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Abstract
We consider the assignment of servers to two phases of service in a two-stage tandem queueing system when
customers can abandon from each stage of service. New jobs arrive at both stations. Jobs arriving at station 1
may go through both phases of service and jobs arriving at station 2 may go through only one phase of service.
Stage-dependent holding and lump-sum abandonment costs are incurred. Continuous-time Markov decision process
formulations are developed that minimize discounted expected and long-run average costs. Because uniformization
is not possible, we use the continuous-time framework and sample path arguments to analyze control policies. Our
main results are conditions under which priority rules are optimal for the single-server model. We then propose and
evaluate threshold policies for allocating one or more servers between the two stages in a numerical study. These
policies prioritize a phase of service before “switching” to the other phase when total congestion exceeds a certain
number. Results provide insight into how to adjust the switching rule to significantly reduce costs for specific input
parameters as well as more general multi-server situations when neither preemption or abandonments are allowed
during service and service and abandonment times are not exponential.

1. Introduction

Many hospital systems (e.g., Lutheran Medical Center and UW Health) have implemented interventions
known as “split flow” models to improve patient flow in the Emergency Departments (EDs) (cf.,
[21,29,49,50]). Unlike a typical ED, a split flow model stations an advanced practice provider (APP)
rather than a nurse at patient intake (i.e., before or during triage). This provider briefly sees all walk-in
patients and may initiate the care of all patients by placing lab, imaging, and medication orders (i.e.,
phase one service). The provider then stratifies patients, keeping those who do not require a traditional
ED bed in a fast track or similar area (i.e., phase two service) and moving the rest to a queue for a
traditional bed. Importantly, the same care provider is continuously switching between both phases of
service, and while patients rarely leave before being seen while awaiting phase one service (e.g., triage),
some may abandon the system before receiving final treatment.

Motivated by the ED split flow model, we consider the assignment of servers between two phases
of service in a two-stage tandem queue. This and related models have been studied in the case when
one or more job classes require service at multiple service stations in tandem by one or more servers
(cf., [1–8,15,17,18,20,25,27,35,37,41,42,46,49]). Servers decide where to allocate efforts to optimize
performance criteria on quality of service and/or congestion. Although widely studied, many of these
models assume that jobs have unlimited patience and thus willing to wait indefinitely. However, there
are practical and important situations, such as the ED, where jobs abandon the system before service.
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Allowing for abandonments, we analyze this scheduling problem to find new control strategies that
generalize to broader situations.

In the present study, we assume Poisson arrival streams to each phase of service with infinite waiting
capacity, and one or more flexible servers that can serve arriving jobs having service times that are
identically distributed and are independent, and are independent of inter-arrival times. We assume that
no setup is required for the server to switch from processing jobs at one station to another. In addition,
we assume that jobs can abandon from each phase of service. The goal is to provide server assignment
policies to minimized expected discounted or average costs over an infinite horizon where each job class
has linear holding costs and lump-sum abandonment costs.

To analyze this decision-making scenario, we first assume exponentially distributed service and
abandonment times and use Markov decision processes (MDPs). For the multi-server model, we show
that costs are nondecreasing in the number of customers in each phase of service, and that there exists
a non-idling policy that is optimal so long as service preemption is allowed. We then show that if the
number of customers at each queue exceeds the number of servers, there exists an optimal control policy
that does not split the servers so long as service preemption is allowed. We then consider the single-
server model and identify a set of conditions under which static priority rules are optimal. Outside these
conditions, the optimal policy may be a complicated state-dependent policy. We thus consider a class
of threshold policies which we evaluate in a two-part simulation study.

In the first part, we consider the single-server Markovian model and compare the performance of
these threshold policies to the priority rules in the cases where we have proved that the priority rules
are optimal. This is done to benchmark the proposed threshold policies. We then compare their relative
performance in a discrete-event simulation for a wider range of parameter values. In the second part, we
evaluate these threshold policies when abandonments during service and preemption are not allowed
and service and abandonment times are no longer exponential.

The rest of the paper is organized as follows: Section 2 contains a summary of the literature related
to our work. Section 3 describes in detail the model we consider, the MDP formulation of the server
allocation problem, and some preliminary results that will be used throughout the paper. Section 4
contains our main analysis of static priority rules. In Section 5, we propose several allocation policies
based on our analytical results and compare them numerically. We conclude with a discussion in
Section 6.

2. Brief summary of the related literature

This study lies at the intersection of three areas: scheduling in tandem queueing systems, performance
analysis of service policies in tandem queues, and MDPs with unbounded transition rates.

To our knowledge, the only other studies combining these three areas are [49,50]. In Zayas-Cabán
et al. [49], policies for a two-stage tandem queueing model with abandonments and rewards accrued
after service completion were analyzed using a continuous-time Markov decision process (CTMDP),
motivated by the Triage and Treat Release Program at the Lutheran Medical Center in New York. In
a follow-up study, Zayas-Cabán et al. [50] consider the same two-phase stochastic service system but
where customers may only abandon the second phase of service. They introduce a class of policies they
term 𝐾-level threshold policies, which prioritize phase 2 service unless there are 𝐾 or more jobs in
phase one service. Sufficient conditions are provided to ensure these policies yield a stable system. A
heuristic is presented for choosing 𝐾 in systems with abandonments. They analyze the performance of
these heuristics in a simulation study. The present study differs from [49] and [50] by allowing arrivals to
the second phase of service and by considering holding costs and abandonment costs (and not rewards).
Holding and abandonment costs imply that cost rates are unbounded, which require stronger conditions
to hold in order for the optimality equations to have a solution (cf., [13]). Furthermore, holding cost
rates imply that stronger conditions are needed for the optimality of prioritizing station 2 to hold. The
bounds for the value function that were obtained in [49] to imply that the optimality of static priority
rules cannot be similarly obtained in the present study.
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There is extensive literature on dynamic assignment of servers to different phases of service without
abandonments (cf., [1–8,15,17,18,20,25,27,35–37,41,42,46,49]). Nelson [35], for instance, presents the
optimality of priority rules akin to the classic c-𝜇 rule but for a tandem system without abandonments
in the context of a labor assignment problem over a finite horizon using the Pontryagin maximum prin-
ciple. There is also extensive literature on performance analysis of single-server tandem queues without
abandonments, which provide analysis techniques for determining stability conditions of different allo-
cation policies such as priority rules (cf., [22–24,26,34,43]). We refer the reader to [49,50] for a recent
review of this literature. More recently, Wang et al. [47] and Rastpour et al. [39] analyze multi-server
Markovian queues with abandonments. Viewed as a level-dependent quasi-birth and death process,
Wang et al. [47] analyze a multi-server tandem queue with abandonments where the second phase of
service has a finite number of servers.

Lastly, we contend with a CTMDP with unbounded rates as a consequence of abandonments (cf.,
[10–14,16,28,32,33,38,40,44,45,48,49]). In particular, it extends the cost model considered by Down
et al. [14] by allowing phase one service completions to join phase two service. Throughout the paper,
and whenever possible, we compare our results to those obtained in Down et al. [14]. Although the
remaining above-cited papers consider different models than the one considered here, they also provide
approaches for how to analyze optimal controls for problems with unbounded rates. We remark that
alternative approaches to CTMDPs have been used to contend with scheduling with abandonments (cf.,
[9,30,31]). For example, Atar et al. [9] consider the 𝐾-competing queues problem with many servers
and introduce the ℎ𝜇/𝛽 rule, which prioritizes the queue with the highest index ℎ𝑐𝜇𝑐/𝛽𝑐 , showing that
it is asymptotically optimal in the so-called overloaded regime, as the number of servers tends to infinity.

3. Dynamics and control formulation

Suppose customers, or jobs, arrive to station 1 (2), or phase 1 (2) service, or queue 1 (2), of a tandem
service system according to a Poisson process of rate 𝜆1 (𝜆2) and immediately join the first (second)
queue. Once the customer joins station 1 (2), their station 1 (2) patience time and service requirements
are generated; the distribution of the former and latter will be first assumed to be exponential with rate
𝛽1 (𝛽2) and 𝜇1 (𝜇2), respectively. If the customer does not complete station 1 (2) service before the
abandonment time ends, a lump-sum cost 𝐾1 (𝐾2) is charged and the customer leaves the system without
receiving service at station 1 or 2 (2). If the customer receives service at station 1 then, independently of
the service time and arrival process, with probability 𝑝 ∈ [0, 1], the customer joins the queue at station
2. With probability 𝑞 := 1 − 𝑝, the customer leaves the system forever.

There is a nonnegative holding cost ℎ𝑐 per job per unit time incurred for holding a customer in station
𝑐 ∈ {1, 2}. There are 𝑁 ≥ 1 servers, each of which can be assigned to either station. We seek a non-
anticipating policy that describes where to place the server based on the current state and potentially the
history of states and actions taken. Within each station, the service discipline is first come first served
(FCFS), and we consider both when service can and cannot be preempted and when abandonments of
jobs in process are and are not allowed. Once a customer completes service at station 2, they leaves the
system forever.

Fix a non-anticipating policy 𝜋, let {𝜎𝜋𝑛 , 𝑛 ≥ 1} denote the sequence of event times that includes
arrivals, abandonments, and potential service completions, and let Z+ denote the set of nonnegative
integers. For this analysis, we first assume that service can be preempted and abandonments during
service are allowed. Throughout the paper, and whenever possible, we highlight when these restrictions
can be relaxed. When service can be preempted and abandonments during service are allowed, the
state space is X := {(𝑥1, 𝑥2) | 𝑥2, 𝑥2 ∈ Z+}, where 𝑥1 (resp. 𝑥2) denotes the number of customers at
station 1 (resp. 2) and the set of available actions at state 𝑥 ∈ X is 𝐴(𝑥) = A := {(𝑦1, 𝑦2) | 𝑦1, 𝑦2 ∈
Z
+, 𝑦1 + 𝑦2 ≤ 𝑁}, where 𝑦1 (𝑦2) represents the number of servers assigned to station 1 (2).1 For 𝛼 > 0,

1When abandonments during service and preemption are not allowed, we also need to keep track of each server status so that the state space
becomes X := {(𝑥1 , 𝑥2 , 𝑦1 , 𝑦2) | 𝑥1 , 𝑥2 , 𝑦1 , 𝑦2 ∈ Z+ , 0 ≤ 𝑦1 + 𝑦2 ≤ 𝑁 } where 𝑥1 (resp. 𝑥2) denotes the number of customers at station 1
(resp. 2), and 𝑦1 and 𝑦2, respectively, denote the number of servers serving at station 1 and serving at station 2. Furthermore, decisions are made
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the finite horizon (of length 𝑡), 𝛼-discounted expected cost for a non-anticipating policy 𝜋 is given
by 𝑣 𝜋𝑡,𝛼 (𝑥) ≡ E𝜋𝑥 [

∑𝑁 (𝑡 , 𝜋)
𝑛=0 𝑒−𝛼𝜎𝑛 𝑘 (𝑋𝑛, 𝑎𝑛)] +

∫ 𝑡
0 𝑒−𝛼𝑠E𝜋𝑥 [

∑2
𝑐=1 ℎ𝑐𝑄

𝜋
𝑐 (𝑠))] 𝑑𝑠, where 𝑄 𝜋

𝑐 (𝑠) denotes the
customer class 𝑐 ∈ {1, 2} queue length process at time 𝑠 ≥ 0, and 𝑋𝑛 and 𝑎𝑛 represent, respectively, the
state of the system and the type of event seen at the time of the 𝑛th decision. The function 𝑘 (·, ·) denotes
the fixed cost; that is, if 𝜎𝑛 denotes a station 𝑐 ∈ {1, 2} customer abandonment, then 𝑘 (𝑋𝑛, 𝑎𝑛) = 𝐾𝑐
and it is zero otherwise. For fixed 𝑥 ∈ X, the infinite horizon discounted expected cost under policy 𝜋
is 𝑣 𝜋𝛼 (𝑥) ≡ lim𝑡→∞ 𝑣 𝜋𝑡,𝛼 (𝑥). The long-run average cost rate is 𝜌𝜋 (𝑥) ≡ lim sup𝑡→∞ 𝑣

𝜋
𝑡,0(𝑥)/𝑡.

4. Dynamic control

We present two results that are used throughout when abandonments during service and preemption are
allowed. The first is the monotonicity of the value functions. The second says that there is an optimal
policy that does not idle the servers whenever there are customers waiting so long as service can be
preempted. The latter is used to simplify the optimality equations. In the interest of brevity, we omit the
proofs.

Proposition 4.1. The following hold:

1. For all 𝑥 = (𝑥1, 𝑥2) ∈ X
𝑣𝛼 (𝑥 + 𝑒𝑐) ≥ 𝑣𝛼 (𝑥), 𝑐 = 1, 2

where 𝑒𝑐 denotes the 𝑐th standard basis vector in R2 (𝑐 = 1, 2). Similarly, if (𝑔, 𝑤) is a solution to
the average cost optimality equations (defined below), the above statements hold with 𝑣𝛼 replaced
with 𝑤.

2. Under both the 𝛼-discounted cost and the average cost criterion, there exists a (Markovian)
non-idling policy that is optimal.

We remark that a similar result to the first part of Proposition 4.1 holds when abandonments during
service and service preemption are not allowed, but a similar result to the second part of Proposition
4.1 only holds when abandonments during service are not allowed. When service preemption is not
allowed, it may be optimal for the server to stay idle.

4.1. Optimality equations

For functions 𝑓 : X → R, let 𝑓 (𝑥1, 𝑥2) := 𝑓 ((𝑥1, 𝑥2)) for (𝑥1, 𝑥2) ∈ X. The operator 𝑇 acting on
functions 𝑓 : X→ R is defined as follows.

𝑇 𝑓 (𝑥1, 𝑥2) := 𝑥1(ℎ1 + 𝛽1𝐾1) + 𝑥2(ℎ2 + 𝛽2𝐾2) + 𝜆1 𝑓 (𝑥1 + 1, 𝑥2) + 𝜆2 𝑓 (𝑥1, 𝑥2 + 1)
+ 𝑥1𝛽1 𝑓 (𝑥1 − 1, 𝑥2) + 𝑥2𝛽2 𝑓 (𝑥1, 𝑥2 − 1)
− (𝜆1 + 𝜆2 + 𝑥1𝛽1 + 𝑥2𝛽2) 𝑓 (𝑥1, 𝑥2)
+ min
𝑎1∈{0,1,...,𝑁 }

{min{𝑥1, 𝑎1}𝜇1 [𝑝 𝑓 (𝑥1 − 1, 𝑥2 + 1) + 𝑞 𝑓 (𝑥1 − 1, 𝑥2) − 𝑓 (𝑥1, 𝑥2)]

+ min{𝑥2, 𝑁 − 𝑎1}𝜇2 [ 𝑓 (𝑥1, 𝑥2 − 1) − 𝑓 (𝑥1, 𝑥2)]}.

Theorem 4.2. For any 𝛼 > 0, the following statements hold.

1. The value function 𝑣𝛼 satisfies the discounted cost optimality equations (DCOE), that is,

𝛼𝑣𝛼 (𝑥1, 𝑥2) = 𝑇𝑣𝛼 (𝑥1, 𝑥2), (𝑥1, 𝑥2) ∈ X.

after service completions and the set of available actions at state 𝑥 ∈ X becomes 𝐴(𝑥) := {(𝑎1 , 𝑎2) | 𝑎1 , 𝑎2 ∈ 𝑍+ , 𝑎1 + 𝑎2 ≤ 𝑁 − 𝑦1 − 𝑦2 },
where 𝑎1 (𝑎2) represents the number of idling servers assigned to station 1 (2).
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2. There exists a deterministic stationary 𝛼-optimal policy.
3. Any policy satisfying the maximum in the DCOE is 𝛼-optimal.

Proof. See Online Appendix in Supplementary material. �

Theorem 4.3. If any of the following mutually exclusive conditions holds

• min{𝛽1, 𝛽2} > 0; or
• 𝛽1 > 0, 𝛽2 = 0, and if 𝜆2/𝜇2 < 1 for the multi-server model, or, if
𝜆1 · (1/𝜋0 (𝜇1 + 𝛽1) + 𝑝(1 − 𝑃(𝐴𝑏)/𝜇2) + 𝜆2/𝜇2 < 1 for the single-server model, where 𝜋0 is
long-run fraction of time that station 2 is empty under the non-idling policy that prioritizes station 2
when 𝛽2 = 0 and 𝑃(𝐴𝑏) = 𝛽1/(𝜇1 + 𝛽1) ; or

• 𝛽1 = 0, 𝛽2 > 0 and 𝜆1/𝜇1 < 1,

then the following hold:

1. There is a constant 𝑔 ∈ R and a function 𝑤 : X→ R that satisfy the average cost optimality
equations (ACOE), that is,

𝑔 = 𝑇𝑤(𝑥1, 𝑥2), (𝑥1, 𝑥2) ∈ X.

2. There exists a deterministic stationary average-optimal policy.
3. Any policy satisfying the maximum in the AROE is average-optimal, and 𝑔 = 𝜌(𝑥1, 𝑥2) for all

(𝑥1, 𝑥2) ∈ X.

Proof. See Online Appendix in Supplementary material. �

We remark that similar results to Theorems 4.2 and 4.3 hold when service preemption and
abandonments during service are not allowed.

4.2. Dynamic control

For the multi-server model, we have the following result, which is akin to Proposition 3.1 in [49] on
the allocation of servers when the number of customers is sufficiently high. The proof is similar to
Proposition 3.1 in [49] and is therefore omitted.

Proposition 4.4. For the non-collaborative model we are considering, if the number of customers at
each queue exceeds the number of servers, there exists a discounted cost optimal control policy that
allocates all servers to one phase or the other (i.e., servers are not split between the two queues).
Similarly, the result holds in the average cost case when the average cost optimality equations have a
solution.

We remark that if we assume that when more than one server is working at a station, their rates are
additive, then, for the multi-server model with abandonments during service and service preemption,
there is a discounted cost and average cost optimal policy that does not split the servers between the
two phases of service. We also note that Proposition 4.4 does not hold when service preemption is not
allowed. Proposition 4.4 implies that when abandonments during service and preemption are allowed,
we can restrict attention to policies that always allocate all servers to one station or the other when
both 𝑥1, 𝑥2 ≥ 𝑁 (making the service rate 𝑁𝜇1 or 𝑁𝜇2). Furthermore, the second part of Proposition
4.1 implies that we should keep as many servers busy as possible in states such that 𝑥1 + 𝑥2 ≤ 𝑁 when
service preemption is allowed. However, we were unable to further characterize the optimal policy in
states with 𝑥1 or 𝑥2 (but not both) greater than 𝑁 nor how to choose priorities when 𝑥1, 𝑥2 ≥ 𝑁 . In
the following, we discuss under what conditions static priority policies are optimal in the single-server
model (see Section 4.3) and revisit the multi-server model in our numerical study (Section 5).
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4.3. The single-server proxy

In this section, we restrict attention to the single-server model (𝑁 = 1) and provide conditions under
which one particular phase of service should be prioritized.

Theorem 4.5. Under the 𝛼-discounted cost criterion, it is optimal to serve at station 2 whenever station
2 is not empty if either one of the following two sets of conditions hold:

1. 𝛽2 = 0 and 𝜇1 [ℎ1 + 𝛽1𝐾1 − 𝑝ℎ2] ≤ 𝜇2ℎ2; or
2. 𝜇1 = 𝜇2, 𝛽1 − 𝛽2 − 𝜇2 ≥ 0, and ℎ1 + 𝛽1𝐾1 − 𝑝(ℎ2 + 𝛽2𝐾2) ≤ ℎ2 + 𝛽2𝐾2.

If, in addition, 𝜆1 · (1/𝜋0 (𝜇1 + 𝛽1) + 𝑝(1 − 𝑃(𝐴𝑏)/𝜇2) + 𝜆2/𝜇2 < 1, conditions 1 or conditions 2 imply
that serving station 2 when station 2 is not empty is also average cost optimal.

Proof of 4.5 when conditions 1 hold. The proof is given for the discounted expected cost model. The
proof of the long-run average cost case is similar. Note that the optimality equations imply that it is
optimal to prioritize a class 2 customer in state (𝑥1, 𝑥2) with 𝑥1, 𝑥2 ≥ 1 when

𝜇1 [𝑝𝑣𝛼 (𝑥1 − 1, 𝑥2 + 1) + 𝑞𝑣𝛼 (𝑥1 − 1, 𝑥2) − 𝑣𝛼 (𝑥1, 𝑥2)] + 𝜇2 [𝑣𝛼 (𝑥1, 𝑥2) − 𝑣𝛼 (𝑥1, 𝑥2 − 1)] ≥ 0. (4.1)

We show (4.1) via a sample path argument. Fix 𝑥1, 𝑥2 ≥ 1 and start five processes on the same probability
space. Processes 1–5 begin in states (𝑥1 − 1, 𝑥2 + 1), (𝑥1 − 1, 𝑥2), (𝑥1, 𝑥2), (𝑥1, 𝑥2), and (𝑥1, 𝑥2 − 1),
respectively. Processes 1, 2, and 4 use stationary optimal policies, which we denote by 𝜋1, 𝜋2, and 𝜋4,
respectively. In what follows, we show how to construct (potentially sub-optimal) policies for Processes
3 and 5 which we denote by 𝜋3 and 𝜋5, so that

𝜇1 [𝑝𝑣 𝜋1
𝛼 (𝑥1 − 1, 𝑥2 + 1) + 𝑞𝑣 𝜋2

𝛼 (𝑥1 − 1, 𝑥2) − 𝑣 𝜋3
𝛼 (𝑥1, 𝑥2)] + 𝜇2 [𝑣 𝜋4

𝛼 (𝑥1, 𝑥2) − 𝑣 𝜋5
𝛼 (𝑥1, 𝑥2 − 1)] ≥ 0. (4.2)

Since 𝜋3 and 𝜋5 are potentially suboptimal, (4.1) follows from (4.2). In what follows, discounting is
suppressed without any loss of generality.

Observe that starting from (4.2), the costs incurred until the next event are (𝜇2ℎ2 − 𝜇1 [ℎ1 + 𝛽1𝐾1 −
𝑝ℎ2])𝑡1 ≥ 0, where 𝑡1 is the time of the next event and the inequality is due to the assumption that
𝜇2ℎ2 ≥ 𝜇1 [ℎ1 + 𝛽1𝐾1 − 𝑝ℎ2]. Moreover, if the relative position (as measured by the current states) of
the five processes at the next event remains the same, then we may relabel the initial states and continue
from the beginning of the argument. This occurs when any of the uncontrolled events occur that are seen
by all five processes (i.e., an arrival or an abandonment at station 𝑖 and 𝑥𝑖 > 1) . It also occurs when the
next event is a service completion and when 𝜋1, 𝜋2, and 𝜋4 serve the same customer class 𝑘 ∈ {1, 2} by
letting 𝜋3 and 𝜋5 also serve the same customer class 𝑘 customer provided there is one or more customer
class 𝑘 customer in all five processes. Consider now the other cases.

Case 1. Customer abandonments

If 𝑥1 = 1 and the first event is a class 1 abandonment in Processes 3–5 only (with probability
𝛽1/(𝜆1 + 𝜆2 + 𝜇1 + 𝜇2 + 𝑥1𝛽1)), after which all processes follow an optimal control, it follows that the
remaining costs on the left side of (4.2) (with the probability of this event in the expression suppressed)
are

(𝜇2ℎ2 − 𝜇1 [ℎ1 + 𝛽1𝐾1 − 𝑝ℎ2])𝑡1 + 𝑝𝜇1 [𝑣𝛼 (𝑥1 − 1, 𝑥2 + 1) − 𝑣𝛼 (𝑥1 − 1, 𝑥2)]
+ 𝜇2 [𝑣𝛼 (𝑥1 − 1, 𝑥2) − 𝑣𝛼 (𝑥1 − 1, 𝑥2 − 1)] . (4.3)

The terms in this last expression above are nonnegative as a consequence of Proposition 4.1.
There are seven cases left to consider corresponding to service completions all with algebra that is

directly analogous. Complete details are available in the Online Appendix in Supplementary material.
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It follows that, in every case save one (Case 1), we may relabel the states and continue. Thus, to obtain
the result, we wait until Case 1 occurs. �

Proof of 4.5 when conditions 2 hold. See Online Appendix in Supplementary material. �

We make several observations about Theorem 4.5 and its associated conditions. First, the policy
that prioritizes station 2 is nonpreemptive. Second, if min{𝛽1, 𝛽2} > 0, then 𝜇1 [ℎ1 + 𝛽1𝐾1 − 𝑝(ℎ2 +
𝛽2𝐾2)] ≤ 𝜇2(ℎ2 + 𝛽2𝐾2) and 𝜇1 [ℎ1 + 𝛽1𝐾1 − 𝑝(ℎ2 + 𝛽2𝐾2)]/𝛽1 ≤ 𝜇2 (ℎ2 + 𝛽2𝐾2)/𝛽2 do not guarantee
the optimality of prioritizing station 2, as examples in Section 5 illustrate. Third, the stability condition
𝜆1 · (𝑝(1 − Pr(Ab))/𝜋0𝜇1+1/𝜇2)+𝜆2/𝜇2 < 1 is derived by computing the fraction of customers arriving
to station 1 that enter station 2 and then computing the fraction of time the server works at station 1
(under the prioritize station 2 policy) (see the Online Appendix in Supplementary material for complete
details). Fourth, the second condition in 2 says that the station 1 abandonment rate 𝛽1 is higher than the
total departure rate from station 2, 𝛽2 + 𝜇. If 𝑝 = 0, then the system is the same as the one considered
by Down et al. [14]. In this case, the term corresponding to (𝛽2 − 𝛽1 − 𝜇)𝑝 in subcase 1.2 in the Online
Appendix in Supplementary material is 0 so that the same proof of 4.5 when conditions 1 holds, yields
that ℎ2 + 𝛽2𝐾2 ≥ ℎ1 + 𝛽1𝐾1 and 𝛽1 ≥ 𝛽2 imply that it is optimal to prioritize station 2, in agreement with
Theorem 3.5 of Down et al. [14]. Fifth, one may conjecture that Theorem 4.5 extends to the case when
abandonments during service are not allowed, but this turns out not to be so simple since the allocation
decision impacts the abandonment rate and the current per unit holding cost, suggesting that additional
conditions may be required.

Theorem 4.6. Under the 𝛼-discounted cost criterion, it is optimal to serve at station 1 whenever station
1 is not empty if one of the following two sets of conditions hold:

1. 𝛽1 = 0 and 𝜇2 [ℎ2 + 𝛽2𝐾2] ≤ 𝜇1 [ℎ1 − 𝑝(ℎ2 + 𝛽2𝐾2)]; or
2. 𝜇1 = 𝜇2, 𝛽2 ≥ 𝛽1, and ℎ2 + 𝛽2𝐾2 ≤ ℎ1 + 𝛽1𝐾1 − 𝑝(ℎ2 + 𝛽2𝐾2).
If, in addition, 𝜆/𝜇1 < 1, conditions 1 or 2 imply that serving station 1 when station 1 is not empty is
also average cost optimal.

Proof of 4.6. See Online Appendix in Supplementary material. �

We note that when min{𝛽1, 𝛽2} > 0, 𝜇1 [ℎ1 + 𝛽1𝐾1 − 𝑝(ℎ2 + 𝛽2𝐾2)] ≥ 𝜇2(ℎ2 + 𝛽2𝐾2) or
𝜇1 [ℎ1 + 𝛽1𝐾1 − 𝑝(ℎ2 + 𝛽2𝐾2)]/𝛽1 ≥ 𝜇2(ℎ2 + 𝛽2𝐾2)/𝛽2 do not guarantee that it is always optimal to
prioritize station 1 except to avoid unforced idling, as examples in Section 5 illustrate. Furthermore,
𝜆1/𝜇1 < 1 is the stability condition for an M/M/1 queue and is sufficient for positive recurrence of
all states under the prioritize station 1 policy (see the Online Appendix in Supplementary material for
complete details). Lastly, the conditions 2 are the same conditions that guarantee that prioritize station
1 is optimal in Down et al. [14], which is a special case of our model when 𝑝 = 0.

5. Numerical study

5.1. Rationale

This section affords us the opportunity to address shortcomings from our analytical analysis. One short-
coming is that our model relies on unrealistic assumptions for systems of interest (i.e., one server,
abandonments during service or preemption, and exponential service and abandonment times). Fur-
thermore, the properties of optimal controls remain elusive in many scenarios. In the single-server
Markovian model with preemption and abandonments during service, one might conjecture that if it is
optimal to serve in station 1 (2) in state (𝑥1, 𝑥2), then it is also optimal to serve at station 1 (2) when there
are more customers in station 1 (2) in state (𝑥1 + 1, 𝑥2) ((𝑥1, 𝑥2 + 1)). To show such a result, standard
approaches include sample path arguments or a smoothed rate truncation approach. For either approach,
abandonments lead to having to show several inequalities, such as submodularity, of the value function
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for the discounted cost problem and the relative value function for the long-run average cost problem
(cf., [10]). Unfortunately, submodularity remains elusive when the number of jobs at each station is
zero; that is, at the boundary of the state space. Despite this, the optimal server allocation policy might
still have a threshold or switching curve structure, but proving such a result without submodularity or
convexity is difficult. Because the optimal server allocation policy is difficult to discern, we propose
and evaluate a class of threshold heuristics that initially assign priority to one phase of service and then
switch between priorities based on a state-dependent rule.

Our numerical study has four main goals. The first is to quantify the relative performance of heuristic
allocation policies with respect to average costs. The second is to quantify the degree to which (non-
priority) threshold policies outperform strict priority policies. The third is to determine how relative
performance is affected by changes in the coefficient of variation for the service and abandonment times
and changes in

𝜆1 ·
(

1
𝜇1 + 𝛽1

+ 𝑝

𝜇2 + 𝛽2

)
+ 𝜆2

𝜇2 + 𝛽2
,

which we use as a proxy for the system load. This proxy load corresponds to the average service time
for a job that is processed in both phase 1 and then phase 2 service under the prioritize station 2 policy
when preemption and abandonments during service are allowed. The fourth is to determine the degree
to which guidelines, like the classic c-𝜇 rule, correctly identify the best policy.

5.2. Overview

Our numerical study presents a discrete-event simulation. To simplify exposition, the main text focuses
on a multi-server model without preemption and abandonments during service and without exponential
service and abandonment times. We vary model parameters to recover guidelines for when one policy
might be preferred over another. Simulation results are presented in the Online Appendix in Supplemen-
tary material for a single-server Markovian model that allows preemption and abandonments during
service and that assumes service and abandonment times are exponentially distributed. The Online
Appendix in Supplementary material also benchmarks (non-priority) threshold policies, with respect to
long-run average costs, in situations when we know prioritizing a particular phase of service is optimal.

5.3. Heuristic allocation policies

Four types of policies are considered. Each policy is specified to prevent idling, that is, when there are
not enough jobs to serve at one phase, providers work at the other phase. When there is enough work to
do, we do not assume that providers are split between phases. The first type of policy, denoted by P1(𝑛),
prioritizes phase 1 service until there are 𝑛 total customers in the system after which phase 2 service is
prioritized until phase 2 is emptied. When phase 2 is empty, the policy is reset and phase 1 is prioritized
again. When 𝑛 = ∞, policy P1(∞) is the priority rule (denoted simply by P1) that always prioritizes
phase 1 service over phase 2.

In a reciprocal manner, we define a second type of policy P2(𝑛) to prioritize phase 2 service until there
are 𝑛 total customers in the system after which phase 1 service is prioritized until phase 1 is emptied.
When phase 1 is empty, the policy is reset and phase 2 is prioritized again. When 𝑛 = ∞, policy P2(𝑛)
is simply the priority rule for phase 2 (denoted by P2). Another policy considered, denoted by Exh, is
an exhaustive policy. It prioritizes one phase of service until that phase is empty after which it switches
to the other phase until that phase is empty. It continues to switch between phases, emptying each phase
in turn before switching to the other. The last policy considered, denoted by Inc, prioritizes whichever
phase of service has more customers. It is considered an increasing policy, because the threshold of
phase 2 customers for switching as a function of phase 1 customers is an increasing function.
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Table 1. Parameters used for the simulation.

Parameters Description Range

𝜆1 Arrival rate at 1 9
𝜆2 Arrival rate at 2 [0,3]
𝜇1 Service rate at 1 [4,12]
𝜇2 Service rate at 2 [4,12]
𝛽1 Abandonment rate at 1 [0.1,3]
𝛽2 Abandonment rate at 2 [0.1,3]
𝑝 Joining probability [0.25,1]
ℎ1 Holding cost rate at 1 [0.1,3]
ℎ2 Holding cost rate at 2 [0.1,3]
𝐾1 Abandonment cost at 1 [0.1,3]
𝐾2 Abandonment cost at 2 1
cv Coefficient of variation [0.6,1.4]
nw Number of workers 3

Since P1(𝑛) and P2(𝑛) prioritize different phases of service, we explore the degree to which one
policy outperforms another when the inequality

𝜇1ℎ1 ≤ 𝜇2ℎ2 (5.1)

holds as well as when

𝜇1(ℎ1 + 𝛽1𝐾1 − 𝑝(ℎ2 + 𝛽2𝐾2)) ≤ 𝜇2(ℎ2 + 𝐾2𝛽2) (5.2)

holds. The former inequality reflects the classic c-𝜇 rule for deciding when to prioritize one phase of
service over another when there are no abandonments and the latter inequality reflects the analog of the
c-𝜇 rule when you account for abandonments and are part of the sufficient conditions we provided to
guarantee the optimality of a policy that prioritizes phase 1 (policy P1) or phase 2 (policy P2).

5.4. Parameters

Parameters are summarized in Table 1 for the simulation. Parameters were chosen to capture situations
when the optimal policy remains elusive. Given the importance of the classic c-𝜇 inequality (Eq. (5.1))
and its extended version (Eq. (5.2)), parameters were selected and varied to both satisfy and violate these
situations. It is without any loss of generality that we can fix one cost and one rate. So, the abandonment
cost 𝐾2 at phase 2 is fixed at 1 and the arrival rate 𝜆1 at phase 1 is fixed at 9. Assuming a time unit of
hours, we simulated the system for each parameter set over a simulated time horizon of 5 years after
a 5 year warm-up period and then performed 50 replications of this simulation. Average costs were
averaged over the time horizon and then over the replications.

Parameters have a similar interpretation as the single-server Markovian model, with the following
exceptions. First, we fixed the number of workers to be 3. Second, abandonment and service times
were modeled as Gamma random variables as opposed to exponential random variables. Gamma shape
parameters ranged from 1/2 or 3, yielding random times that have standard deviations larger than their
mean and smaller than their mean, complementing exponential random times, which have standard
deviations equal to their mean. Coefficient of variations (cv) were respectively 1.4 and 0.6 for the two
shape values. Last, parameters 𝜇1, 𝜇2, 𝛽1, and 𝛽2 refer to average rates, which meant that the rate
parameters for the gamma distributions needed to be 𝜇1, 𝜇2, 𝛽1, 𝛽2 scaled by the corresponding shape
parameter.
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Table 2. Percent samples for which given policy yields lowest average costs as a function of service
rates (𝜇1 and 𝜇2) and approximate load under P2.

Policy

𝜇1 𝜇2 ≈P2 load P1 P2 P1(5) P2(5) Exh Inc c-𝜇 Ext. c-𝜇

All All 2.2 19.2 64.1 5.7 5.2 0.8 5.0 59.1 65.2
4 4 3.1 17.9 56.7 7.6 10.3 0.9 6.7 47.7 43.9
4 12 2.3 1.7 86.8 2.8 1.3 1.5 5.8 80.2 79.1
12 4 2 38.3 41.6 5.9 7.7 0.5 6 47.6 59.2
12 12 1.2 18.9 71.1 6.6 1.4 0.3 1.7 61 78.4

We first explored parameter space using a full factorial design of six parameters (𝜆2, 𝜇1, 𝜇2, 𝛽1,
𝛽2, 𝑝, and cv); each parameter had two levels corresponding to the lowest and highest value in the
parameter range listed in Table 1. For each of these 128 sets of parameters, we then sampled 10,000
sets of costs (ℎ1, ℎ2, 𝐾1) uniformly from the parameter range listed in Table 1. We then systematically
varied parameters while keeping fixed (unless otherwise specified) 𝜆1 = 9, 𝜆2 = 0, 𝜇1 = 𝜇2 = 8,
𝑝 = 𝛽1 = 𝛽2 = ℎ1 = ℎ2 = 𝐾2 = 1, and 𝐾1 = 2. Service rates 𝜇1 and 𝜇2 were systematically varied,
followed by abandonment rates 𝛽1 and 𝛽2, holding cost rates ℎ1 and ℎ2, and arrival rate 𝜆2 and joining
probability 𝑝.

5.5. Results

We first report relative performance of the policies over 1,280,000 samples of parameter space for the
multi-server model (Table 2). Policy P2 had lowest average costs for 64.1% of these samples compared
to 19.2% of samples for P1, 5.7% for P1(5), 5.2% for P2(5), 5.0% for Inc, and less than 1% for Exh.
Following P2 is even better than using the classic c-𝜇 inequality (Eq. (5.1)) to guide when to use P2
over P1, the latter being best for only 59.1% of samples compared to the aforementioned 64.1% for
P2. Following P2, however, is slightly worse than using the extended version of the c-𝜇 inequality (Eq.
(5.2)) to guide when to use P2 over P2, which is best for 65.2% of samples.

Samples were stratified by service rates 𝜇2 and 𝜇1 (Table 2). When 𝜇2 is high and 𝜇1 is low, policy
P2 is, as expected, best for 86.8% of samples and for more samples than following the c-𝜇 rule or its
extended version. Policy P2 is best for fewer samples (56.7%) when both 𝜇1 and 𝜇2 are low. In this case,
P2 is again better for more samples than the c-𝜇 rule or its extended version. Meanwhile, policy P2 is best
for only 41.6% of samples and for fewer samples than the extended c-𝜇 rule (59.2%) when 𝜇1 is high and
𝜇2 is low. When 𝜇1 and 𝜇2 are both high, policy P2 is once again best for a majority of samples (71.1%)
but still best for fewer samples than the extended c-𝜇 rule (78.4%). Importantly, the extended c-𝜇 rule
performs better than P2 for lower approximate loads under P2 (averaged over the relevant samples).

Figure 1 depicts an example when the extended c-𝜇 rule helps guide whether to use P2 or P1.
Parameters 𝜇1 and 𝜇2 were systematically varied. Other parameters were fixed at values specified earlier;
the coefficient of variation (cv) was 1.4. Policy P2 is best for most 𝜇1 and 𝜇2 values except when the
extended c-𝜇 inequality favors P1 or is close to favoring P1. Policy P1 is best for remaining 𝜇1 and 𝜇2
values except in one case when policy Inc is best. Other figures are presented in Appendices A.1 and A.2.

Samples were then stratified by service rates and the cv for service and abandonment times (Table
3). For each pair of service rates 𝜇1 and 𝜇2, the policy P2 is the best policy for more samples when the
cv is high (1.4) versus low (0.6). This improvement in P2 comes at the expense of P1, wherein P1 is the
best policy for an increasing number of samples when the cv increases from 0.6 to 1.4. Even with the
additional stratification on cv, the extended c-𝜇 rule still performs better than P2 for lower approximate
loads at P2.
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Figure 1. Average cost comparison for the multi-server model when the cv is fixed at 1.4 and service
rates 𝜇1 and 𝜇2 are varied.

Table 3. Percent samples for which given policy yields lowest average costs as a function of service
rates (𝜇1 and 𝜇2), approximate load under P2, and coefficient of variation (cv).

Policy

𝜇1 𝜇2 cv ≈P2 load P1 P2 P1(5) P2(5) Exh Inc c-𝜇 Ext. c-𝜇

4 4 0.6 3.1 25.2 52.7 9.4 10.2 0.3 2.3 49 40.4
4 4 1.4 3.1 10.5 60.7 5.8 10.4 1.5 11.1 46.5 47.4
4 12 0.6 2.3 2.8 75.5 5.6 2.2 2.4 11.5 73.7 71.4
4 12 1.4 2.3 0.6 98.2 0 0.5 0.5 0.1 86.6 86.8
12 4 0.6 2 43.5 37.1 7.4 6.6 1 4.4 52.3 57.7
12 4 1.4 2 33.1 46.1 4.4 8.7 0.1 7.6 43 60.7
12 12 0.6 1.2 23.7 58.4 12.3 1.9 0.3 3.3 66.8 72.3
12 12 1.4 1.2 14.1 83.8 0.9 0.8 0.3 0 55.2 84.4

With P2 performing best in most samples, we wanted to characterize parameter values when a policy
other than P2 performs well. We start with P1. Among the 128 cases of parameters in our factorial
design (𝜇1, 𝜇2, 𝛽1, 𝛽2, 𝑝, and cv), P1 is best for a majority of samples for 20 of these cases compared
to 88 for P2 (Table A.1 in Appendix). As one would expect, all 20 cases have a service rate 𝜇1 faster or
equal to 𝜇2. Moreover, at least 16 of these cases have at least a high value 𝜇1, low value of 𝜇2; or low
joining probability 𝑝. For 15 of these 20 cases, the extended c-𝜇 rule performs better than P1; these 15
cases coincide exactly with an approximate load under P2 lower than its mean of 2.2. In addition to a
larger load, all of the remaining five cases are accompanied with low 𝜇2, low 𝛽1, high 𝛽2, and low cv;
neither 𝜆2, 𝜇1, or 𝑝 took a consistent value across these cases.

Table 4 identifies parameter values (𝜇1, 𝜇2, 𝛽1, 𝛽2, 𝑝, and cv) when (non-priority) threshold policies
are best for a majority of samples. We make three observations. First, there is no set of parameters,
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Table 4. Percent samples that policy yields lowest average costs in parameter cases when (non-priority)
threshold policies are best for a majority of samples.

Policy

𝜆2 𝜇1 𝜇2 𝛽1 𝛽2 𝑝 cv ≈P2 load P1 P2 P1(5) P2(5) Exh Inc c-𝜇 Ext. c-𝜇

P1(5) is best for majority of samples
0 4 4 0.1 0.1 1 0.6 4.4 0 0 70.8 29.2 0 0 0 0
0 12 4 0.1 0.1 1 0.6 2.9 12.3 9.3 51.6 26.8 0 0 21.6 21.6

P2(5) is best for majority of samples
3 4 4 0.1 0.1 0.25 0.6 3.5 0 43.9 0 56.1 0 0 43.9 43.9
3 4 4 0.1 3 0.25 1.4 2.9 1.0 14.9 4.4 55.6 0 24.1 13.9 14.9
3 4 4 0.1 3 1 1.4 3.9 3.4 1.5 11.8 55.5 0 27.9 4.3 1.5

Inc is best for majority of samples
0 4 12 0.1 3 1 0.6 2.8 2.7 23.4 0 0.3 0 73.6 25.5 23.4
3 4 12 0.1 3 1 0.6 3.0 3.1 12.8 0 0 28.7 55.4 15.7 12.8

among the 128 considered, in which policy Exh performs best for a majority of samples. Second, the
abandonment rate 𝛽1 at phase 1 is low for every parameter case when a non-strict priority rule is optimal;
neither 𝜆2, 𝜇1, 𝜇2, 𝛽2, 𝑝, or cv took a consistent value across these cases. Third, the approximate load
under P2 was larger than its average of 2.2 in all these cases when a (non-priority) threshold policy is
optimal.

We summarize insights gained from the numerical study as follows. Using the extended c-𝜇 rule
should guide when to use P2 or P1 policies, provided the approximate load under P2 is low. When the
approximate load under P2 is high, then P2 is likely the best policy, but not always. The poorer relative
performance of P2 and of the extended c-𝜇 rule occurs when customers abandon from phase 1 at a slow
rate 𝛽1, which can lead to long queues at phase 1, or when the variability in abandonment and service
times is smaller than the mean time. Non-strict priority rules such as Inc, P1(5), and P2(5) (though not
Exh) may even perform better than P1 or P2 in these situations.

6. Conclusion

In this paper, we allow for abandonments to a stochastic scheduling model consisting of a two-class, two
stage tandem service system where we have generalized the models considered in Down et al. [14] and
Zayas-Cabán et al. [49] by allowing customers to join phase 2 service after completing phase 1 service
and by considering the performance criterion of minimizing holding costs per customer per unit time
and lump-sum abandonment costs. Our main results are conditions for the optimality of static priority
rules for the single-server model. Abandonments lead to technical challenges since the abandonment
rate is not bounded, and uniformization is not possible. This means the standard induction arguments
cannot be readily used. Furthermore, interchange arguments are difficult to apply since customers may
abandon in between services. We use the CTMDP framework to analyze this decision-making scenario,
and in particular, use the continuous-time optimality equations, and a sample path argument to show
the results.

Because the optimal policy remains elusive outside the conditions provided in Theorems 4.5 and 4.6
and because our model relies on assumptions that may be unrealistic for certain systems of interest, we
compare the long-run average costs between priority rules, based on the direct analog of the classic c-𝜇
rule when we add abandonments, with more complicated threshold policies in a discrete-event simulation
study. We focus on a multi-server model where preemption and abandonments during service are not
allowed, and when service and abandonment times are no longer exponentially distributed.
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There are several venues for future research. Characterizing the optimal policy in general is of clear
interest. For example, one way to show the optimality of switching curve policies is to show convexity
and submodularity of the value function for the discounted cost problem and of the relative value
function for the long-run average cost problem. We have attempted to prove these results in general,
but up to this point have been unable to do so. Extending versions of Theorems 4.5 and 4.6 to when
abandonments during service are not allowed is also of interest. In the latter case, the allocation decision
now impacts the abandonment rates and holding costs per unit time, which suggest stronger conditions
than those in Theorems 4.5 and 4.6 are needed to prove the optimality of static priority rules. Another
extension is one in which there multiple classes in each phase of service, but one class always having
priority over the other. While priorities reduce the complexity of such a proof using inductive or sample
path arguments, the number of cases to consider remains high. Lastly, another venue is the study of
asymptotically optimal policies akin to the analysis in Larrañaga et al. [31] or in James et al. [19] for
parallel queues with abandonments.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/
S0269964822000213.
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A. Appendix

Parameter cases when P1 performs best
A.1. Additional simulations when cv = 1.6

Parameters were systematically varied to examine further when to use various policies, keeping other
parameters fixed. The coefficient of variation, cv, was fixed at 1.6. Recall that the main text reports the
case when 𝜇1 and 𝜇2 are systematically varied. Varying holding cost rates ℎ1 and ℎ2 also shows that P2
performs well when the extended c-𝜇 inequality favors P2 (Figure A.1). Policy P1 performs well when
this inequality favors P1. In addition, we again find cases when a non-priority rule, in this case policy
Exh, outperforms both priority rules, but the gap between Exh and P2 is small in these cases (∼0.1%).

Varying abandonment rates 𝛽1 and 𝛽2 (Figure A.2) yields situations when policy P2 can perform
better than P1 even when the extended c-𝜇 inequality favors P1. In addition, we find several cases when
the threshold policy P1(5) performs better than the other heuristic policies, albeit it is close to P2 (∼0.3%
away). By contrast, the extended c-𝜇 inequality provides perfect guidance when varying the arrival rate
𝜆2 to phase 2 or the joining probability 𝑝 (Figure A.3). That is, for these values of 𝑝 and 𝜆2, policy P2
performs better than P1 when the extended c-𝜇 inequality favors P2, whereas policy P1 performs better
than P2 when the extended c-𝜇 inequality favors P1.

A.2. Additional simulations when cv = 0.4

Parameters were again systematically varied as before except the coefficient of variation, cv, is set to 0.4
as opposed to 1.6. Here, policy P2 performs best for all choices of 𝜇1 and 𝜇2, but its improvement over

Figure A.1. Average cost comparison for the multi-server model when cv is 1.6 and holding cost rates
ℎ1 and ℎ2 are varied.
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Figure A.2. Average cost comparison for the multi-server model when cv is 1.6 and abandonment rates
𝛽1 and 𝛽2 are varied.

Figure A.3. Average cost comparison for the multi-server model when cv is 1.6 and the joining proba-
bility 𝑝 and arrival rate 𝜆2 are varied.
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Figure A.4. Average cost comparison for the multi-server model when the cv is 0.4 and service rates
𝜇1 and 𝜇2 are varied.

Figure A.5. Average cost comparison for the multi-server model when the cv is 0.4, and holding cost
rates ℎ1 and ℎ2 are varied.
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Figure A.6. Average cost comparison for the multi-server model when the cv is 0.4, and abandonment
rates 𝛽1 and 𝛽2 are varied.

Figure A.7. Average cost comparison for the multi-server model when the cv is 0.4 and joining proba-
bility 𝑝 and arrival rate 𝜆2 are varied.

P1 is small (<5%) when the extended c-𝜇 inequality is violated. Thus, the extended c-𝜇 inequality can
still help guide which priority rule performs well when varying service rates 𝜇1 and 𝜇2, but may not
always yield the best policy (Figure A.4).
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Table A.1. Percent samples that policy yields lowest average costs in parameter cases when P1 is best
for a majority of samples.

Policy

𝜆2 𝜇1 𝜇2 𝛽1 𝛽2 𝑝 cv ≈P2 load P1 P2 P1(5) P2(5) Exh Inc c-𝜇 Ext. c-𝜇

0 4 4 0.1 3.0 1.00 0.6 3.5 93.8 0 3.5 0.4 1.9 0.4 49.1 0
3 4 4 0.1 3.0 0.25 0.6 2.9 86 0.3 0 0 0 13.7 48.3 0.3
0 12 4 3.0 0.1 0.25 0.6 1.1 85 10.4 0.7 3.8 0 0.2 82 86.4
3 4 4 0.1 3.0 1.00 0.6 3.9 81.6 0 4.3 14.2 0 0 49.1 0
0 12 4 3.0 0.1 0.25 1.4 1.1 77.9 18.7 3.4 0.1 0 0 73 79.3
3 12 4 3.0 0.1 0.25 0.6 1.9 76 19.9 0.5 0 0.6 2.9 74.4 77.4
3 12 4 3.0 0.1 0.25 1.4 1.9 72.2 17.7 7.9 0.5 0 1.8 68.5 73.5
0 12 4 3.0 3.0 0.25 0.6 0.9 69 17.8 4.9 4 0 4.3 70.7 83.3
3 12 4 3.0 3.0 0.25 0.6 1.4 68.8 23.9 4 1.7 0 1.7 69.2 91.9
3 12 12 3.0 0.1 0.25 1.4 1.0 66.8 29.3 3 0.1 0 0.7 56.9 75.3
0 12 4 0.1 0.1 0.25 0.6 1.3 66.8 30.6 0 2.7 0 0 81.4 93.7
3 12 4 0.1 3.0 1.00 0.6 2.5 66.5 0.4 0.5 23.4 1.5 7.7 66.9 0.4
0 12 12 3.0 0.1 0.25 1.4 0.8 66.2 33.3 0.5 0 0 0 58.6 74.7
3 12 4 0.1 0.1 0.25 1.4 2.0 63.5 26.2 0 8.5 0 1.8 77.3 86.1
3 12 4 0.1 0.1 0.25 0.6 2.0 63.4 23.4 5.1 7.4 0.8 0 78 86.5
3 12 12 3.0 0.1 0.25 0.6 1.0 60.8 29.5 0 9.6 0 0.1 74.6 69.2
0 12 4 0.1 0.1 0.25 1.4 1.3 58.9 33.8 0 7.2 0 0 73.3 84.7
3 12 4 3.0 3.0 0.25 1.4 1.4 57.3 30.5 9.8 2.5 0 0 55 83.1
0 12 12 3.0 0.1 0.25 0.6 0.8 57.1 25.6 0.7 13.4 3.1 0 70.2 65.5
0 4 4 0.1 3.0 0.25 0.6 2.5 56.4 9.9 0 29.4 0 4.3 52.1 9.9

Meanwhile, varying holding cost rates ℎ1 and ℎ2 (Figure A.5) reinforces the use of the extended c-𝜇
inequality. Policy P2 performs well when this inequality is satisfied and policy P2 performs well when
this inequality is not satisfied. In addition, we again find cases when a threshold policy, that is, P1(5),
that outperforms both priority rules, but the gap between this threshold policy and P2 is small in these
cases (∼0–1%).

Varying abandonment rates 𝛽1 and 𝛽2 (Figure A.6) yields situations when policy P2 can perform
better than P1 even when the extended c-𝜇 inequality is violated. This occurs when the abandonment
rate 𝛽2 is low, reinforcing what we found in Scenario 1 (and in the single-server model): that neglecting
phase 2 when there are few abandonments at 2 can yield poor performance. In addition, we find several
cases when the threshold policy P1(5) performs better than the other heuristic policies, albeit it is close
to P2 (≤1% away).

Last, we varied the joining probability 𝑝 and the arrival rate 𝜆2 (Figure A.7). Similar to what we
observed when we varied 𝜇1 and 𝜇2, policy P2 performs better than policy P1 in all choices of 𝑝 and
𝜆2, and best in most in most choices, but its improvement over P1 is small (<1%) when the extended
c-𝜇 inequality is violated. Thus, the extended c-𝜇 inequality can still help guide which priority rule
performs well when varying service rates 𝜇1 and 𝜇2, but may not always yield the best policy.
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