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Abstract

The main purpose of this paper is to give a new, elementary proof of Flanigan’s theorem, which says that
a given ring A has a maximal essential extension ME(A) if and only if the two-sided annihilator of A is
zero. Moreover, we discuss the problem of description of ME(A) for a given right ideal A of a ring with
an identity.
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1. Introduction

All rings in this paper are associative but we do not assume that each ring has an
identity element. To denote that / is an ideal (respectively a left ideal, a right ideal) of
aring R, we write I <1 R (respectively I <; R, I <, R). We say that a subring A of a
ring R is essential in R or that R is an essential extension of A, if A N I # 0 for every
nonzero ideal I of R.

The idealizer 1dg(A) of a subring A of a ring R is the largest subring of R in
which A is an ideal, that is, [dg(A) = {r e R: rA C A and Ar C A}. For a nonempty
subset X of a ring R the left annihilator of X is [r(X) ={r € R:rX =0} and the
right annihilator of X isrg(X) = {r € R : Xr = 0}. The two-sided annihilator of X is
defined to be the subring ag (X) = [r(X) N rr(X). To simplify the notation we write
a(R) instead of ag(R).

In [2] Beidar introduced the notion of a maximal essential extension of a ring.

DEFINITION 1.1 (Beidar). A ring R is said to be a maximal essential extension of a
ring A (R = ME(A)), if A is an essential ideal of R and, for any ring S which contains
A as an ideal, there exists a ring homomorphism 4 : S — R such that z(a) = a for all
aeA.

There are many important applications of maximal essential extension of rings
(see [5, 6]), especially in the theory of radicals. We refer the reader to [2] for a
thorough discussion of the various applications of this idea in solving significant
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problems in the theory of rings. In [2] Beidar asked when a given ring A has ME(A). It
turned out that an answer this question was already given in [3] by Flanigan. However,
the author used advanced methods and techniques of category theory. The Flanigan
theorem can be presented in the following form.

THEOREM 1.2 (Flanigan). A ring A has ME(A) if and only if a(A) = {0}.

The main purpose of this paper is to give a new elementary proof of Flanigan’s
theorem (see Section 3). Moreover, we present an example which shows that in [2,
Theorem 6], given without a proof, there are few assumptions missing. For the proof
the author refers to [1], but that paper only gives a proof of a special case of the theorem
under discussion. We give necessary assumptions for [2, Theorem 6] and show that
they cannot be weakened.

2. Preliminaries

For any element a of a ring R we denote the ideal of R generated by a by R'aR!.
We denote the additive group of A by AT and we denote the ring of endomorphisms
of the right (respectively left) A-module A by End(A,4) (respectively End(4A)). For
AA we write endomorphisms on the right of the arguments and consequently we will
use the right-hand rule for composition of mappings. The ring End(A4) @ End(4A)
will be denoted by E(A). It is easy to check that

QA)={(, p)e E(A):a-r(b)=(a)p D Vapea}

is a subring of E(A). If A < S then for s € S we definel;: A — Abyli(a)=s-a
and ry: A— A by (a)rs =a-s. A trivial verification shows that Iy € End(Ay),
rs € End(4A) and (I, ry) € Q2(A) for any s € S. Moreover, the map f: S — Q(A)
given by f(s) = (Is, ry) for s € S is a ring homomorphism such that Ker f = ag(A).
In particular, for S = A we obtain that A={(y,ry):acA}isa subring of Q(A).
It is seen at once that, for all a € A and (A, p) € Q(A), we have (A, p) - (g, ry) =
(lk(a), rk(a)) and (I5, rg) - (A, p) = (l(a)p, V(a)p). It follows that A < Q(A). If, in
addition, a(A) = {0}, then A = A.

PROPOSITION 2.1. If A is an ideal of a ring R and a(A) = {0} then A is an essential
ideal in R if and only if ag(A) = {0}.

PROOF. If ag(A) ={0} and J is a nonzero ideal of a ring R then JA # {0} or
AJ #{0} and JAUAJ CANJ. Thus AN J £ {0}. Hence A is an essential ideal

of R. Conversely, assume that A is an essential ideal of R. Since ar(A) < R and
ar(A) N A =a(A), it follows that ag (A) = {0}. O

PROPOSITION 2.2. Let A be a ring such that a(A) ={0}. Assume that A is an

essential ideal of a ring R and A is a subring of a ring S such that ag(A) = {0}. Then:

(1) every ring homomorphism f : R — S such that f(a) = a for every a € A is an
embedding;

(ii) there exists at most one homomorphism f : R — S such that f(a) = a for all
aeA.
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PROOF. (i) Assume that the homomorphism f : R — S is not an embedding. Then
Ker f # {0}, so Ker f N A # {0}. Hence there exists 0 % a € A such that f(a) =
But a = f(a), which is a contradiction.

(i1) Suppose that f and g are homomorphisms of R into S such that f|4 =id4 and
gla=1idy. Letx € Rand a € A. Then

(f(x) —g(x)a = f(x)a—g(x)a= f(x)f(a) —gx)g(a)
= f(xa) — gxa)=xa —xa=0,
since xa € A. So (f(x) — g(x))A ={0}. Similarly, one can prove that A(f(x) —

g(x)) = {0}. From this we conclude that f(x) — g(x) € as(A). But as(A) = {0}, so
f(x) = g(x) for every x € R. This shows that f = g. a

PROPOSITION 2.3. Let A be a ring such that a(A) = {0}. Then aE(A)(Z) = {0} and
Q(A) =idg(a) (A). Moreover, if A is an essential ideal of a ring S then the function
s+ (ls, ry) for s € S is the unique ring homomorphism of S into QQ(A) such that
av> (I, rg) fora € A.
PROOF. Let (f, g) € aE(A)(Z). Then for any a € A we have (f, g) - (ls, I;) = (0, 0)
and (I5, rg) - (f, &) = (0, 0), so that fl, =0,1,f =0, gr, =0 and r,g = 0. Hence,
for every b € A we have
0=(fla)(b)=fla-D)=f(a)-b, O0=Upf)a)=0b" f(a),
=) (gra) =(b)g-a and 0= (a)(rpg) =(a-b)g=a-(b)g.

This means that f(a), (b)g € a(A) = {0}, hence f =0, , ¢ =0and aE(A)(Z) {0}.

Recall that A <1 Q(A)  implies that €2(A) < IdE(A)(A) Moreover, A <I IdE(A)(A)
and aE(A)(A) {0} and A = A, so Proposition 2.1 gives that ‘A is an essential ideal
of Idga)(A) and there exists an embedding of rings A .IdE(A)(A) — Q(A) such
that h|5 A= =idz. By Propositions 2.1 and 2.2, we get that the identity mapping on
IdE(A)(A) is the umque ring homomorphlsm of IdE(A)(A) into E(A) which is an
identity map on ‘A. Hence h(IdE(A)(A)) =Idg4)(A) implies that IdE(A)(A) C QA
and IdE(A) (A) Q (A)

Finally, suppose that A is an essential ideal of S. Applying Proposition 2.2, we get
that the function g : § — Q2(A) given by g(s) = (Is, rs) for s € S is the unique ring
homomorphism such that g(a) = (I, r,) fora € A. O

3. Proof of the Flanigan theorem
A few facts in this section are well known, but we will prove them for completeness.

LEMMA 3.1. Let A, B be nonzero rings such that a(B) is an essential ideal of B and
f ra(A) — a(B) is an isomorphism of rings. Then

I ={(@, f(a)):aca(A)} <A x B,
[(Ax{0h+11/I=A, [({0}xB)+I]/I=B and [(Ax{0})+1]/1
is an essential ideal of the ring (A x B)/I.
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PROOF. Directly from the assumptions we get that I is a subgroup of (A x B)* and
I Ca(A x B). Hence, in particular, / <1 A x B. Moreover,

(Ax{0hNI={(a, f(a) :a€a(A), f(a)=0}={0, 0)},
so [(A x {0}) + I]/I = A. Next,
({0} x ByNn I ={(a, f(a)):a=0}={(0, 0)}

implies that [({0} x B) + 1]/I = B.
Suppose that / <1 A x B and I C J. Recall that it is sufficient to prove that

[(A x {0} +11/InJ/I#0.

There exists (a, b) € A x B such that (a, b) € J \ I. If a € a(A) then there exists
¢ € A such that ca # 0 or ac # 0. If ca # 0 then

I#(ca,0)+1=[(c,0)+1]-[(a,b)+1]€[(Ax{0h+1I]/INJ/I
Likewise, if ac #£ 0 then
I#@c,0)+1=[(a,b)+1] [(c,))+I]e[(Ax{Oh+1]/INJ/I.

Assume that a € a(A). Then I # (a,b) + 1 =(0,b — f(a)) + I. Consequently
0 # b — f(a) € B. Essentiality of a(B) implies that there exists

0#ye[B'(b— fa)B'1Na(B).

Then (0, y)+ 1 € J. But f is onto, so y = f(x) for some x € a(A). Notice that
x # 0, because y # 0. Thus

I'#0,9)+ =[x, f(x)+(=x, 0] +1
=(—x,0+1el[(Ax{0h)+1]/INJ/I.
This concludes the proof. O
LEMMA 3.2. Let M be a nonzero abelian group and T be a nonempty set. Denote

M;=M forteT and N=M & PD,.; M;, S={f €End(N): f(M)=0}. Then
S <; End(N) and [8 ]g] = a(B) is an essential ideal of the ring B = [g 1(\)’]

PROOF. An easy computation shows that S <; End(N) and
0 M
C
|:0 0i| Ca(B).

[{)0 )g)] ca(B).

Suppose that fy # 0. Then there exists y € N such that fy(y) # 0. Hence

fo xof 1Oyl _ 10 fon] [0 0

0 O 0 0| |0 0 0 of
which is a contradiction. Thus fo =0. Assume that xo & M. For t € T let mr; denote
a projection of N onto M,. It is clear that wr, € S for t € T. But xo & M, so there

Let

https://doi.org/10.1017/5S0004972710001759 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972710001759

[5] On maximal essential extensions of rings 333

exists fo € T such that 74 (xg) # 0. Moreover,

00 2 |0 0] 10 xo
0 0 0 0] |0 O
which is impossible. Hence xo € M and, finally,
0 M
a(B) = |:0 0 i|

Let J be a nonzero ideal of B. Then there exists

00 f x
o ol#[5 o)<
If f # 0 then we can take y € N such that f(y) # 0. Next,
00 0O fM|{_|f x| [0 ¥
[o 0}7{0 0 }_[0 o] o o]
So[8’6]e]f0rsomeO#neN.IfneMthen

[8 g} e J Na(B).

If n & M then there exists #p € T such that 7, (n) # 0. Let go : M;, — M be a natural
isomorphism. Then gom;, € S, 0 # (goms,)(n) € M and

[g (goﬂ(z)o)(n)} _ [gngo 8] : [8 8] € JNa(B).

This proves that a(B) is an essential ideal of B. O
THEOREM 3.3. Let A be a ring such that a(A) # {0}. Then for any cardinal number
o there exists a ring R such that card R > a and A is an essential ideal of R.

PROOF. Let T be a set of cardinality o« > 1. Let M; =a(A) for t € T. Then
N =a(A) ® @,y M, has cardinality greater than or equal to «. Put

S={f €End(N): f(a(A)) =0}.
According to Lemma 3.2

a(A)E|:8 "(OA)]=a(B) forB:[g ](ﬂ

Moreover, a(B) is an essential ideal of B and card B > «. The function f :a(A) —
a(B) defined by

flx) = [8 3} for x € a(A)
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is an isomorphism of rings. Denote I = {(a, f(a)) :a € a(A)}. By Lemma 3.1 we get
that

AZ[(Ax{0)+11/I1 <(A x B)/I, card((A x B)/I)>card B > «
and [(A x {0}) 4+ I]/I is an essential ideal of (A x B)/I. O

THEOREM 3.4 (Flanigan). A ring A has ME(A) if and only if a(A) = {0}. Moreover,
if a(A) = {0} then Q(A) = ME(A).

PROOF. Suppose that R = ME(A). If a(A) # {0} then by Theorem 3.3 there exists a
ring S of cardinality less than card R which is an essential extension of A. Hence there
exists a ring homomorphism f : S — R such that F|4 =id4. Thus Ker f N A = {0}
and consequently Ker f = {0} which means that f is an embedding. But card R <
card S, a contradiction. Finally, a(A) = {0}.

Conversely, assume that a(A) = {0}. The mapping a — (I;, r,) for a € A is an
isomorphism of A onto a ring A. By Propositions 2.1 and 2.3, A is an essential ideal
of the ring 2(A). Let A be an ideal of S. Then the function f : S — Q(A) given by
f(s) = (s, ry) for s € § is a ring homomorphism and f(a) = (4, r,) fora € A. Thus
Q(A) =ME(A). O

PROPOSITION 3.5. If R =ME(A) and S = ME(A) then there exists a unique ring
homomorphism f : R — S such that f|a=1ida and this homomorphism is an
isomorphism.

PROOF. Theorem 3.4 implies that a(A) = {0}. By definition of ME(A) we get that
there exist ring homomorphisms f: R — S, g:S— R such that f|4 =idg and
gla=1ids. Thusgo f : R— Rand f o g: S — § are homomorphisms of rings such
that g o f|4 =id4 and f o g|4 =1id4. From this and Propositions 2.1 and 2.2 we con-
clude that g o f =idg and f o g =idg. Hence f and g are isomorphisms. Moreover,
applying Proposition 2.2, we see that f is the unique homomorphism of R into §. O

4. Examples and applications

In many problems concerning the structure of rings, properties of the ring ME(A)
play an important role, especially in the case where ME(A) is precisely described. In
[5, Theorem 2] it was proved that if a is a regular element of a ring R with identity
then Idg (aR) = ME(aR).

DEFINITION 4.1 (Beidar). Let R be a ring with identity and let M be a right unital
R-module. We say that M is a generator if

Y {f(M): f € Hom(Mg, Rg)} = R,
that is, there exist f1, ..., fs € Hom(Mg, Rg) and my, ..., mg € M such that
1= fi(my) +-- -+ fs(my).
EXAMPLE 4.2.

(a) If a € R is aright regular element of a ring R with an identity then the function
h:R — aR given by h(x) =a - x is an isomorphism of a right regular R-module.
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Thus 2! : aR — R is also an isomorphism of a right regular R-module and M = aR
is a generator.

(b) Let J be a right ideal of a ring R with an identity such that R/ = R. Then
there exist ji,..., js € J and ay, ..., a5 € R such that 1 =ayj; + - -+ asjs, so
1=14,(j1) + - +14(js). Hence, M = J is a generator.

In [2, Theorem 6] Beidar stated without proof that if [ is a right ideal of a ring R
with an identity and if Ig is a generator, then Idg (/) = ME(7). Unfortunately, this
theorem does not hold in general. However, the theorem is true if we add following
assumption:

for any 7 € Hom(; I, [; (1)) there exists ¢ € R such that h =r. 4.1)

There are many examples of rings R with an identity and / <, R such that I is a
generator, but for which condition (4.1) does not hold.

EXAMPLE 4.3. Let S be a polynomial ring in two noncommuting variables X, ¥ over
the ring Z of integers. Let J be an ideal of S generated by YX and Y2. Letx = X + J,
y=Y+Jand R=S/J. Then

R =Z[x]+ Z[x]y.

Moreover, x is a right regular element of R. Let / =xR. It is obvious that
I = xZ[x]+ xZ[x]y, Ig is a generator and Idg (1) = R. We see at once that [;(I) =
xZlx]y. Let h: I — l;(I) be defined by

h(a +by)=(a+b)y fora,b e xZ[x].

Then h € Hom(;1I,1l;(I)). If h=r., for some c€ R then h(x)= (x)r. and
consequently xy =xc and ¢ =y. But this and y2=0 imply that xy = h(xy) =
(xy)ry = xy? = 0, which is a contradiction.

THEOREM 4.4. Let I be a right ideal of a ring R with an identity and Ig be a
generator. Then Idg(I) = ME(]) if and only if for every h € Hom(; 1, l; (1)) there
exists ¢ € R such that h =r.

PROOF. By assumption, there exist fi, ..., fy € Hom(Ig, Rg) and iy, ...,ise€l
such that

L= fil) +- -+ fs(iy). (4.2)
From (4.2) we conclude that for any r € R we have r = f1(i;r) + - - - + fs(isr).
Therefore rr(1) = {0}. Hence ag(l) = {0}, so by Theorem 3.4, Q(A) = ME(A),
I is an essential in R and, moreover, I is an essential ideal of T = Idg(1).

Suppose that T = ME(/). Applying Theorem 3.4 and Proposition 3.5, we see that
the function f: 7 — Q(I) given by f(t) = (I, r;) for t € T is an isomorphism of
rings. Choose any h € Hom(;1, [;(I)). Then (0, h) € Q(I), so there exists ce T
such that (0, h) = (I, r¢) and h = r.

Conversely, assume that for every 4 € Hom(; 1, [ (I)) there exists ¢ € R such that
h=r.. Then Ic Cl;(I), which implies that Icl ={0}. Hence cI C r;(I) = {0}
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and ¢ € [;(I). Therefore c € T and (0, h) = (I, r.) € Q(I). By Propositions 2.2, 2.3
and Theorem 3.4 it suffices to prove that the function f:7 — Q(I) given by
f@&)=UUs,ry) for t €T is onto. Fix any (A, p) € 2(I). Then for all i, jel,

i-(j)=(@)p- j. Let
b= fil)p) +---+ fs((s)p).
Notice that b € R and, for any j € I,
b-j=filGop)-j+--+ fs()p)-j=filGDpe- )+ -+ fs((s)p - ])
= fiir() + - -+ fiGsA () = f1@) - A(G) + -+ [ () - A(J) = A())
by (4.1). Hence, A = l,. From this, b € T. Next, for
LJjel:(j-b—=p)-i=j-b-i)=(p-i=j-r(@)—j-Ar{)=0,
so j-b—(j)p el;(I). By the above, the function /& defined by h(j)=j-b — (j)p

for j € I is a homomorphism of the left /-module [ into the left /-module /; (). Thus
there exists ¢ € [;(I) such that h =r. and (I., r.) = (0, h) € Q). Buth=r, — p so

p=rp—h=rp—re=rpc, A=l=lh—lc=1l
and, finally, (A, p) = (Ap—c, pp—c) € Q2(I). o

COROLLARY 4.5. Let R be a ring with an identity and assume that I <, R is a
generator. If [j(I) = {0} then Idgr(I) =ME(I). In particular, if a is a two-sided
regular element of R then Idg (aR) = ME(aR).

COROLLARY 4.6 (Beidar). Let R be a ring with an identity and let 1 <, R and
RI =R. Then Idg(I) =ME(). In particular, 1dg(J) = ME(J) for every nonzero
right ideal J of a simple ring R with an identity.

PROOF. By assumption, there exist r{,...,rs € R and iy, ..., is € I such that 1 =
rii; + - - - +rsis. Hence rp(I) ={0} and 1 =1, (1) +---+ 1, (). Thus Iz is a
generator. Choose h € Hom(; 1, [;(I)). Let b =rih(i1) + - - -+ rsh(is). Thenb € R
and, foreveryi € I,

i=(r)it+---+@ryis and  h(@) = {r)hlin) + - - -+ (@rohs) =i - b.
Thus & = rp. From Theorem 4.4 it follows that Idg () = ME(]). O
DEFINITION 4.7. A simple ring A = A? satisfies a Gardner condition if, for any ring
R, A< Rand R/A = A imply that there exists / << R suchthat R=A P I.

PROPOSITION 4.8. A simple ring A = A? satisfies a Gardner condition if and only if
A is not embeddable in a ring ME(A)/A.

PROOF. Let A = A? be a simple ring. Then a(A) = {0}, so by Theorem 3.4 there
exists ME(A). First, assume that A does not satisfy a Gardner condition. Then there
exists a ring R in which A << R, R/A = A and there does not exist / <I R such that
R = A & I. Suppose that A is not essential in R. Then there exists a nonzero ideal J
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of R such that AN J = {0} and (A + J)/A is a nonzero ideal of a simple ring R/A.
Thus A+ J = R. This means that A @ J = R, which is a contradiction. So A
is essential in R. According to Proposition 2.2 and Theorem 3.4 there exists an
embedding of rings & : R — ME(A) such that h|A =id4. From this it follows that
h(R)/A=R/A and A = h(R)/A. This shows that A is embeddable in ME(A)/A.
Conversely, suppose that A is embeddable in ME(A)/A. Then there exists a subring
S of ME(A) such that A <0 S and S/A = A. But amga)(A) = {0} by Proposition 2.1.
Thus ag(A) = {0} and, again by Proposition 2.1, A is essential in S. Hence, there
does not exist / <1 S such that A @ I = S. It follows that A does not satisfy a Gardner
condition. O

In [4] it was proved that if a simple ring A = A? satisfies a Gardner condition then
the lower radical determined by the class of all rings isomorphic to A is an atom in the
lattice of all radicals. By the above remark and Proposition 4.8 we obtain the following
theorem.

THEOREM 4.9. If a simple ring A = A? is not embeddable in a ring ME(A)/A then
the lower radical determined by the class of all rings isomorphic to A is an atom in
the lattice of all radicals.
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