
Bull. Aust. Math. Soc. 83 (2011), 329–337
doi:10.1017/S0004972710001759

ON MAXIMAL ESSENTIAL EXTENSIONS OF RINGS

R. R. ANDRUSZKIEWICZ

(Received 25 June 2010)

Abstract

The main purpose of this paper is to give a new, elementary proof of Flanigan’s theorem, which says that
a given ring A has a maximal essential extension ME(A) if and only if the two-sided annihilator of A is
zero. Moreover, we discuss the problem of description of ME(A) for a given right ideal A of a ring with
an identity.
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1. Introduction

All rings in this paper are associative but we do not assume that each ring has an
identity element. To denote that I is an ideal (respectively a left ideal, a right ideal) of
a ring R, we write I � R (respectively I <l R, I <r R). We say that a subring A of a
ring R is essential in R or that R is an essential extension of A, if A ∩ I 6= 0 for every
nonzero ideal I of R.

The idealizer IdR(A) of a subring A of a ring R is the largest subring of R in
which A is an ideal, that is, IdR(A)= {r ∈ R : r A ⊆ A and Ar ⊆ A}. For a nonempty
subset X of a ring R the left annihilator of X is lR(X)= {r ∈ R : r X = 0} and the
right annihilator of X is rR(X)= {r ∈ R : Xr = 0}. The two-sided annihilator of X is
defined to be the subring aR(X)= lR(X) ∩ rR(X). To simplify the notation we write
a(R) instead of aR(R).

In [2] Beidar introduced the notion of a maximal essential extension of a ring.

DEFINITION 1.1 (Beidar). A ring R is said to be a maximal essential extension of a
ring A (R =ME(A)), if A is an essential ideal of R and, for any ring S which contains
A as an ideal, there exists a ring homomorphism h : S→ R such that h(a)= a for all
a ∈ A.

There are many important applications of maximal essential extension of rings
(see [5, 6]), especially in the theory of radicals. We refer the reader to [2] for a
thorough discussion of the various applications of this idea in solving significant
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problems in the theory of rings. In [2] Beidar asked when a given ring A has ME(A). It
turned out that an answer this question was already given in [3] by Flanigan. However,
the author used advanced methods and techniques of category theory. The Flanigan
theorem can be presented in the following form.

THEOREM 1.2 (Flanigan). A ring A has ME(A) if and only if a(A)= {0}.

The main purpose of this paper is to give a new elementary proof of Flanigan’s
theorem (see Section 3). Moreover, we present an example which shows that in [2,
Theorem 6], given without a proof, there are few assumptions missing. For the proof
the author refers to [1], but that paper only gives a proof of a special case of the theorem
under discussion. We give necessary assumptions for [2, Theorem 6] and show that
they cannot be weakened.

2. Preliminaries

For any element a of a ring R we denote the ideal of R generated by a by R1aR1.
We denote the additive group of A by A+ and we denote the ring of endomorphisms
of the right (respectively left) A-module A by End(AA) (respectively End(A A)). For
A A we write endomorphisms on the right of the arguments and consequently we will
use the right-hand rule for composition of mappings. The ring End(AA)⊕ End(A A)
will be denoted by E(A). It is easy to check that

�(A)= {(λ, ρ) ∈ E(A) : a · λ(b)= (a)ρ · b ∀a,b∈A}

is a subring of E(A). If A � S then for s ∈ S we define ls : A→ A by ls(a)= s · a
and rs : A→ A by (a)rs = a · s. A trivial verification shows that ls ∈ End(AA),
rs ∈ End(A A) and (ls, rs) ∈�(A) for any s ∈ S. Moreover, the map f : S→�(A)
given by f (s)= (ls, rs) for s ∈ S is a ring homomorphism such that Ker f = aS(A).
In particular, for S = A we obtain that A = {(la, ra) : a ∈ A} is a subring of �(A).
It is seen at once that, for all a ∈ A and (λ, ρ) ∈�(A), we have (λ, ρ) · (la, ra)=

(lλ(a), rλ(a)) and (la, ra) · (λ, ρ)= (l(a)ρ, r(a)ρ). It follows that A ��(A). If, in
addition, a(A)= {0}, then A ∼= A.

PROPOSITION 2.1. If A is an ideal of a ring R and a(A)= {0} then A is an essential
ideal in R if and only if aR(A)= {0}.

PROOF. If aR(A)= {0} and J is a nonzero ideal of a ring R then JA 6= {0} or
AJ 6= {0} and JA ∪ AJ ⊆ A ∩ J . Thus A ∩ J 6= {0}. Hence A is an essential ideal
of R. Conversely, assume that A is an essential ideal of R. Since aR(A)� R and
aR(A) ∩ A = a(A), it follows that aR(A)= {0}. 2

PROPOSITION 2.2. Let A be a ring such that a(A)= {0}. Assume that A is an
essential ideal of a ring R and A is a subring of a ring S such that aS(A)= {0}. Then:

(i) every ring homomorphism f : R→ S such that f (a)= a for every a ∈ A is an
embedding;

(ii) there exists at most one homomorphism f : R→ S such that f (a)= a for all
a ∈ A.
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PROOF. (i) Assume that the homomorphism f : R→ S is not an embedding. Then
Ker f 6= {0}, so Ker f ∩ A 6= {0}. Hence there exists 0 6= a ∈ A such that f (a)= 0.
But a = f (a), which is a contradiction.

(ii) Suppose that f and g are homomorphisms of R into S such that f |A = idA and
g|A = idA. Let x ∈ R and a ∈ A. Then

( f (x)− g(x))a = f (x)a − g(x)a = f (x) f (a)− g(x)g(a)

= f (xa)− g(xa)= xa − xa = 0,

since xa ∈ A. So ( f (x)− g(x))A = {0}. Similarly, one can prove that A( f (x)−
g(x))= {0}. From this we conclude that f (x)− g(x) ∈ aS(A). But aS(A)= {0}, so
f (x)= g(x) for every x ∈ R. This shows that f = g. 2

PROPOSITION 2.3. Let A be a ring such that a(A)= {0}. Then aE(A)(A)= {0} and
�(A)= idE(A)(A). Moreover, if A is an essential ideal of a ring S then the function
s 7→ (ls, rs) for s ∈ S is the unique ring homomorphism of S into �(A) such that
a 7→ (la, ra) for a ∈ A.

PROOF. Let ( f, g) ∈ aE(A)(A). Then for any a ∈ A we have ( f, g) · (la, lr )= (0, 0)
and (la, ra) · ( f, g)= (0, 0), so that f la = 0, la f = 0, gra = 0 and rag = 0. Hence,
for every b ∈ A we have

0= ( f la)(b)= f (a · b)= f (a) · b, 0= (lb f )(a)= b · f (a),

0= (b)(gra)= (b)g · a and 0= (a)(rbg)= (a · b)g = a · (b)g.

This means that f (a), (b)g ∈ a(A)= {0}, hence f = 0, g = 0 and aE(A)(A)= {0}.
Recall that A ��(A) implies that �(A)⊆ IdE(A)(A). Moreover, A � IdE(A)(A)

and aE(A)(A)= {0} and A ∼= A, so Proposition 2.1 gives that A is an essential ideal
of IdE(A)(A) and there exists an embedding of rings h : IdE(A)(A)→�(A) such
that h|A = idA. By Propositions 2.1 and 2.2, we get that the identity mapping on
IdE(A)(A) is the unique ring homomorphism of IdE(A)(A) into E(A) which is an
identity map on A. Hence h(IdE(A)(A))= IdE(A)(A) implies that IdE(A)(A)⊆�(A)
and IdE(A)(A)=�(A).

Finally, suppose that A is an essential ideal of S. Applying Proposition 2.2, we get
that the function g : S→�(A) given by g(s)= (ls, rs) for s ∈ S is the unique ring
homomorphism such that g(a)= (la, ra) for a ∈ A. 2

3. Proof of the Flanigan theorem

A few facts in this section are well known, but we will prove them for completeness.

LEMMA 3.1. Let A, B be nonzero rings such that a(B) is an essential ideal of B and
f : a(A)→ a(B) is an isomorphism of rings. Then

I = {(a, f (a)) : a ∈ a(A)}� A × B,

[(A × {0})+ I ]/I ∼= A, [({0} × B)+ I ]/I ∼= B and [(A × {0})+ I ]/I

is an essential ideal of the ring (A × B)/I .
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PROOF. Directly from the assumptions we get that I is a subgroup of (A × B)+ and
I ⊆ a(A × B). Hence, in particular, I � A × B. Moreover,

(A × {0}) ∩ I = {(a, f (a)) : a ∈ a(A), f (a)= 0} = {(0, 0)},

so [(A × {0})+ I ]/I ∼= A. Next,

({0} × B) ∩ I = {(a, f (a)) : a = 0} = {(0, 0)}

implies that [({0} × B)+ I ]/I ∼= B.
Suppose that J � A × B and I ⊂ J . Recall that it is sufficient to prove that

[(A × {0})+ I ]/I ∩ J/I 6= 0.

There exists (a, b) ∈ A × B such that (a, b) ∈ J \ I . If a 6∈ a(A) then there exists
c ∈ A such that ca 6= 0 or ac 6= 0. If ca 6= 0 then

I 6= (ca, 0)+ I = [(c, 0)+ I ] · [(a, b)+ I ] ∈ [(A × {0})+ I ]/I ∩ J/I.

Likewise, if ac 6= 0 then

I 6= (ac, 0)+ I = [(a, b)+ I ] · [(c, 0)+ I ] ∈ [(A × {0})+ I ]/I ∩ J/I.

Assume that a ∈ a(A). Then I 6= (a, b)+ I = (0, b − f (a))+ I . Consequently
0 6= b − f (a) ∈ B. Essentiality of a(B) implies that there exists

0 6= y ∈ [B1(b − f (a))B1
] ∩ a(B).

Then (0, y)+ I ∈ J . But f is onto, so y = f (x) for some x ∈ a(A). Notice that
x 6= 0, because y 6= 0. Thus

I 6= (0, y)+ I = [(x, f (x))+ (−x, 0)] + I

= (−x, 0)+ I ∈ [(A × {0})+ I ]/I ∩ J/I.

This concludes the proof. 2

LEMMA 3.2. Let M+ be a nonzero abelian group and T be a nonempty set. Denote
Mt = M for t ∈ T and N = M ⊕

⊕
t∈T Mt , S = { f ∈ End(N ) : f (M)= 0}. Then

S <l End(N ) and
[

0 M
0 0

]
= a(B) is an essential ideal of the ring B =

[
S N
0 0

]
.

PROOF. An easy computation shows that S <l End(N ) and[
0 M
0 0

]
⊆ a(B).

Let [
f0 x0
0 0

]
∈ a(B).

Suppose that f0 6= 0. Then there exists y ∈ N such that f0(y) 6= 0. Hence[
f0 x0
0 0

]
·

[
0 y
0 0

]
=

[
0 f0(y)
0 0

]
6=

[
0 0
0 0

]
,

which is a contradiction. Thus f0 = 0. Assume that x0 6∈ M . For t ∈ T let πt denote
a projection of N onto Mt . It is clear that πt ∈ S for t ∈ T . But x0 6∈ M , so there
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exists t0 ∈ T such that πt0(x0) 6= 0. Moreover,[
0 0
0 0

]
6=

[
πt0 0
0 0

]
·

[
0 x0
0 0

]
which is impossible. Hence x0 ∈ M and, finally,

a(B)=

[
0 M
0 0

]
.

Let J be a nonzero ideal of B. Then there exists[
0 0
0 0

]
6=

[
f x
0 0

]
∈ J.

If f 6= 0 then we can take y ∈ N such that f (y) 6= 0. Next,[
0 0
0 0

]
6=

[
0 f (y)
0 0

]
=

[
f x
0 0

]
·

[
0 y
0 0

]
∈ J.

So
[

0 n
0 0

]
∈ J for some 0 6= n ∈ N . If n ∈ M then[

0 n
0 0

]
∈ J ∩ a(B).

If n 6∈ M then there exists t0 ∈ T such that πt0(n) 6= 0. Let g0 : Mt0 → M be a natural
isomorphism. Then g0πt0 ∈ S, 0 6= (g0πt0)(n) ∈ M and[

0 (g0πt0)(n)
0 0

]
=

[
g0πt0 0

0 0

]
·

[
0 n
0 0

]
∈ J ∩ a(B).

This proves that a(B) is an essential ideal of B. 2

THEOREM 3.3. Let A be a ring such that a(A) 6= {0}. Then for any cardinal number
α there exists a ring R such that card R ≥ α and A is an essential ideal of R.

PROOF. Let T be a set of cardinality α ≥ 1. Let Mt = a(A) for t ∈ T . Then
N = a(A)⊕

⊕
t∈T Mt has cardinality greater than or equal to α. Put

S = { f ∈ End(N ) : f (a(A))= 0}.

According to Lemma 3.2

a(A)∼=

[
0 a(A)
0 0

]
= a(B) for B =

[
S N
0 0

]
.

Moreover, a(B) is an essential ideal of B and card B ≥ α. The function f : a(A)→
a(B) defined by

f (x)=

[
0 x
0 0

]
for x ∈ a(A)
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is an isomorphism of rings. Denote I = {(a, f (a)) : a ∈ a(A)}. By Lemma 3.1 we get
that

A ∼= [(A × {0})+ I ]/I � (A × B)/I, card((A × B)/I )≥ card B ≥ α

and [(A × {0})+ I ]/I is an essential ideal of (A × B)/I . 2

THEOREM 3.4 (Flanigan). A ring A has ME(A) if and only if a(A)= {0}. Moreover,
if a(A)= {0} then �(A)=ME(A).

PROOF. Suppose that R =ME(A). If a(A) 6= {0} then by Theorem 3.3 there exists a
ring S of cardinality less than card R which is an essential extension of A. Hence there
exists a ring homomorphism f : S→ R such that F |A = idA. Thus Ker f ∩ A = {0}
and consequently Ker f = {0} which means that f is an embedding. But card R <
card S, a contradiction. Finally, a(A)= {0}.

Conversely, assume that a(A)= {0}. The mapping a 7→ (la, ra) for a ∈ A is an
isomorphism of A onto a ring A. By Propositions 2.1 and 2.3, A is an essential ideal
of the ring �(A). Let A be an ideal of S. Then the function f : S→�(A) given by
f (s)= (ls, rs) for s ∈ S is a ring homomorphism and f (a)= (la, ra) for a ∈ A. Thus
�(A)=ME(A). 2

PROPOSITION 3.5. If R =ME(A) and S =ME(A) then there exists a unique ring
homomorphism f : R→ S such that f |A = idA and this homomorphism is an
isomorphism.

PROOF. Theorem 3.4 implies that a(A)= {0}. By definition of ME(A) we get that
there exist ring homomorphisms f : R→ S, g : S→ R such that f |A = idA and
g|A = idA. Thus g ◦ f : R→ R and f ◦ g : S→ S are homomorphisms of rings such
that g ◦ f |A = idA and f ◦ g|A = idA. From this and Propositions 2.1 and 2.2 we con-
clude that g ◦ f = idR and f ◦ g = idS . Hence f and g are isomorphisms. Moreover,
applying Proposition 2.2, we see that f is the unique homomorphism of R into S. 2

4. Examples and applications

In many problems concerning the structure of rings, properties of the ring ME(A)
play an important role, especially in the case where ME(A) is precisely described. In
[5, Theorem 2] it was proved that if a is a regular element of a ring R with identity
then IdR(aR)=ME(aR).

DEFINITION 4.1 (Beidar). Let R be a ring with identity and let M be a right unital
R-module. We say that M is a generator if∑

{ f (M) : f ∈ Hom(MR, RR)} = R,

that is, there exist f1, . . . , fs ∈ Hom(MR, RR) and m1, . . . , ms ∈ M such that

1= f1(m1)+ · · · + fs(ms).

EXAMPLE 4.2.
(a) If a ∈ R is a right regular element of a ring R with an identity then the function

h : R→ aR given by h(x)= a · x is an isomorphism of a right regular R-module.
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Thus h−1
: aR→ R is also an isomorphism of a right regular R-module and M = aR

is a generator.
(b) Let J be a right ideal of a ring R with an identity such that RJ = R. Then

there exist j1, . . . , js ∈ J and a1, . . . , as ∈ R such that 1= a1 j1 + · · · + as js , so
1= la1( j1)+ · · · + las ( js). Hence, M = J is a generator.

In [2, Theorem 6] Beidar stated without proof that if I is a right ideal of a ring R
with an identity and if IR is a generator, then IdR(I )=ME(I ). Unfortunately, this
theorem does not hold in general. However, the theorem is true if we add following
assumption:

for any h ∈ Hom(I I, lI (I )) there exists c ∈ R such that h = rc. (4.1)

There are many examples of rings R with an identity and I <r R such that IR is a
generator, but for which condition (4.1) does not hold.

EXAMPLE 4.3. Let S be a polynomial ring in two noncommuting variables X , Y over
the ring Z of integers. Let J be an ideal of S generated by YX and Y 2. Let x = X + J ,
y = Y + J and R = S/J . Then

R = Z[x] + Z[x]y.

Moreover, x is a right regular element of R. Let I = x R. It is obvious that
I = xZ[x] + xZ[x]y, IR is a generator and IdR(I )= R. We see at once that lI (I )=
xZ[x]y. Let h : I → lI (I ) be defined by

h(a + by)= (a + b)y for a, b ∈ xZ[x].

Then h ∈ Hom(I I, lI (I )). If h = rc for some c ∈ R then h(x)= (x)rc and
consequently xy = xc and c = y. But this and y2

= 0 imply that xy = h(xy)=
(xy)ry = xy2

= 0, which is a contradiction.

THEOREM 4.4. Let I be a right ideal of a ring R with an identity and IR be a
generator. Then IdR(I )=ME(I ) if and only if for every h ∈ Hom(I I, lI (I )) there
exists c ∈ R such that h = rc.

PROOF. By assumption, there exist f1, . . . , fs ∈ Hom(IR, RR) and i1, . . . , is ∈ I
such that

1= f1(i1)+ · · · + fs(is). (4.2)

From (4.2) we conclude that for any r ∈ R we have r = f1(i1r)+ · · · + fs(isr).
Therefore rR(I )= {0}. Hence aR(I )= {0}, so by Theorem 3.4, �(A)=ME(A),
I is an essential in R and, moreover, I is an essential ideal of T = IdR(I ).

Suppose that T =ME(I ). Applying Theorem 3.4 and Proposition 3.5, we see that
the function f : T →�(I ) given by f (t)= (lt , rt ) for t ∈ T is an isomorphism of
rings. Choose any h ∈ Hom(I I, lI (I )). Then (0, h) ∈�(I ), so there exists c ∈ T
such that (0, h)= (lc, rc) and h = rc.

Conversely, assume that for every h ∈ Hom(I I, lI (I )) there exists c ∈ R such that
h = rc. Then Ic ⊆ lI (I ), which implies that IcI = {0}. Hence cI ⊆ rI (I )= {0}
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and c ∈ lI (I ). Therefore c ∈ T and (0, h)= (lc, rc) ∈�(I ). By Propositions 2.2, 2.3
and Theorem 3.4 it suffices to prove that the function f : T →�(I ) given by
f (t)= (lt , rt ) for t ∈ T is onto. Fix any (λ, ρ) ∈�(I ). Then for all i, j ∈ I ,
i · λ( j)= (i)ρ · j . Let

b = f1((i1)ρ)+ · · · + fs((is)ρ).

Notice that b ∈ R and, for any j ∈ I ,

b · j = f1((i1)ρ) · j + · · · + fs((is)ρ) · j = f1((i1)ρ · j)+ · · · + fs((is)ρ · j)

= f1(i1λ( j))+ · · · + fk(isλ( j))= f1(i1) · λ( j)+ · · · + fs(is) · λ( j)= λ( j)

by (4.1). Hence, λ= lb. From this, b ∈ T . Next, for

i, j ∈ I : ( j · b − ( j)ρ) · i = j · (b · i)− ( j)ρ · i = j · λ(i)− j · λ(i)= 0,

so j · b − ( j)ρ ∈ lI (I ). By the above, the function h defined by h( j)= j · b − ( j)ρ
for j ∈ I is a homomorphism of the left I -module I into the left I -module lI (I ). Thus
there exists c ∈ lI (I ) such that h = rc and (lc, rc)= (0, h) ∈�(I ). But h = rb − ρ so

ρ = rb − h = rb − rc = rb−c, λ= lb = lb − lc = lb−c

and, finally, (λ, ρ)= (λb−c, ρb−c) ∈�(I ). 2

COROLLARY 4.5. Let R be a ring with an identity and assume that I <r R is a
generator. If lI (I )= {0} then IdR(I )=ME(I ). In particular, if a is a two-sided
regular element of R then IdR(aR)=ME(aR).

COROLLARY 4.6 (Beidar). Let R be a ring with an identity and let I <r R and
RI = R. Then IdR(I )=ME(I ). In particular, IdR(J )=ME(J ) for every nonzero
right ideal J of a simple ring R with an identity.

PROOF. By assumption, there exist r1, . . . , rs ∈ R and i1, . . . , is ∈ I such that 1=
r1i1 + · · · + rs is . Hence rR(I )= {0} and 1= lr1(i1)+ · · · + lrs (is). Thus IR is a
generator. Choose h ∈ Hom(I I, lI (I )). Let b = r1h(i1)+ · · · + rsh(is). Then b ∈ R
and, for every i ∈ I ,

i = (ir1)i1 + · · · + (irs)is and h(i)= (ir1)h(i1)+ · · · + (irs)h(is)= i · b.

Thus h = rb. From Theorem 4.4 it follows that IdR(I )=ME(I ). 2

DEFINITION 4.7. A simple ring A = A2 satisfies a Gardner condition if, for any ring
R, A � R and R/A ∼= A imply that there exists I � R such that R = A ⊕ I .

PROPOSITION 4.8. A simple ring A = A2 satisfies a Gardner condition if and only if
A is not embeddable in a ring ME(A)/A.

PROOF. Let A = A2 be a simple ring. Then a(A)= {0}, so by Theorem 3.4 there
exists ME(A). First, assume that A does not satisfy a Gardner condition. Then there
exists a ring R in which A � R, R/A ∼= A and there does not exist I � R such that
R = A ⊕ I . Suppose that A is not essential in R. Then there exists a nonzero ideal J
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of R such that A ∩ J = {0} and (A + J )/A is a nonzero ideal of a simple ring R/A.
Thus A + J = R. This means that A ⊕ J = R, which is a contradiction. So A
is essential in R. According to Proposition 2.2 and Theorem 3.4 there exists an
embedding of rings h : R→ME(A) such that h|A = idA. From this it follows that
h(R)/A ∼= R/A and A ∼= h(R)/A. This shows that A is embeddable in ME(A)/A.

Conversely, suppose that A is embeddable in ME(A)/A. Then there exists a subring
S of ME(A) such that A � S and S/A ∼= A. But aME(A)(A)= {0} by Proposition 2.1.
Thus aS(A)= {0} and, again by Proposition 2.1, A is essential in S. Hence, there
does not exist I � S such that A ⊕ I = S. It follows that A does not satisfy a Gardner
condition. 2

In [4] it was proved that if a simple ring A = A2 satisfies a Gardner condition then
the lower radical determined by the class of all rings isomorphic to A is an atom in the
lattice of all radicals. By the above remark and Proposition 4.8 we obtain the following
theorem.

THEOREM 4.9. If a simple ring A = A2 is not embeddable in a ring ME(A)/A then
the lower radical determined by the class of all rings isomorphic to A is an atom in
the lattice of all radicals.
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