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1. Introduction. The torsion of beams of L-cross-section was studied for the first time,
from a mathematical standpoint, by Kotter [1]. He solved the problem in the case of an
L-section both arms of which are infinite. Some time later, Trefftz [2], in his work on the
torsion of beams of polygonal cross-section, applied his method also to an infinite L-section.
In 1934, Seth [3] solved the case of a beam of an L-section with only one infinite arm. In
1949, Arutyanyan [4] solved the torsion problem of an L-section that has both arms finite,
but of equal length, reducing the problem to that of solving an infinite system of equations.

In the present paper, we propose to solve the problem of the torsion of an L-section, in
the general case of finite arms, not necessarily equal and not equally thick. See Fig. 1.
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FIG. 1.

2. Basic equations. Our problem consists in determining a function F(x, y) that satisfies
the equation

V 2 F - - 2 ( V 2 = — + — Iv r — i. i v — , , - f , , I >

where
F = 0 on the boundary.

The torsional rigidity D is given by

(1)

(2)

(3)
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where y. is the rigidity of the material and S is the region of the cross-section.
The stress-components are given by

where a is the constant twist per unit length.

3. The stress function. Let us put

(P(x, y) in the region P: 0 ^ x g a, 0 g y g b, ~)
f(x, y) =<Q{x, y) in the region Q: agx£a', 0 ^ y g b, \ (5)

[R(x,y) in the region R: O^x^a, b^y<= b'.j

Equation (1) becomes

W2P = - 2 , V22 = - 2 , V27? = - 2 , (6)

and the boundary-condition (2) may be written

P(x,0) = P(0,y) =0, )
Q(x,0)=Q(x,b) = Q(a',y) = 0,\ (7)

) = R(a,y)=R(x,b')=0.)

For continuity reasons it is necessary to have

P(a, y) = Q (a, y), P(x, b) = R(x, b) (8)
and

Let us take
P(x,y)=Pi(x,y)+P2(x,y), (10)

R (x, y) = Ri (JC , y) + R2 (x, y), (12)

where Py{x, y), Qi(x, y), R^x, y) are the stress-functions for the regions P, Q, R, respectively,
and P2(x, y), Q2(x, y), R2(x, y) are functions to be determined.

We have, consequently,

Pi(x, y) = I ' t' am,« «'" ("»«*/«) sin (nny/b), (13)
m = 1 n = 1

where the dashes mean that only odd numbers m and n are summed over, and

3 2 (m,n = 1,3,5,...), (14)

!,, ch {A:n(a' + a-2^)/(2ft)} sin (kny/b)
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8a2 ,£, ch {kn{b' + b-
^iO,W = x(a~x>~~^ri£l k~3ch{kn{b'-

(The stress-function of a rectangle may be written in three forms. Here we have taken
the stress-function in a different form for each region.)

For the functions P2 {x, y), Q2 (x, y), R2 (x, y) we choose

Pi (x, y) = Y! iAk sin {knxja) sh (knyla) + Bk sin {knyjb) sh {knxjb)], (17)

Qi(x, y) = Z ' Ck sh {kn{a'-x)jb} sin {knyjb), (18)
k=l

Ri{x, y) = f' Dk sh {kn{bf-y)ja} sin {knxja), (19)

where Ak, Bk, Ck, Dk {k = 1, 3, 5, ...) are coefficients still to be determined.
Since the functions Pi{x,y), Qi{x,y), R^{x,y) satisfy the equation V2\ji = -2, and

since P2(.x, y), Qz{x, y), R2{x, y) are harmonic functions, it follows that the functions
P{x,y), Q{x,y), R{x,y) given by (10), (11), (12), satisfy equations (6). It is easy to verify
that the functions P{x, y), Q{x, y), R{x, y) satisfy also the boundary conditions (7).

Conditions (8) are satisfied if

Ck sh {kn{a'-a)jb} = Bk sh {knajb), Dk sh {kn{b' -b)ja] = Ak sh {knbja). (20)

Now, since

[—— = Y! n~' sm{nnyjb) Y' —i—, 2 2,L2X = —2 Z '«~ 2 sin {nnyjb) th {nna/{2b))
ox j x = a 7i3 „=1 m=\m +{a n jb ) n n=i

and similarly,

8a S ,-—
oy

'2 sia(mnxla) th(mnbl(2a)),
m = i

conditions (9), after some computation, become

kna , xkn{a'-a) 8b2
 LXna ib2

 t_kn{a'-a)\ .

(21)

together with a similar equation in which a and 6, a' and b', x and j>, Ax and 2?A, and Q and
Dx are interchanged.

Multiplying (21) by s'm(knylb) and integrating with respect to y from 0 to b, we obtain

A:7ta ^kn{a-a) %b2 kna %b2 kn(a'-d)
kBk ch — +kCk ch-—-—-y - -=-= th — - -=-= th v

k b b k2n3 2b k2n3 2b

labk
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A similar equation holds with the interchanges mentioned. Here we have used the fact that

f6 , Xnt . knt , a2bk , Xnb
sh—sin-— dt= ——y-j 5TT;sh — cos kn.

Jo a b n(b2X2 + a2k2) ao a o n(b2X2 + a2k2)

Now, by (20), equation (21) becomes, after a direct calculation,

.kna^_ 166
k S ~b~ ~ "JkV

2 sh {kn(a'-a)l(2b)} sh {kna'l(2b)}

ch {knal{2b)}

2ab
—

for k = 1, 3, 5, ... . There is a similar equation for Ak. Put

Xk = XAk sh (Xnbla), Yx = XBk sh (Xnajb) (A = 1, 3, 5, ...).

We then get

y _ , y / Y V = R

where, for odd positive integers k and A,

16a2 sh {kn(b'-b)l(2a)} sh {knbl(2a)}

= 1, 3, 5, . . . ) ,

and

k2n3 ch

16ft2 sh {kn(a'-a)l(2b)} sh

Ih? ch {kna'l(2b)}

labk sh {kn(b'-b)la} sh (knbja)

labk sh {kn(a'~a)lb} sh(knalb)

Write

Zk= Xk, ck = <xk (k odd ) ; Zk= Yk_l> ck = fik-l (
yM = aiM-i (k odd, X even), y M = 0, (A: odd, A odd);
V*,A = Pk-i>x> (k even, A odd), y M = 0, (A: even, A even).

Then the system (24) becomes

Zk = ck+ftyktXZi (k= 1,2, 3, ...).

We now show that this system is completely regular. If k is odd, we have

(23)

(24)

(25)

(26)

(27)

(28)
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S. . S, 2abksh{kn(b'-b)la}sh(knbla)^,
/ I Vt 3 I ^~ / Oft 3 ™̂ — ———————————^—^^^—^^^^^^^^ y

x=\ x=\ nsh(knb[a) x=i

since th x £ 1 and sh x sh y ?L\ sh (.v+j>). If k is even, we have, similarly,

It follows that the system (28) is completely regular.
We next consider the coefficients ck of the system. Since sh x sh y ^ ch(;c+.y),

8/2

0 ^ ck ^ - 3 , where / = max(fl, b).

It is known [5] that in this case, the system (28) admits a unique bounded solution
0 ^ Zk ^ K = 321 I(3n3), which may be approximated to by laborious computations, when
the values of a, b, a', b' are given. The approximation can be carried out in several ways.

(i) One method is furnished by the following theorem: A completely regular system has
always a unique and bounded solution, which can be found by the method of successive
approximations, starting with any bounded system of initial values.

(ii) Another method is to find numerical sequences Z'k and Z'k' such that Z'kfLZkiZL Z'k,
that is, to determine lower and upper approximations to Zk. The values of Z'k and Z'k' (Jc - 1,
2, ... , N) are given by the finite systems of equations

X=l X-N+l X=l

It can be shown that

lim Z'k = lim Zk" = Zk.

For A: = N+1,7V+2, ... we can take Z^ = 0, Z'k' = A".
(iii) There exists a modified method of successive approximations. We write system

(28) in the following form:

-ki\k,xZx+ (1 -y*jk)Zt = c t + f yt , ,Z, (A = 1, 2, ...). (29)

Taking the values of the unknown quantities, that appear on the right-hand side of (29),
equal to zero and solving the recurrent system thus obtained, we find the first approximation
for Zk. Introducing these first approximations in the right-hand side of (29) and solving the
new recurrent system thus obtained, we find the second approximations for Zk, and so on.
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As soon as Zk, and consequently Xk and Yk are known, the stress-function can be obtained
from (10), (11), (12), where i \ (*, .y), Q^x.y), R^x.y) are given by (13), (14), (15), (16). On
taking into account (17), (18), (19), (20), (23), P2(x,y), Q2(x,y), R2(x,y) may be written as
follows:

y , 1 f sin (knxja) sh (knyja) sin (kny/b) sh (knxjb) 1

kl Yk ksh{kn(a._a)lbh '

S, sh{^(Z>-j>)Msin(^/Q)
^ 2 (x, y) = L( Ai 1 - ^ — - — — . (32)

4. The torsional rigidity. We shall denote by fiL(a, b), the torsional rigidity correspond-
ing to a rectangular section with sides a, b. Here L(a, b) is given by any of the formulae

? ^ - » ^ n ' (33)

64a4 ?,, 1 . mnb
_ I - t h _ , (34)

aft3 646* S,, 1 -mna

Z^W (35)Z
and may be calculated from tables.

For the rigidity of our beam we have

D = 2fin[(Pl+P2)dxdy+[\(Ql+Q2)dxdy+{[(Ri+R2)dxdy~] . (36)

Since Pl(x,y), Qi(x,y), Rt(x, y) are the stress-functions for the regions P, Q, R, res-
pectively, we have

2 ff/,</*</>> = L(a, b), 2 f f C.rfx dy = L(a'-a, b), 2 ff/f.rfxflfy = L(a, b'-b). (37)

As far as it concerns the other three integrals in (36), a simple calculation shows that

( 3 8 )

( 3 9 )

(40)
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Consequently, we have, from (36),

kn(b'-b)\ L2

where Do is the sum of the rigidities corresponding to the rectangular regions P, Q, R; i.e.

{a, b)+L(a'-a, b)+L(a, b'-b)}.
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