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THE POWER CONCAVITY OF SOLUTIONS OF SOME
SEMILINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS

GRANT KEADY

2
Let B be a bounded convex domain in R with a smooth

boundary. Let 0 < y < 1 . Let u € C2(J3) n C(fi) be a

solution, positive in Q. , of

Y

-Aw = u in ft ,

u = 0 on dQ .

Then the function u is concave for a = (l-y)/2 .

2
Let fi be a bounded convex domain in R with a smooth boundary. To

avoid some minor technicalities, assume that the curvature on 8ft is

uniformly bounded away from zero. We give a new proof of the following

theorem, using techniques which generalise those of Makar-Limanov [6]

(y = 0) and of Acker, Payne and Philipin [/] (y = l) •

Let u be any positive function on fi . The function u is said to

be a-coneave, for a > 0 , if u is concave. The function u is said

to be 0-concave, or log-concave, if log u is concave.

THEOREM 1. Let 0 5 y 5 1 . Let u € C?(Q) n C{Q) be a solution,

positive in 9, , of
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v

-AM = u t-n
(P)

u = 0 on

Then the function u is a-conaave for 0 S a 2 (l-y)/2 .

Concerning the interior regularity needed in the proof, it is known

that any solution u € Cr(Sl) is in C (0.) .

Theorem 1 was first proved in a University of Adelaide PhD thesis by

Kennington [4]. Kennington's proof actually establishes the theorem in

R (with n 2 2) . Kennington's techniques are clever extensions of those

of Korevaar [5]. Korevaar used his techniques to establish the result in

the case Y = 1 • A similar proof, again for y = ~L , appears in

Caffarelli and Spruck [2].

The proof of Theorem 1 below is just one application of the Maximum

Principle (Protter and Weinberger [7], Sperb [£]) in the following form.

MAXIMUM PRINCIPLE. Let 0 € C(Q) with 9 > 0 . Let

Z = {s € fi | 0(3) = 0} .

Let I € C2(Q) satisfy

(l.l) I > 0 in a neighbourhood of 3fi ,

where A and A belong to C(Q) with A > 0 . Suppose that J > 0 at

points of Z . Then I > 0 in Q .

Note that the only use of the hypothesis on the curvature of 3fi is

to guarantee (l.l). In the application to Problem (P), with y > 0 , the

boundary condition is

I(z) ->• +°° as z •* 8fi .

(Note also that the coefficient AQ is singular at the boundary.)

The quantity J is the most obvious generalisation of that used in

[6] and [7], namely I = JQ with a = (l-Y)/2 . Here, if 0 < a < 1 ,
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a (1-a) a (l-a)

If a = 0 ,

2
I = u Hessian(log u) .

For a positive superharmonic function u , establishing that I > 0 in

£2 is establishing that u is ot-concave. (in the case Y = 0 our

notation is exactly as in [6], that is 1=1,. In the case Y = 1 o u r

1=1 is $/2 where $ is defined by equation (2.1) of [I].)

Define

(The notation is that of Sperb [8].) The explicit formulae for the

coefficients A , A and 0 are as follows:

A = Ax + A2VI ,

A2 = -8U 1 + Y (1+Y) ,

A =A0 2
u

2

Ax = 2Y(1+Y) "jf

and

0 =

The form of the equation was discovered using the earlier results of

[6] and [1] as a guide.

The coefficients were determined in the order, first J4? , then A~
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and finally A . The only important detail is the sign of A . Further

details are given in the research report, Keady [3]. The calculations were

sufficiently intricate that the computer algebra system, REDUCE, was used.

The REDUCE programs are given in Keady [3].
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