ON SOME COMBINATORIAL INTERPRETATIONS OF SLATER'S IDENTITIES

BY
R. P. LEWIS

AbSTRACT. Four combinatorial interpretations of identities due to L . J. Slater that have recently been published are slightly incorrect. I show how they may be corrected and also provide a new interpretation of one of these identities.

In [2] and [3], theorems are given that provide combinatorial interpretations of various of the identities found by Slater [1]. It seems to me that four of these theorems, namely 2.3 and 2.4 in [2] and 1.5 and 1.6 [3], are not quite correct as stated, though each becomes correct if an extra hypothesis is imposed. I have been in correspondence with M. V. Subbarao about this matter and it is at his suggestion that I write this note.

With the notation of [2] and [3], I propose that the following hypotheses be included in the statements of these theorems:

$$
\begin{equation*}
\text { [2] } 2.3: a_{s-1} \geqq a_{s}+s(t=2 s-1) \text { and } a_{s} \geqq a_{s+1}+s-1(t=2 s) \text {. } \tag{1}
\end{equation*}
$$

[2] 2.4: $a_{s}>a_{s+1} \geqq a_{s+2}+s-1(t=2 s+1)$ and

$$
\begin{equation*}
a_{s} \geqq a_{s+1}+s-1(t=2 s) . \tag{2}
\end{equation*}
$$

[3] 1.5 and $1.6: b_{s+1} \geqq b_{s+2}+s-1(t=2 s+1)$
(and, in 1.6, ". . .minimal difference 2").
Take, for example, [3], 1.5. This states that, for each positive natural number, n, $u(n)=v(n)$, where
$u(n):=$ the number of partitions of n with parts $\equiv \pm 1, \pm 4, \pm 6$ or $\pm 7 \bmod 16, v(n):=$ the number of partitions of n into an odd number of parts, say $n=b_{1}+\ldots+b_{2 s+1}$, which also satisfy

$$
\left\{\begin{array}{l}
b_{i} \geqq b_{i+1}+2(\text { for } 1 \leqq i<s), \tag{3}\\
b_{s}>b_{s+1} \geqq s \text { and } \\
b_{i} \geqq b_{i+1} \geqq 1 \text { (otherwise) } .
\end{array}\right.
$$

Received by the editors January 27, 1989.
The AMS Subject Classification (1980): 10A45.
© Canadian Mathematical Society 1989.

The proof given in [3] calls on the identity

$$
\begin{align*}
\sum_{s=0}^{\infty} \frac{q^{2 s(s+1)}}{(q ; q)_{2 s+1}} & =\left(q^{8} ; q^{8}\right)_{\infty}\left(q^{3} ; q^{8}\right)_{\infty} \tag{4}\\
& \times\left(q^{5} ; q^{8}\right)_{\infty}\left(q^{2} ; q^{16}\right)_{\infty}\left(q^{14} ; q^{16}\right)_{\infty}(q ; q)_{\infty}^{-1}
\end{align*}
$$

([1], (86), p. 161). The coefficient of q^{n} on the right-hand side of (4) is $u(n)$. On the left-hand side, the coefficient of q^{n} is the number of representations of n as

$$
\begin{equation*}
n=2 s(s+1)+c_{1}+\ldots+c_{2 s+1} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
c_{1} \geqq c_{2} \geqq \ldots \geqq c_{2 s+1} \geqq 0 \tag{6}
\end{equation*}
$$

and the argument of [3] claims to build such a representation out of a partition $n=$ $b_{1}+\cdots+b_{2 s+1}$ (satisfying (3)) by taking

$$
\left\{\begin{array}{l}
c_{i}=b_{i}-3 s+2 i-1(1 \leqq i \leqq s) \tag{7}\\
c_{s+1}=b_{s+1}-s \\
c_{i}=b_{i}-1 \text { (otherwise) }
\end{array}\right.
$$

However, if $b_{s+1}<b_{s+2}+s-1$, then $c_{s+1}<c_{s+2}$ and (6) is violated. For example, I find that $u(13)=14$, whereas $v(13)=15$; the culprit is the partition $5+3+2+2+1$ of 13 .

On the other hand, it is a simple matter to check that the inverse of the transformation (7) converts a representation (5) to a partition satisfying (2) as well as the conditions (3). So, if we include (2) among the conditions defining the partitions counted by $v(n)$, then it is true that $u(n)=v(n)$ for each positive natural number, n.

Theorem 2.3 in [2], augmented with (1), follows from the identity

$$
\begin{equation*}
(q ; q)_{\infty} \sum_{s=0}^{\infty} \frac{q^{2 s^{2}}}{(q ; q)_{2 s}}=\left(q^{8} ; q^{8}\right)_{\infty}\left(q ; q^{8}\right)_{\infty}\left(q^{7} ; q^{8}\right)_{\infty}\left(q^{6} ; q^{16}\right)_{\infty}\left(q^{10} ; q^{16}\right)_{\infty} \tag{8}
\end{equation*}
$$

which is (83) in [1]. Another interpretation of (8) is:
Theorem. For each natural number, n, the number of partitions of n into an even number, say $2 s$, of parts in which the s largest parts differ from each other by at least 4 is equal to the number of partitions of n into parts congruent to $\pm 2, \pm 3, \pm 4$ or ± 5 modulo 16 .

I leave the proof to the diligent reader.

References

1. L. J. Slater, Further identities of the Rogers - Ramanujan type, Proc. London Math. Soc., Vol. 54 (1951-52), pp. 147-167.
2. M. V. Subbarao, Some Rogers - Ramanujan type partition theorems, Pacific J. Math., Vol. 120 (1985), pp. 431-435.
3. M. V. Subbarao and A. K. Agarwal, Further theorems of the Rogers - Ramanujan type theorems, Canad. Math. Bull., Vol. 31 (2) (1988), pp. 210-214.

Mathematics Division,
School of Mathematical and Physical Sciences,
University of Sussex, Falmer,
Brighton BN1 9QH, U.K.

