o o o
(1.2) I = u2Hessiaqjyalr= u [(u )xx(u )ﬂy-[(u )xy] ] .
@ ‘a2(1—a) «Z(1-a)

If a=0,

Io e Hessian(log u) .

For a positive superharmonic function u , establishing that Id 20 in

Q 1is establishing that u is o~concave. (In the case ¥y =0 our

notation is exactly as in [61], that is I = I% . In the case y =1 our
I= IO is ®/2 where ¢ is defined by equation (2.1) of [1].]
Define
Y+1
2 2u
(1-3) P2 - |Vul + 1+Y ¢

(The notation is that of Sperb [§].) The explicit formulae for the

coefficients A, A and © are as follows:

O,
A = Al + A2VI N
A2 = —8ul+Y(1+y) ,
Lvuf?
Ao = 2 Y(l—Y) )
u
P2
Al = 2y(1+y) =5 {2uVP2-(1+y)PéVu}

and

2
2 .2 2
-uy]] + h(Ruuxy—(l+y)uxuy)

(o]
n

[huuxx+2ul+Y—(1+Y){ux

-8 V(1T + Ban?
The form of the equation was discovered using the earlier results of
[6) and [1] as a guide.

The coefficients were determined in the order, first 4 then AO

2 s
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and finally Al . The only important detail is the sign of AO . Further

details are given in the research report, Keady [3]. The calculations were
sufficiently intricate that the computer algebra system, REDUCE, was used.
The REDUCE programs are given in Keady [3].
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