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ABSTRACT 

The thermodynamic transport properties of special rel at ivistic imperfect 
fluids, as found in dense stars, are investigated. These properties, 
which include thermal . and electrical conductivities, electrothermal 
coefficients, and bulk and shear viscosities may be formulated in terms 
of the momentum distribution functions obtained from the solution of 
the Boltzmann transport equation. Spherical harmonic solutions of the 
relaxation form of the relativistic magnetic Boltzmann transport equation 
have also been obtained which^aive the non-equil ibrium momentum distribution 
function perturbation f-f1, ' = Af(p) in terms of electromagnetic and 
thermal fields. 

I. INTRODUCTION 

The thermodynamic transport properties (TTP) of imperfect fluids, 
initially developed by Marshak (1941),Mestel (1950), and Lee (1950), have 
been refined by Hubbard (1966), Lampe (1968a,b), Hubbard and Lampe (1969), 
Canuto (1970), Solinger (1970), Canuto and Solinger (1970), Kovetz and 
Shaviv (1973), and Flowers and Itoh (1976,1979). These works culminate in 
calculations which include complicating effects of inter-ionic correla­
tions and strong degeneracy. Nevertheless, these calculations do not 
represent a piecewise complete formalism. In particular, they do not 
contain complete descriptions of all transport properties such as thermo­
electric effects and both bulk and shear viscosities. Moreover, little is 
know about magnetic effects of the TTP. Finally, the existing TTP 
calculations are largely based on highly simplified or very complex 
solutions of the governing Boltzmann transport equation. It is obviously 
desirable to overcome each of these limitations. 

In this work, we extend the formalism of relativistic fluid theory to 
study the TTP of imperfect fluids including thermal and electrical 
conductivities, electro-thermal coefficients, and bulk and shear viscosi­
ties. We also obtain spherical harmonic solutions of the relativistic 
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Boltzmann transport equation which permit us to include magnetic effects 
into the TTP. Such effects are of importance in dense stellar magnetic 
plamsas such as in white dwarfs where surface magnetic fields of B - 10 -
10 gauss are observed (cf. Liebert, Angel, and Landstreet 1975), 
pulsars, and neutron stars where B ̂  10 gauss are expected (Ruderman 1974). 

II. THE THERMODYNAMIC TRANSPORT PROPERTIES 

For a relativistic fluid, the thermodynamic transport properties 
are obtained from the electrical current flow four-vector J and the 
energy-momentum flow rate (the stress-energy) four-tensor T01^ which 
are given by 

_ oo co 

Ja = 2h~6 / qUa f (xy,pv) d4p = 2h~J / q (Yva,Yc) f (mcVW) dJp 

2h-3 / q (va,c) f d3p = (Ja,nqc) , 
o 
oo oo 

2h"3 / p V f(xy,pv)d4p = 2h"3 /_ (pa,W/c)(Yv
b,Yc) f (mc2/W)d3p 

3 

(1) 

o _ 

2h 

„a.,b „a " P v , p c 

Wv7c, W 
f d3p 

Sab,Fa/c" 

F /c, w 

Here we have identified the (classical) three-forms of the particle 
number density n, the total energy density w, the electrical current 
density J , the.energy flow rate (flux) F , and the classical stress-
energy tensor S . In obtaining these forms we have employed the four-
vector momentum p a = mil01 = mY(v ,c) = (p ,W/c) where W is the relativistic 
total energy of a fluid element. 

We may anticipate a solution form of the Boltzmann transport equation 
(see section III below) such that 

f.f(°) = T(p) (3f(0)/^) [(8e/8vb)(8vb/3xa) + L(e,y,T)(3T/9xa) - qEa] . 

• [rQ v
a + rx (re/m) E

a + •••] , (3) 

where f̂  ' is the equilibrium distribution function given by 

f(0) = [exp(e-y)/kT + e] -1, 9 =(+i,o,-l), (4) 

where L(e,y,T) = £(e-y)/T + 8y/8T], and where r and r-, are geometrical coeffi­
cients which depend on VT, E_, and B_. 

This solution of the relativistic Boltzmann transport equation, 
when inserted into equations (1) and (2) yields the following forms 
for the transport properties 

2h "3 / W f d3p = PQc
2 + U + (K^ 9 (8T/3xa) + (K2)

a Ea + (5) 
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Ja = 2h"3 / qVa f d3p = ( L n )
a b (3T/3xb) + ( L 1 2 )

a b Eb + ••- , (6) 

Fa = 2h-3 / Wva f d3p = (L 2 1 )
a b (3T/3xb) + U 2 2 )

a b Efa + — , (7) 

Sab = 2h"3 / paVb f d3p = Sab + ( M j ) 3 ^ (3T/3xC) + ( M 2 )
a b c Ec +••- ,(8) 

s f = [-P + (c-2n/3) (3vc/9xc)] 6ab + 2n eab + 2 i> u?b , (9) 

where n, ?, and ty are, respectively, the coefficients of shear viscosity, 
bulk viscosity, and vorticity, and where e = h £(3v /3x ) + (9v /3x )J 
and toaD = h [j3va/3xD) - (3vD/3xa)] are, respectively, the rate of 
deformation and vorticity tensors. Also in equations (5) to (8), K., 

L.. and M. (i,j=l,2) are coupling coefficient tensors to be determined. 

The classical thermo-electric transport coefficients may be obtained 
from equations (6) and (7) according to 

Ea = ( a _ 1 )ab jb " eab (dJ^*b) , (10) 

Fa = -Kab (3T/3x
b) - ̂  Jb , (11) 

where a . , K . , e . , and IT , are, respectively, the tensor coefficients 
of electrical conauctivity, thermal conductivity, thermo-electromotive 
force, and Peltier heat transfer. 

III. THE RELATIVISTIC BOLTZMANN TRANSPORT EQUATION 

The relativistic Boltzmann transport (RBT) equation may be obtained 
from the four-dimensional formalism developed by Synge (1957), Stewart 
(1971), and exploited by Kovetz and Shaviv (1973). In that formalism, 
Liouvilie's theorem becomes 

L(f) = pa (3f/3xa) + (q/c) F"3 Pg (3f/3p
a) = - (pYXy/

c) Q(f)> (12) 

where f(xa,p^) coincides with the classical (phase space) momentum 
distribution function f(t,_r,£). Also, pa = mUa = m^(v ,c) = (p ,W/c) and 
Pa = %g P = (P >"W/c) are tjie foiir-^ectoc, momenta of the scattered 
particles, such that pap = p - W /c = m c ; XY is the unit world 
velocity of the scattering1 particles, Q(f) is the scattering integral, and 
Fa3 is the Maxwell electromagnetic field tensor (cf. Panofsky and Phillips 
1955). Straightforward calculations, noting that p^\ = - W/c , leads to 
the form 

(c2/W) L(f) = (3f/3t) + v- (3f/3r) + q(£ + vxB/c) • (3f/3£) = Q(f), (13) 

which is equivalent to the "standard" or pre-covariant form of the RBT 
equation. 

To simplify equation (13) we may introduce the relaxation time 
x(p) in place of the scattering integral Q(f) such that 
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(f(°)-f)/T(p) = Q(f) = 2h"3 / d V / dfi' I v-vc I (da/dft') 
r s - - s (14) 

.[_f'fs (] " 0 f ) (] " © s
f s ) • f fs (1 - 0fl) (1 - Vs U • 

Here f and f' refer to the distribution functions before and after collisions, 
f and f refer to the distribution functions for the test and scattering 
particles, da/dW is the differential scattering cross-section, and 
0» ©s = (

+1> 0, -1) for Fermions, Maxwellons, and Bosons. 

To solve equation (13) in the steady state limit, where ,3i/3t = 0, 
we may first suppose that the distribution function f̂  (e«VUT), 
given by equation (4), and y(T) are specified, and that 3f/3_r - 8f' '/3_r 
but 3f/3£ * 3f ̂  V3£. We may then cast equation (13) into the dimensionless 
form 

v(x) (f-f(0)) + [l + x x o)(l+x2)"%]'3(f-f(0))/9£ = K(x) • x ( l + x 2 ) ~ h , ( 1 5 ) 

where x_ = £/mc, _a = qE/mc, w = qB/mc, (16a) 

v(x) = T(P ) " 1 , K(X) = c(3f(0)/3e) [ L ( X ) (3T/3r) - q E ] , (16b) 

and L(x) = L(£,y,T) = [je-u)/T + 3y/3"r] . (16c) 

To obtain a spherical harmonic solution of the RBT equation (15), 
we may now suppose that 

f - f ^ = U(x) = ^ m U £ m ( x ) hm (e,*). (17) 

Here we take the vector _a = qE/mc along the principal axis (6,<f>) = (0,0), 

K_(y,0) in the 4> = 0 plane, but keep the vectors x_(6 ,$) and to_ (3,A) 
arbitrary. In terms of the momentum (x-) space unit vectors (u , u , u ), 
we have x e * 

_a = a TcosQ u - sinG iLl , (18a) 

x_ x w = xco-i -sing sin(X-<}>) ue + [cos3 sine - sing cos6 cos(A-<j>)Ju ,Wl8b) 

Inserting these relations (17) and (18) into the RBT equation (15) 
and using the recurrence, combinatorial, and orthogonality properties 
of the spherical harmonics, we obtain a set of inhomogeneous coupled 
ordinary differential equations for the radial momentum functions U„ (x). 
These equations are 

ax-(j+2) d r>2) -I + (j+i) d r -u+ iv -l + 
dx [_ J+l,nJ j + l , n dx |_ j - l , n j J,n 

+ Uj,n-1 [ ^ k j,n^>] + U j , n ^ + y(x)hj,n^] + < 1 9 > 

+ Uj,n+1 &(x)Vn(
e' X0- K( x) x( 1 + x2)"i'29j,n^)=

0' 
where j = 0,1,2,...; n = -j,...0,...+j, and where 
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aj,n = [<J2 " n^ ^ - ill*5- (2°a) 

9j,n = ^ ^ 6j,l [cosY 6o,n + sinY (6l,n " 5-l,n>/2%] ' <2°b> 

y(x) = co(l + x2yh, (20c) 

kjjn(B,X) = [(j-n+l)(j+n)]
}'2 • I sinS e

i(V2"X), (20d) 

h. (g) = n cos3 e17T/2, (20e) 

*J j > n ( M ) = [(j+n+l)(j-ni]
J'2 * \ sin0 e ^ 7 2 " ^ . (20f) 

In the weak electric field case, equations (19) may be solved by 
supposing a series expansion of the form 

U j n W = U S ) + aUJn) + a ^ n ) + - " • <21> 
Inserting this expansion into equations (19) and separating terms according 
to powers a }f3ds to a set of recurrsive differential equations for 
the function U. ' . The solutions, for s = 0,1, are 

+1 r "1 
UlS} = ,E Mnn- LK( X ) X (1 + x Z ) J 9ln'(Y)' (22a) 

<i}- w {-«2 fc [*2 " i j ' K } . < 2 2 b » 
^X"- ' ! - * 2 ^ 1 ^]^} . (22c) 

where the coefficients M^' are elements of the (inverse) matrix 
p.q 

M: |̂(j) = f(v+yh. ) <5 + y(k. 6 ,. + £ . 6 ,)]~1 . (23) 

p,q L J,P P,q J,P p,q+i J,P p,q-iil v ' 
To extract the geometrical nature of tbie» solutions (22), it is 

convenient to define the projected functions U. . , via 
U(-S) 2 U.(s\ gn ,(Y). (24) 
jn = jn;n' 9ln'v w v y 

n'=-l 
The weak electric field magnetic solution thus becomes 
f-f(0) = U(x) = Z I Z 2 U.(s), as gn , N. P. (cose je

1"*. 
" j=0 n=-j s=0 n'=-l Jn;n ln ,jn Jn (25) 

Expanding in terms of the projected functions II. ' ,, introducing the 
(s) J ' explicit forms of g1ni, N. , P. , and U ; , as determined from equations 

(22) to (24), leads to the result 

f-f(0) . [ E $ ( 1 V , - g {cos, [xC0(x, - Jfa (1 • W Cl(x) • •••] • 
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^ d + x ^ r 2
 S l ( X ) + •••_ 

where the coefficients C (x), C,(x), S (x), and S,(x) are given in 
detail by Edwards and Mercian (1980). l 

(26) 

full 

Returning to physical variables via equations (20), we find the 
distribution function perturbation to be given by 

f-f <°> = T(V) (6f(°)/6£) L(e,y,T) (6T/6r) - q E| . (27) 

I v r o C0 S Y + ^o s^n^| " (TqE/m) |C, cosy + S, siny] + "'[•> 

which agress in form with that supposed by equation (3). 

IV. SUMMARY 

It is expected that the solution of the relativistic Boltzmann 
transport (RBT) equation obtained here will be important in the calculation 
of realistic hydrodynamics models of highly collapsed magnetic stars 
such as white dwarfs and neutron stars. Further effort, including the 
investigation of the relevant collisional cross-sections and relaxation 
rates, as well as numerical implementation of these solutions necessary 
to specify the magnetic thermodynamic transport properties, is in progress. 
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DISCUSSION 

J. COX: Do you have any numbers yet? 
EDWARDS: No, that's next year's work. 
KEEIEY: Will you be able to handle fields strong enough with your 

weak electric field approximation to be relevant to hydrodynamic 
cases? 
EDWARDS: I can find a theoretical solution of the arbitrary electric 

field problem. I did not present that here, but it is not too much 
work. 

KELLEY: Is it possible to extend this to include the Schwarzchild 
criterion? 
EDWARDS: I think so. It may be more appropriate to do it in 

general, however. The parametric reduction is even harder. There 
has been some work done on the relativistic problem, but not in this 
detail and only in the case where the collision integral functions 
are not functions of momentum. We know that in a real fluid, this 
is not true. 
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