ON SOME OSCILLATION CRITERIA FOR A CLASS OF NEUTRAL TYPE FUNCTIONAL DIFFERENTIAL EQUATIONS

A. I. ZAHARIEV ${ }^{1}$ AND D. D. BAINOV ${ }^{1}$

(Received 6 January 1983; revised 25 September 1984 and 7 October 1985)

Abstract

The present paper proves criteria for oscillation of the solutions of functional differential equations of the type $$
x^{(n)}(t)+\lambda x^{(n)}(t-\tau)+p(t) \mathrm{f}(x(t-\tau))=0 .
$$ where $\lambda, \tau>0$.

1. Introduction

The theory of oscillations has a wide range of applications to various areas of chemistry, biochemistry, biology, etc. An extensive reference on these subjects is given in [5], [7], [6]. Together with the classical models, there is an increasing implementation of models with aftereffect governed by functional-differential equations. This approach made possible the theoretical explanation of the 10 -year cycle of oscillation of the mammalian populations in Canada and Jakutija, as well as of some other experimental phenomena [10], [3], [4].

The present paper sets down some oscillation criteria for the solutions of functional differential equations of the type

$$
\begin{equation*}
x^{(n)}(t)+\lambda x^{(n)}(t-\tau)+p(t) f(x(t-\tau))=0, n \geqslant 1 \tag{1}
\end{equation*}
$$

[^0]where $\tau>0$ is a constant delay and $\lambda>0$ is an arbitrary constant. An analogous result for ordinary differential equations without delay is obtained in [1], and for equations with a retarded argument in [8].

2. Definitions

Suppose the following conditions (D) are fulfilled:
D1. The function $\mathrm{f}(u): \mathbf{R}^{\mathbf{1}} \rightarrow \mathbf{R}^{\mathbf{1}}$ is continuous, $u \mathrm{f}(u)>0$ for $u \neq 0$ and $\liminf _{|u| \rightarrow+\infty}|f(u)|>0$.

D2. The function $p(t): \mathscr{T} \rightarrow[0,+\infty)$ is continuous, where $\mathscr{T}=\left[t_{0}-\tau,+\infty\right)$, $t_{0} \in \mathbf{R}^{\mathbf{I}}$.

The alternative \mathscr{L} will be said to hold for equation (1) if for n even all of its solutions oscillate, while for n odd, they either oscillate or tend to zero for $t \rightarrow+\infty$.

Let the operator L be defined by the equality

$$
\begin{equation*}
(L \psi)(t)=\psi(t)+\lambda \psi(t-\tau) \tag{2}
\end{equation*}
$$

and let us denote by \tilde{C}^{k} the space of functions $\psi(t): \mathscr{T} \rightarrow \mathbf{R}^{1}$ locally having absolutely continuous derivatives of order up to k.

A function $x(t) \in \tilde{C}^{n-1}$ is said to be a regular solution of equation (1) if it satisfies (1) almost everywhere for $t \geqslant t_{0}$, and for each $t \geqslant t_{0}$,

$$
\sup _{\in[t,+\infty)}|x(s)|>0
$$

A solution $x(t)$ of equation (1) is said to be oscillatory if it has a sequence of zeros which tends to $+\infty$.

3. The main theorem

Lemma 1 ([2], p. 243). Let the following conditions be fulfilled:

1. The function $\psi(t) \in \tilde{C}^{n-1}$ has a constant sign together with its derivatives of order up to n in the interval $\left[t_{0},+\infty\right)$.
2. For each $t \geqslant t_{0}$, the following inequality is valid

$$
\psi(t) \psi^{(n)}(t) \leqslant 0 \quad\left(\psi(t) \psi^{(n)}(t) \geqslant 0\right)
$$

Then there exists an integer $l, 0 \leqslant l \leqslant n$, such that $l+n$ is odd (even) and for $t \geqslant t_{0}$, the inequalities

$$
\begin{gathered}
\psi(t) \psi^{(t)}(t) \geqslant 0, i=0, \ldots, l \\
(-1)^{l+t} \psi(t) \psi^{(t)}(t) \geqslant 0, i=l+1, \ldots, n \\
\left|\psi^{(l-t)}(t)\right| \leqslant \frac{i!}{j!}\left(t-t_{0}\right)^{1-j}\left|\psi^{(l-\jmath)}(t)\right|, j=0, \ldots, l ; i=0, \ldots, j
\end{gathered}
$$

take place. Moreover, if $l \neq 0$, then

$$
|\psi(t)| \geqslant \sum_{t=l+1}^{n} \frac{1}{l!(i-l)!}\left(t-t_{0}\right)^{t-1}\left|\psi^{(t-1)}(t)\right|
$$

Theorem 1. Let the following conditions be fulfilled:

1. Conditions (D) hold.
2. For each function $\psi(t) \in \tilde{C}^{n-1}$ such that $|\psi(t)|>0$ for sufficiently large values of t and $\liminf _{t \rightarrow+\infty}|(L \psi)(t)|>0$, the inequality

$$
\liminf _{t \rightarrow+\infty}|\mathrm{f}(\psi(t-\tau)) /(L \psi)(t)|>0
$$

is valid.
3. There exists an absolutely continuous and non-decreasing function $\varphi(t)$: $\mathscr{T} \rightarrow(0,+\infty)$ such that for each measurable and closed set E having the property $\operatorname{meas}(E \cap[t, t+2 \tau]) \geqslant \tau, t \in \mathscr{T}$, the following relations hold:

$$
\begin{gather*}
\int_{E}\left[(t-\tau)^{n-1} p(t) / \varphi(t-\tau)\right] d t=+\infty \tag{3}\\
\int_{t_{0}}^{+\infty} \frac{d t}{t \varphi(t)}<+\infty \tag{4}
\end{gather*}
$$

Then the alternative \mathscr{L} holds for equation (1).

Proof. Let $x(t)$ be a non-oscillatory solution of equation (1), the operator L be defined by equation (2), and for the sake of definiteness suppose that $x(t)>0$ for $t \geqslant \bar{t}, \bar{t} \in \mathscr{T}$.

Let n be an even number. Then equation (1) implies that for $t \geqslant \bar{t},[(L x)(t)]^{(n)}$ $\leqslant 0$ and by virtue of Lemma 1 there exists a point $t_{1} \geqslant \bar{t}$ and an integer l, $1 \leqslant l \leqslant n-1$, such that for $t \geqslant t_{1}$ the following inequalities hold:

$$
\begin{gather*}
(L x)(t)[(L x)(t)]^{(i)} \geqslant 0, i=0, \ldots, l \tag{5}\\
(-1)^{l+i}(L x)(t)[(L x)(t)]^{(i)} \geqslant 0, i=l+1, \ldots, n \tag{6}\\
{[(L x)(t)]^{(l-t)} \leqslant \frac{i!}{j!}\left(t-t_{1}\right)^{t-\jmath}[(L x)(t)]^{(l-\jmath)}} \tag{7}
\end{gather*}
$$

Multiplying both sides of equation (1) by the function

$$
\frac{(t-\tau)^{n-t}}{\varphi(t)[(L x)(t)]^{(t-1)}}
$$

and taking into account that $t-\tau>0$, one obtains

$$
\begin{equation*}
\frac{t^{n-1}[(L x)(t)]^{(n)}}{\varphi(t)[(L x)(t)]^{(l-1)}}+\frac{p(t) \mathrm{f}(x(t-\tau))(t-\tau)^{n-1}}{\varphi(t)[(L x)(t)]^{(1-1)}} \leqslant 0 . \tag{8}
\end{equation*}
$$

Inequality (7) for $i=1, j=l$ yields the following inequality for $t \geqslant t_{1}$:

$$
\begin{equation*}
\left(t-t_{1}\right)^{l-1}[(L x)(t)]^{(t-1)} \leqslant l!(L x)(t) . \tag{9}
\end{equation*}
$$

On the other hand, there exists a point $t_{2} \geqslant t_{1}$, such that for $t \geqslant t_{2}, t-\tau \geqslant 2 t_{1}$ holds. Hence, if $t \geqslant t_{2}$, inequalities (8) and (9) imply the inequality

$$
\begin{equation*}
\frac{t^{n-1}[(L x)(t)]^{(n)}}{\varphi(t)[(L x)(t)]^{(t-1)}}+\frac{c p(t) f(x(t-\tau))(t-\tau)^{n-1}}{\varphi(t)(L x)(t)} \leqslant 0 \tag{10}
\end{equation*}
$$

where $c>0$ is a constant.
Since $[(L x)(t)] \geqslant 0$ and $x(t)$ is a regular solution, there exists a point $t_{3} \geqslant t_{2}$ such that $(L x)(t) \geqslant c_{1}>0$ for $t \geqslant t_{3}$ and by virtue of Lemma 1 from [9], there exists a closed and measurable set E with the property meas $(E \cap[t, t+2 \tau]) \geqslant \tau$ for $t \geqslant t_{3}$, such that $x(t-\tau) \geqslant c_{2}>0$ for each $t \in E$. On integrating inequality (10) on the set $E \cap\left[t_{3}, t\right], t>t_{3}$ and taking into account that for $t \geqslant t_{3}$, $[(L x)(t)]^{(n)} \leqslant 0$ and $[(L x)(t)]^{(t-1)} \geqslant 0$, we obtain the inequality

$$
\begin{equation*}
\int_{t_{3}}^{t} \frac{s^{n-l}[(L x)(s)]^{(n)} d s}{\varphi(s)[(L x)(s)]^{(t-1)}}+\int_{E \cap\left[t_{3}, t\right]} \frac{c p(s) \mathrm{f}(x(s-\tau))(s-\tau)^{n-1} d s}{\varphi(s)(L x)(s)} \leqslant 0 . \tag{11}
\end{equation*}
$$

Integrating the first integral in (11) by parts, we obtain

$$
\begin{align*}
& \left.\frac{\left.\sum_{i=0}^{n-l+1}(-1)\right)^{t} \frac{(n-l)!}{(i+1)!} s^{t+1}[(L x)(s)]^{(+t)}}{\varphi(s)[(L x)(s)]^{(l-1)}}\right|_{t_{3}} ^{t}-\int_{t_{3}}^{t} \sum_{i=0}^{n-l+1}(-1)^{t} s^{i+1} \frac{(n-l)!}{(i+1)!} \\
& \quad \times[(L x)(s)]^{(l+t)} d\left[\left(\varphi(s)[(L x)(s)]^{(l-1)}\right)^{-1}\right] \\
& \quad+\int_{E \cap\left[t_{3}, t\right]} \frac{c p(s) \mathrm{f}(x(s-\tau))(s-\tau)^{n-1} d s}{\varphi(s)[(L x)(s)]} \tag{12}\\
& \quad-(n-l)!\int_{t_{3}}^{t} \frac{[(L x)(s)]^{(t)} d s}{\varphi(s)[(L x)(s)]^{(l-1)}} \leqslant 0 .
\end{align*}
$$

From inequalities (5) and (6) and condition 2 of Theorem 1, we can draw the conclusion that for $t \geqslant t_{3}$ all derivatives $[(L x)(t)]^{(t)}$ of an even order will be non-negative and monotonically decreasing, while all derivatives of an odd order will be non-positive and monotonically increasing, and hence the sum participating in inequality (12) is non-negative.

For $t \geqslant t_{3}$ inequality (5) and condition 3 of Theorem 1 yield

$$
d\left[\left(\varphi(t)[(L x)(t)]^{(l-1)}\right)^{-1}\right] \leqslant 0
$$

Hence we can conclude that for $t \geqslant t_{3}$ the first two summands in the right-hand side of inequality (12) are non-negative and therefore the following inequality holds:

$$
\begin{equation*}
\int_{E \cap\left[t_{3}, t\right]} \frac{c p(s) f(x(s-\tau))(s-\tau)^{n-1} d s}{\varphi(s)(L x)(s)} \leqslant(n-l)!\int_{t_{3}}^{t} \frac{[(L x)(s)]^{(t)} d s}{\varphi(s)[(L x)(s)]^{(l-1)}} . \tag{13}
\end{equation*}
$$

On the other hand (7) implies that for $t \geqslant t_{3}, j=1, i=0$, the inequality

$$
[(L x)(t)]^{(t)}\left(t-t_{3}\right) \leqslant[(L x)(t)]^{(t-1)}
$$

holds. Furthermore, there exists a point $t_{4} \geqslant t_{3}$, such that for $t \geqslant t_{4}$ the inequality $t-t_{3} \geqslant \frac{1}{2}(t-\tau)$ holds and hence

$$
\begin{equation*}
\frac{1}{2}[(L x)(t)]^{(t)}(t-\tau) \leqslant[(L x)(t)]^{(t-1)} . \tag{14}
\end{equation*}
$$

Taking into account that the condition 2 of Theorem 1 implies that there exists a point $t_{5} \geqslant t_{4}$ and a constant $c_{3}>0$, such that for $t \geqslant t_{5}$ we have

$$
f(x(t-\tau)) /(L x)(t) \geqslant c_{3} / 2 .
$$

Inequalities (13) and (14) then yield the inequality

$$
\frac{c c_{3}}{2} \int_{E \cap\left[t_{s}, t\right]} \frac{p(s)(s-\tau)^{n-1} d s}{\varphi(s)} \leqslant 2(n-l)!\int_{t_{s}}^{t} \frac{d s}{(s-\tau) \varphi(s)} .
$$

Accomplishing a boundary transition in the above inequality, for $t \rightarrow+\infty$, and taking into account inequality (4), we get

$$
\frac{c c_{3}}{2} \int_{E \cap\left[t_{5},+\infty\right)} \frac{(t-\tau)^{n-1} p(t) d t}{\varphi(t)} \leqslant 2(n-l)!\int_{t_{s}}^{+\infty} \frac{d t}{(t-\tau) \varphi(t)}<+\infty,
$$

which contradicts equality (3).
Let n be odd and assume that the equation has a non-oscillatory solution $x(t)$. Without any loss of generality, we can suppose that $x(t)>0$ for $t \geqslant \bar{t}, \bar{i} \in \mathscr{T}$. Then, since for $t \geqslant \bar{t}$

$$
(L x)(t) \leqslant 0,[(L x)(t)]^{(n)} \leqslant 0,
$$

Lemma 1 implies that there exists a point $t_{1} \geqslant \bar{t}$ and an integer $l, 0 \leqslant l<n$, $l+n$ being odd, such that for $t \geqslant t_{1}$ inequalities (5) and (6) hold, while if $l \neq 0$, the inequality (7) holds.

If $l \geqslant 2$, then our reasoning goes on as in the case when n is even. In the case $l=0$ and $\lim _{t \rightarrow+\infty}(L x)(t)=0$ we have $\lim _{t \rightarrow+\infty} x(t)=0$.

Let $l=0$ and $\lim _{t \rightarrow+\infty}(L x)(t)=c_{4}>0$.
Since $\lim _{t_{\rightarrow+\infty}}(L x)(t)=c_{4}$, then there exists a point $t_{2} \geqslant t_{1}$, such that $(L x)(t) \geqslant c_{4} / 2$ for $t \geqslant t_{2}$. By virtue of Lemma 1 from [9] there exists a measurable and closed set $E, E \subseteq\left[t_{2},+\infty\right)$ with the property

$$
\operatorname{meas}(E \cap[t, t+2 \tau]) \geqslant \tau, t \geqslant t_{2}
$$

such that $x(t-\tau) \geqslant c_{5}>0$ for $t \in E$. Hence there exists a constant $c_{6}>0$, such that

$$
\begin{equation*}
\inf _{t \in E} f(x(t-\tau)) \geqslant c_{6} . \tag{15}
\end{equation*}
$$

Multiplying equation (1) by t^{n-1} and integrating within the bounds from t_{2} to $t \geqslant t_{2}$, we obtain

$$
\begin{equation*}
\int_{t_{2}}^{t} s^{n-1}[(L x)(s)]^{(n)} d s+\int_{t_{2}}^{t} s^{n-1} p(s) f(x(s-\tau)) d s=0 . \tag{16}
\end{equation*}
$$

Integrating the first integral in (16) $n-1$ times by parts, we get

$$
\begin{align*}
& \left.s^{n-1}[(L x)(s)]^{(n-1)}\right|_{t_{2}} ^{t}-\left.(n-1) s^{n-2}[(L x)(s)]^{(n-2)}\right|_{t_{2}} ^{t}+\cdots \\
& \quad \cdots+\left.(n-1)!(L x)(s)\right|_{t_{2}} ^{t}+\int_{t_{2}}^{t} s^{n-1} p(s) f(x(s-\tau)) d s=0 . \tag{17}
\end{align*}
$$

Since $[(L x)(t)]^{1} \leqslant 0$, inequality (6) implies that all derivatives of $(L x)(t)$ of even order are non-negative and hence inequalities (15) and (17) yield the inequality

$$
\begin{aligned}
c_{6} \int_{E \cap\left[t_{2}, t\right]} s^{n-1} p(s) d s \leqslant & t_{2}^{n-1}\left[(L x)\left(t_{2}\right)\right]^{(n-1)}-(n-1) t_{2}^{n-2}\left[(L x)\left(t_{2}\right)\right]^{(n-2)} \\
& +\cdots+(n-1)!(L x)\left(t_{2}\right) .
\end{aligned}
$$

The last inequality, after passing to the bound for $t \rightarrow+\infty$, gives the inequality

$$
\begin{equation*}
\int_{E \cap\left[t_{2},+\infty\right)} t^{n-1} p(t) d t<+\infty . \tag{18}
\end{equation*}
$$

Taking into account that $t-\tau<t$ and $\varphi(t)$ is a non-decreasing function, (18) yields

$$
\int_{E \cap\left\{t_{2},+\infty\right)}[(t-\tau) p(t) / \varphi(t-\tau)] d t<+\infty,
$$

which contradicts equality (3).
Thus, Theorem 1 is proved.

4. An alternative theorem

Since condition 2 of Theorem 1 is difficult to verify, then we proceed to prove, by means of an indirect criterion, the validity of the alternative \mathscr{L} for equation (1) in the case when $f(u)$ is differentiable.

Theorem 2. Let the following conditions be fulfilled:

1. Conditions (D) hold.
2. The function $f \in C^{1}\left(\mathbf{R}^{1}, \mathbf{R}^{1}\right)$ and $f^{\prime}(u) \geqslant 0, u \in \mathbf{R}^{1}$.
3. There exists a function $\varphi \in C^{1}\left(\mathscr{T}, \mathbf{R}^{1}\right), \varphi(t)>0, \varphi^{\prime}(t) \geqslant 0$ for $t \in \mathscr{T}$, such that for each closed measurable set $E \subseteq \mathscr{T}$ with the property meas $(E \cap[t, t+2 \tau])$ $\geqslant \tau, t \in \mathscr{T}$, the following relations hold

$$
\begin{gather*}
\int_{E} \frac{(t-\tau)^{n-1} p(t)}{\varphi(t)} d t=+\infty \tag{19}\\
\int_{\varepsilon}^{+\infty} \frac{d u}{f(u) \varphi\left(u^{1 /(n-1)}\right)}<+\infty, \quad \int_{-\varepsilon}^{-\infty} \frac{d u}{f(u) \varphi\left((-u)^{1 /(n-1)}\right)}<+\infty, \varepsilon>0 \tag{20}
\end{gather*}
$$

Then, the alternative \mathscr{L} holds for equation (1).

Proof. Let $x(t)$ be a non-oscillatory solution of equation (1), supposing for the sake of definiteness that $x(t)>0$ for $t \geqslant \bar{t}, \bar{t} \in \mathscr{T}$, and that the operator L is defined by equality (2). Then Lemma 1 implies that there exists a point $t_{1} \geqslant \bar{t}$ and a number $l, 0 \leqslant l \leqslant n, l+n$ odd, such that for $t \geqslant \bar{t}$ inequalities (5) and (6) hold, while if $l \neq 0$, then inequality (7) also holds.

Let n be an even number. Then, since $l \geqslant 1$ by virtue of Lemma 1 from [9], there exists a set $E \subseteq \mathscr{T}$, such that meas $(E \cap[t, t+2 \tau]) \geqslant \tau, t \in \mathscr{T}$, and $x(t-\tau) \geqslant c_{7}>0$ for $t \in E$. Besides, $l \geqslant 1$ and (7) implies that for $t \geqslant t_{1}$ the following inequality holds:

$$
[(L x)(t)]^{(t)} \leqslant j!\left(t-t_{1}\right)^{-j}[(L x)(t)]^{(t-J)}, j=0, \ldots, l
$$

If we choose a point $t_{2} \geqslant t_{1}$, such that for $t \geqslant t_{2}$ we have $t-\tau \geqslant 2 t_{1}$, then the last inequality implies the inequality

$$
\begin{equation*}
[(L x)(t)]^{(t)} \leqslant 2^{l-1}(l-1)!(t-\tau)^{1-t}[(L x)(t)], t \geqslant t_{2} \tag{21}
\end{equation*}
$$

There exists also a point $t_{3} \geqslant t_{2}$ and a constant C_{8}, such that

$$
\begin{equation*}
\inf _{t \in E \cap\left[t_{3},+\infty\right)} f(x(t-\tau)) / f((L x)(t)) \geqslant c_{8} \tag{22}
\end{equation*}
$$

Let us multiply equation (1) by the function $(t-\tau)^{n-1} / \varphi(t) f((L x)(t))$ and integrate from t_{3} to $t>t_{3}$. We get

$$
\int_{t_{3}}^{t} \frac{p(s)(s-\tau)^{n-1} f(x(s-\tau)) d s}{\varphi(s) f((L x)(s))}=\int_{t_{3}}^{t} \frac{(s-\tau)^{n-1}[(L x)(t)]^{(n)} d s}{\varphi(s) f((L x)(s))}
$$

whence, integrating by parts the integral in the rigth-hand side and taking into account equality (22), we have

$$
\begin{align*}
& c_{8} \int_{E \cap\left[t_{3}, t\right]} \frac{(s-\tau)^{n-1} p(s) d s}{\varphi(s)}=-\left.\frac{(s-\tau)^{n-1}[(L x)(t)]^{(n-1)}}{\varphi(s) f((L x)(s))}\right|_{t_{3}} ^{t} \\
&+(n-1) \int_{t_{3}}^{t} \frac{(s-\tau)^{n-2}[(L x)(s)]^{(n-1)} d s}{\varphi(s) f((L x)(s))} \\
&+\int_{t_{3}}^{t}(s-\tau)^{n-1}[(L x)(s)]^{(n-1)} d\left[(\varphi(s) f((L x)(s)))^{-1}\right] \tag{23}
\end{align*}
$$

Conditions 2 and 3 of Theorem 2 and (6) yield the result that

$$
[(L x)(t)]^{(n-1)} \geqslant 0, d\left[(\varphi(t) f((L x)(t)))^{-1}\right] \leqslant 0,
$$

and hence from (23) we obtain the inequality

$$
\begin{equation*}
c_{8} \int_{E \cap\left[t_{3}, t\right]} \frac{(s-\tau)^{n-1} p(s) d s}{\varphi(s)} \leqslant c_{9}+(n-1) \int_{t_{3}}^{t} \frac{(s-\tau)^{n-1}[(L x)(x)]^{(n-1)} d s}{\varphi(s) f((L x)(s))} \tag{24}
\end{equation*}
$$

where $c_{9}>0$ is a constant. By integrating the right-hand side of (24) $n-l$ times by parts, we obtain

$$
\begin{align*}
& c_{8} \int_{E \cap\left[t_{3}, t\right]} \frac{(s-\tau)^{n-1} p(s) d s}{\varphi(s)} \\
\leqslant & c_{9}+\left.(n-1) \frac{\sum_{t=l}^{n-2}(-1)^{\prime} \frac{(n-2)!}{i!}(s-\tau)^{i}[(L x)(s)]^{(t)}}{\varphi(s) f((L x)(s))}\right|_{t_{3}} ^{t} \\
- & (n-1) \int_{t_{3}}^{t} \sum_{i=1}^{n-2}(-1)^{\prime} \frac{(n-2)!}{i!}(s-\tau)^{t}[(L x)(s)]^{(t)} d\left[(\varphi(s) f((L x)(s)))^{-1}\right] \\
+ & (-1)^{n-l-1} \frac{(n-1)!}{(l-1)!} \int_{t_{3}}^{t} \frac{(s-\tau)^{l-1}[(L x)(s)]^{(t)} d s}{\varphi(s) f((L x)(s))} \tag{25}
\end{align*}
$$

Since (5) and (6) imply for $s \geqslant t_{3}$ the inequality

$$
\sum_{i=1}^{n-2}(-1)^{i} \frac{(n-2)!}{i!}(s-\tau)^{t}[(L x)(s)]^{(i)} \leqslant 0
$$

holds, then (21) and (25) yield

$$
\begin{equation*}
c_{8} \int_{E \cap\left[t_{3}, t\right]} \frac{(s-\tau)^{n-1} p(s) d s}{\varphi(s)} \leqslant c_{10}+2^{t-1}(n-1)!\int_{t_{3}}^{t} \frac{[(L x)(s)]^{\prime} d s}{\varphi(s) f((L x)(s))} . \tag{26}
\end{equation*}
$$

Taylor's theorem and the fact that $[(L x)(t)]^{(n)} \leqslant 0$ for $t \geqslant t_{3}$ imply that there exists a constant $a \geqslant 1$, such that $(L x)(t) \leqslant a t^{n-1}$ for $t \geqslant t_{3}$. Then conditions 2 and 3 of Theorem 2 and (5) imply the inequality

$$
\begin{aligned}
\int_{t_{3}}^{t} \frac{[(L x)(s)]^{\prime} d s}{\varphi(s) f((L x)(s))} & \leqslant \int_{t_{3}}^{t} \frac{d[(L x)(s)]}{f((L x)(s)) \varphi\left(\left[\frac{(L x)(s)}{a}\right]^{1 / n-1}\right)} \\
& =\int_{a^{-1}(L x)\left(t_{3}\right)}^{a^{-1}(L x)(t)} \frac{d u}{f(a u) \varphi\left(u^{1 /(n-1)}\right)}
\end{aligned}
$$

The last inequality and inequalities (20) and (26) yield the inequality

$$
\int_{E \cap\left[t_{3},+\infty\right)} \frac{(t-\tau)^{n-1} p(t) d t}{\varphi(t)} \leqslant a \int_{a^{-1}(L x)\left(t_{3}\right)}^{\infty} \frac{d u}{\left[f(u) \varphi\left(u^{1 /(n-1)}\right)\right]}<+\infty
$$

which contradicts condition (19).
Let n be odd and let for the non-oscillatory solution $x(t)$ of (1) and the operator L the same assumptions be made as in the case when the number n is even. If for the numbers $l, 0 \leqslant l \leqslant n$, existing by virtue of Lemma 1 , we have the condition $l \geqslant 2$, then by the aid of reasoning analogous to that for the case when n is even, we arrive at a contradiction. Therefore, $l=0$ (n odd) and since (6) implies that $[(L x)(t)]^{\prime} \leqslant 0$, then either $\lim _{t \rightarrow+\infty}(L x)(t)=0$, and hence $\lim _{t \rightarrow+\infty} x(t)=0$, or $\lim _{t \rightarrow+\infty}(L x)(t)=c_{11}>0$.

Therefore, by virtue of Lemma 1 from [9], there exists a closed and measurable set $E \subseteq \mathscr{T}, \operatorname{meas}(E \cap[t, t+2 \tau]) \geqslant \tau, t \geqslant \bar{t}$, such that $x(t-\tau) \geqslant c_{12}>0$ for $t \in E$. We multiply equation (1) by t^{n-1} and, integrate on the interval from \bar{t} to $t>\bar{t}$ to obtain

$$
\left.\sum_{i=1}^{n}(-1)^{i+1} \frac{(n-1)!}{(n-i)!} s^{n-i}[(L x)(s)]^{(n-t)}\right|_{i} ^{t}+c_{13} \int_{E \cap[\bar{i}, t]} s^{n-1} p(s) d s \leqslant 0, c_{13}>0
$$

Since (6) implies that for $t \geqslant \bar{t}$ all derivatives of $(L x)(t)$ of even order are non-positive and monotonically increasing, while those of odd order are nonnegative and monotonically decreasing, then the last inequality, after passing to the limit $t \rightarrow+\infty$, yields the inequality

$$
\int_{E \cap[i,+\infty)} t^{n-1} p(t) d t<+\infty
$$

whence, since $\varphi^{\prime}(t) \geqslant 0, \varphi(t)>0$, we obtain the validity of the inequality

$$
\int_{E \cap[i,+\infty)}\left[t^{n-1} p(t) / \varphi(t)\right] d t<+\infty
$$

which contradicts (19).
Thus, Theorem 2 is proved.

Remark. For $n=1$ the proofs of Theorems 1 and 2 can be considerably simplified, since the integration by parts is omitted.

5. Necessity of equation (19)

We are going to show by a counterexample that equality (19) from condition 3 of Theorem 2 cannot be replaced by the weaker classical condition

$$
\begin{equation*}
\int_{t_{0}}^{+\infty}\left[(t-\tau)^{n-1} p(t) / \varphi(t)\right] d t=+\infty \tag{27}
\end{equation*}
$$

Consider the equation

$$
\begin{equation*}
x^{\prime}(t+\pi / 2)+x^{\prime}(t)+p(t) x^{3}(t)=0 \tag{28}
\end{equation*}
$$

where $t \geqslant t_{0}>0$ and $p(t)=\left[t^{2}+(t+\pi)^{2}\right] /\left[t^{2}(t+\pi)^{2}\left(t^{-1}+1-\cos t\right)^{3}\right]$. Here $f(u)=u^{3}$, and let $\varphi(t) \equiv 1$. After simple calculations one obtains

$$
\begin{aligned}
& \int_{t_{0}}^{+\infty} p(t) d t \geqslant \sum_{k=\left[t_{0}\right]+1}^{+\infty} \int_{2 k \pi-k^{-1}}^{2 k \pi+k^{-1}}\left(t^{2}+(t+\pi)^{2}\right) t^{-2} \\
& \times(t+\pi)^{-2}\left(t^{-1}+1-\cos t\right)^{-3} d t \\
& \geqslant \sum_{k=\left[t_{0}\right]+1}^{+\infty} 4 k^{-1}\left(2 k \pi+k^{-1}+\pi\right)^{-2}\left(\left[2 k \pi+k^{-1}\right]^{-1}+1-\cos k^{-1}\right)
\end{aligned}
$$

which yields

$$
\int_{t_{0}}^{+\infty} p(t) d t=+\infty
$$

On the other hand if

$$
E=\bigcup_{k=\left[t_{0}\right]+1}^{+\infty}\left\{t \mid t \geqslant t_{0}, \pi / 4+2 k \pi \leqslant t \leqslant 3 \pi / 4+2 k \pi\right\}
$$

then

$$
\int_{E} p(t) d t \leqslant \int_{E} \frac{\left[t^{2}+(t+\pi)^{2}\right] d t}{t^{2}(t+\pi)^{2}\left(t^{-1}+1-1 / \sqrt{2}\right)}<+\infty
$$

which shows that $p(t)$ satisfies the classical condiiton (27) but does not satisfy (19).

It can be easily verified that equation (28) has a solution $x(t)=t^{-1}+1-\cos t$. Thus condition (19) is substantial.

References

[1] I. T. Kiguradze, "On the oscillation of the solutions of equations $u^{(m)}+a(t) \operatorname{sign} u|u|^{n}=0$ " Math. Studies 65 (1964), 172-187 (in Russian).
[2] I T. Kiguradze, "Some singular boundary-value problems for ordinary differential equations", Izdat. Tbılisk. Univ., Tbilisi (1975), 325 (in Russian).
[3] Ju. S. Kolesov and E. P. Kubyskin, "A two-frequency approach to the problem 'predatorprey'", in Investigations on stability and theory of oscillations, (Jaroslavl', 1979), 111-121 (in Russian).
[4] Ju. S. Kolesov and D. Svitra, "A study of the two-frequency oscillations in the problem 'predator-prey'", in Differential equations and their applications No. 24, (Vil'njus, Mokslas. 1979), 49-66.
[5] G. Nicolis and J. Portnow, "Chemical oscillations", Chem. Rev. 73 (1974), 365-384.
[6] R. M. Noyes and R. J. Field, "Oscillatory chemical reactions", Ann. Rev Phys. Chem. 25 (1974), 95-119.
[7] T Pavlidis, Biological oscillations; their mathematical analysis, (Academic Press, New York, 1974).
[8] V. N. Shevelo and N. V. Vareh, "On some oscillatory theorems for higher order differential equations", Math. Physics No. 13 (1973), 183-189 (in Russian).
[9] A. I. Zahariev and D. D. Bainov, "Oscillating properties of the solutions of a class of neutral type functional-differential equations", Bull. Austral. Math. Soc 22 (1980), 365-372.
[10] A. A. Zaharov, Ju. S. Kolesov, A. N. Spokoinov and N. B Fedotov, "Theoretical explanations of the 10 -year cycle of oscillations of mammal's population in Canada and Jakutiaa", in Investigations on stabilty and theory of oscillations, (Jaroslavl', 1980), 82-131 (in Russtan).

[^0]: ${ }^{1}$ University of Plovdiv, "P. Hilendarski", 7000 Plovdiv, Bulgaria.
 © Copyright Australian Mathematical Society 1986, Serial-fee code 0334-2700/86

