
THE INVERSE MULTIPLIER FOR 
ABELIAN GROUP DIFFERENCE SETS 

E. C. JOHNSEN 

1. Introduction. In (1) Bruck introduced the notion of a difference set 
in a finite group. Let G be a finite group of v elements and let D = \di], 
i — 1, . . . , kf be a ^-subset of G such that in the set of differences {dcldj} 
each element ^ 1 in G appears exactly X times, where 0<\<k<v— 1. 
When this occurs we say that (G, D) is a v, k, X group difference set. Bruck 
showed that this situation is equivalent to the one where the differences 
{didf1} are considered instead, and that a v,k,\ group difference set is 
equivalent to a transitive vy k, X configuration, i.e., a v, k,\ configuration which 
has a collineation group which is transitive and regular on the elements 
(points) and on the blocks (lines) of the configuration. Among the parameters 
v, k and X, then, we have the relation shown by Ryser (5) 

(1.1) (v - 1)X = k(k - 1). 

A group difference set (G, D) is called abelian when G is abelian and cyclic 
when G is cyclic. 

A multiplier of a group difference set (G, D) is an automorphism <t> of G 
under which 

(1.2) D* = bDa, 

where a and b are in G. When b = 1 in (1.2) then <j> is called a right multiplier 
of (G, D). When G is abelian, all multipliers are right multipliers and (1.2) 
can be written as 

(1.3) D* = Da, 

where a is in G. The sets of multipliers and right multipliers of a group dif­
ference set themselves form groups. Cyclic group difference sets and their 
multipliers have been studied extensively (see (6, chapter 9) for an introduc­
tion to this area and the bibliography to that chapter for an up-to-date, 
fairly complete list of references). Bruck (1), Mann (3), and Menon (4) have 
expanded this study to the abelian case and have carried over to that case 
many of the results originally obtained for the cyclic case. 

The inverse mapping of a group G, 

(1.4) r.g-^g~\ geG, 
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is not a multiplier of a group difference set (G, D) unless G is abelian, since 
only then is this anti-automorphism of G also an automorphism of G. Here 
we investigate the possibility for the inverse automorphism to be a multiplier 
of an abelian group difference set. In what follows, we give various results 
which describe somewhat the difference sets for which i is a multiplier, and 
then, using some of this information, prove that for certain abelian groups 
no such difference sets exist. Elementary parts of the theories of abelian groups, 
abelian group characters, and cyclotomic numbers are the principal tools that 
we employ. 

The author is indebted to Professor Marshall Hall, Jr., for indicating the 
general ideas underlying the proofs of Theorems 3.1 and 3.5 and for bringing 
to his attention the example due to Richard Turyn. 

2. Preliminaries. Let (G, D) be a v, k, X abelian group difference set. Let 

r 

(2.1) v = I I Pi\ et > 0, 
1 = 1 

where ply . . . , pr are the distinct primes dividing v and pi = 2 in case v is 
even. As an abelian group, G is the direct product of its Sylow ^-subgroups, 
S(pt), 

T 

(2.2) G = ® n S(pt). 
-i=i 

Each S (pi), in turn, is a direct product of cyclic subgroups of orders which 
are powers of pit 

(2.3) S(Pt) = ® I I C(pt
eii), etj > 0, i = 1 , . . . , r, 

where C{pieij) denotes the cyclic group of order pt
eiJ and where 

Si 

(2.4) «i = 2 eu> i = 1, . . . , r. 

Referring to (2.3), we say that S (pi) is of type (pi6il, . . . , pieui) and has sf 

components. In the special case where ea = ei2 = . . . = eisi we say that 
S(pi) is of uniform type. Combining (2.2) and (2.3) we can express G as a 
direct product of cyclic subgroups, 

(2.5) G = ® i i ® n c(pt
eij). 

We let Bij be the generator of C(piei>), 1 < J < st, 1 < i < r, whence the 
set of these generators is a basis for G, i.e., we can express any g in G in the 
form 

(2.6) g = I l I I Bi?ij, 0 < y tj < pf* - 1. 
t = i j = i 
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Let 

(2.7) ê* = max {e^}, 1 < i < r. 

Then the maximum order of any element in G is 

(2.8) v = I l PÎ". 

and the order of every element in G divides v. 
We let ® = {xi}, i' = 0, . . . , v — 1, be the abelian character group for G 

where xo denotes the principal character. We note here that if g in G is of 
order/, then Xi(g) is an / th root of 1 for every Xi in © and that every / th root 
of 1 is represented exactly z//f times among the values {xz(g)}> i' = 0, . . . , 
i; — 1. With g and A denoting arbitrary elements in G, some of the basic pro­
perties satisfied by the characters of G are 

(2.9) xt(gh) = Xi(g)xM, 0 < i < v - 1, 

«MO) s*M"fo î; i : 

S *•« - ft i = 0, 
and 

(2.11) 

where 

(2.12) Xo(g) = 1, xi(l) = 1, K * < v - 1. 

For any set of elements i ï in G we define 

(2.13) Xi{H) s X XiW, 0 < « < v - 1. 
htH 

For any positive integer w we let f„, denote exp (2-iri/w), the principal primitive 
wth root of 1, and let R(£w) denote the field of the wth roots of 1 over the 
rational field. 

We now assume that i is a multiplier of (G, D), 

(2.14) D' = Da, 

where a is in G. Now for Xu in ©, 

Xti(£l)Xt»(£) = S X) Xw(^z_1)xM(^i) 

= E Z Xuid^dj) 

= k-X + \Xu(G), 

or 

f&2, « = 0, 
(2.15) x „ P ) x ^ ' ) = u _ X ) ^ 
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Since xu(D
l) = Xu(Da) = Xu{P)Xu{a), (2.15) becomes 

(2.16) *•(!»*«-{£_», Hi 

3. Descriptive and restrictive theorems. We may characterize a v, k, X 
abelian group difference set (G, D) as a transitive v, k, X configuration according 
to Bruck as follows. Let the elements of the configuration be the elements in 
G, g\ = 1, g2, . . . , gv> and the blocks of the configuration the sets Dgr = {df gr\ 
i = 1, . . . , k}, r = 1, . . . , p. Then every block has exactly k elements and 
since dt gr = dj gs if and only if dt~

ldj = gr gs~
x for r 9^ S, every pair of dis­

tinct blocks have exactly X elements in common, which shows that we indeed 
have a v, k, X configuration. The right regular representation of G is a transi­
tive and regular collineation group on the elements and blocks of this con­
figuration. The elements and blocks of this configuration we shall also call 
the elements and blocks of (G, D). 

Let L fix a block of (G, D), i.e., (Db)l = Db for some b in G. Then b~lD' = Db 
or Dl = Db2, which shows that t is a multiplier of (G, D). The full converse 
to this, if true, would seem to be considerably more difficult to prove. We can, 
however, give two limited converses to the above and also obtain some infor­
mation about the effect of the multiplier i on the elements and blocks of (G, D). 
We note that if Dl = Da, where a is a square in G, a = b2, then (Db)l = Db 
and L fixes a block of (G, D). 

THEOREM 3.1. Let i be a multiplier of a v, ky X abelian group difference set 
(G, D). Then both v and X are even. If k is odd, then i fixes a block of (G, D). 

Proof. Let Dl = Da, a in G, where D = \di), i = 1, . . . , k. Then the set 
{di-1a-1} is the set {di} in some order. So for dr and ds in D, r 9e s, 

(3.1) dr~Hs = (ds~
la-^(dr-^a-1), 

where ds~
la~l and dr~

la~l are also in D. Now, since k < v — 1, there exists 
an element ^ 1 in G which is not of the form d2a, d in D, i.e., not of the form 
dr~

lds, r y£ s, where dr = ds~
1a~'1. Such an element then appears, by (3.1), 

an even number of times among the differences {df^-dj}. This says that X is 
even. Now assume that v is odd. Since G contains no elements of order 2, we 
have for all i,j, i 9* j , that (d~ldj)2 9e I or dt

2a 9e d/a. Then, since k > 1, 
there is an element 9^1 in G which is represented exactly once in the form 
d2a, d in D, i.e., exactly once in the form dT~lds, r 9e s, where dr = ds~

1a~1. 
Such an element appears, by (3.1), an even number of times in the form dr~

lds, 
r 9e s, where dr 9^ ds~

1a~1, whence an odd number of times, total, among the 
differences {di~ldj\, which contradicts the fact that X is even. Hence, v must 
be even. Now let k be odd. Every element h 9^ 1 in G must appear an even 
number of times (zero allowed) in the form h = dflds, r 9^ s, where dr = 
ds~

la~l, i.e., an even number of times (zero allowed) in the form h = d2a, 
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d'mD. The odd element in the set {dt
2a}, i = 1, . . . , k, then, must be d* 2a = 1, 

d* in D. This says that a is a square in G, whence i fixes a block of (G, D). 

The above proposition regarding odd k also follows as a corollary to (1, 
Lemma 3.3). 

In the next theorem we obtain the same result but with a somewhat different 
hypothesis. 

THEOREM 3.2. Let i be a multiplier of a v, k, X abelian group difference set 
(G, D), where v is even and the 5(2) in G is of uniform type. Then i fixes a block 
of (G, D). 

Proof. Let Dl = Da, where a in G is of order/ . In (2) Chowla and Ryser 
showed that when v is even, k — X must be a square m2 > 0. Hence, for %u 
in ®, u 9^ 0, (2.16) becomes 

Xu2(D)Xu(a) = m2, 
or 
(3.2) Vxu(a) = ±m/Xu(D). 

By (2.6) we may write a in terms of a basis of G as 
T Si 

a =• FI I I Btj
xij, 0 < *„ < pt

eij - 1, 

where pi = 2 and J3i;- is of order 2e i, 1 < j < Si. Assume that a is not a square 
in G. Now every Btj

XiJ, 1 < 7 < su 2 < i < r, being of odd order, is a square 
in G. Also, for each Xijy 1 < j < Si, which is even, Bif1' is a square in G. 
Hence, there is an xiq, 1 < q < Si, which is odd. Let r be the order of Biq

Xl*. 
Then 2ei|xi^r. Now r|2e i , and since (xiç, 2) = 1, we have 2ei|r, whence r = 2e i . 
As a result 2ei\f. Now the order of every element in G divides v; hence Xu(g) 
is in i?(fi) for all g in G and w = 1, . . . , v — 1. Hence, by (3.2), VXM(#) is 
in R(£i) for all u = 1, . . . , v — 1. Now for some c, 1 < c < y — 1, Xc(#) 
= fr, whence Vxc(#) = dbfo/ is in R(^). Since y is even, the only roots of 1 
in J?(fi) are powers of f?> whence f»2/ = 1 or 2/|t;. Now 2^+1|2f but 2~ei+1 )(v, 
a contradiction. Hence the assumption that a is not a square in G is false. Thus, 
a is a square in G, whence t fixes a block of (G, Z>). 

The following result is derived as a corollary to (1, Lemma 3.2). 

COROLLARY 3.3. Let 1 be a multiplier of a v, k, X abelian group difference set 
(G, D) where v is even. The set of all elements of G left fixed by 1 is the elementary 
abelian subgroup F in G of order 2Sl, where Si is the number of components in the 
5(2) in G. If (Db)1 = Db for some b in G, then (Dx)1 = Dx if and only if x 
is in Fb. 

THEOREM 3.4. Let 1 be a multiplier of a v, k, X abelian group difference set 
(G, D) where v is even. Then k — X is a square m2 > 4 and m\gcd (v, k, X). 
Parametrically, we may write vf k and X as 
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(3.3) v = — [(m + a)~ — 1], k = m(w + a), X = ma, 
a 

where a > 1 is an integer dividing m2 — 1. TTze values of m and a have opposite 
parity. If we consider these possible v, k> X configurations to within complements 
and take 2k < », then a < m — 1. 

Proof. Again, by Chowla and Ryser (2), since v is even, k —• X must be a 
square m2. Since fe < z; — 1, we have by (1.1) that m2 > 1 or w2 > 4. 

Let DL = P a where a in G is of order/. Then every Xu{a) can be represented 
as 

(3.4) Xu(a) = f/^, 0 < /*(«) < / - 1, 

where n(u) is an integer depending on u. With (3.4), (2.16) becomes 

0.5) x«2(D) = ilk - \)triu\ « S o ! 
or 

where ew = 1 or - 1 , 1 < w < z; — 1. For any g in G we multiply both sides 
of (3.6) byjcuir1) to obtain 

(3.7) i xMtg-1) = {tuï2r
Mxu(s-\ » * o, 

whence summing (3.7) on u we obtain 

(3.8) £ z xuidtg-1) = k + m £ 6„ rv-*w*.(rl). 
i = l w=0 M = 1 

Now 

5 * * * - > - f e ;;*: 
whence 

i=i M=o w , g not li g not in D ; 

hence if g = d is in Z), (3.8) becomes 

v-k °-1 

(3.9) v—z= E ^r2r ( w )xw(0, 
w M = = l 

while if g is not in D, (3.8) becomes 

(3.10) =£= S e . f v - ^ x w C g - 1 ) . 
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Now the right sides of (3.9) and (3.10) are algebraic integers and the left 
sides are rational; hence the left sides are rational integers. This says that 
m\k and m\v — k, whence also m\v and m|X; hence m\gcd (v, k, X). Let X = ma, 
k = ra/3, and v = my, where a, /3, and y are positive integers. We have m2 

= k — X = (£ — a)m, whence @ = m + a and k = m(m + a), and 

m2 = k2 — v\ = (02 — ay)m2 = [(m + a)2 — ay]m2, 

whence y — a~~x\(m + a)2 — 1] or v = ma~l[(m + a)2 — 1]. Since y = a_1(m2 

— 1) + 2m + a, we have a:|m2 — 1. Now, by Theorem 3.1, X must be even; 
hence at least one of m and a must be even. Thus if m is odd, a must be even. 
If m is even, then m2 — 1 is odd, whence a must be odd. If 2k < v, then 

2w2 + 2ma < — [m + 2wa + a2 — 1] = -— (m2 — 1) + 2m2 + ma 
a a 

or 
a2 < m2 — 1. 

Hence, a < m — 1. 

We now state a non-existence theorem for the case when v is even in terms 
of a certain property of the 5(2) in G. 

THEOREM 3.5. Let (G, D) be a v, k, X abelian group difference set where v 
is even and the 5(2) in G has $i components. If 2sl < &/X + 1 = m/a + 2, 
then L is not a multiplier of (G, D). 

Proof. Let 2Sl < k/X + 1 = m/a + 2. Suppose i is a multiplier of (G, D)y 

Dl = Da, a in G, where D = {di}, i = 1, . . . , k. We partition D into equiva­
lence classes Diy . . . , Dt where dt and dj, i ?* jy are in the same class if and 
only if dt

2a = dj2a. Note that dt
2a = dfa if and only if (d^dj)2 = 1, i.e., 

two different elements of D are in the same class if and only if the differences 
they yield are elements of order 2 in G. By Corollary 3.3, G has exactly 2Sl — 1 
elements of order 2. Each of these elements must appear exactly X times 
among the differences {dcHj}. Let at be the number of elements in Du i = 1, 
. . . , t. Then we have 

(3.11) (2S1 - 1)X = É <r,(<rt - 1) = É <r(
2 - £ <r,. 

i = l 1 = 1 2 = 1 

Since 

t = i 

(3.11) becomes 

(3.12) fe + (2S1 - 1)X = E ' A 
2 = 1 

Now, by the theorem of the means, 
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i=l \ i=l / / t 

whence, from (3.12), 

(3.13) k + (2*i - 1)X > k2/L 

By (3.3), (3.13) becomes 

m(m + a) + (2Sl — l)ma > ra2(m + a)2 / / 
or 

(3.14) m + 2Sla > m(w + a)2/t. 

Now assume that at most one <JI = 1 while a--,- > 2 for j ^ i. If cry > 2 for 
all j , then 2/ < k, and if cr̂  = 1 and *j > 2,7 ^ i, then 2(* - 1) + 1 = 2t - 1 
< k. Hence, in either case, 

(3.15) t < (k + l ) /2 = (m2 + ma + l ) /2 . 

Applying (3.15) to (3.14) we ultimately obtain 

(3.16) 2s'a > m + 2a - (2m + 2a)/(m2 + ma + 1). 

Now 2m -\- 2a < m2 + ma + 1 since m > 2; hence, since 2Sla is an integer, 
(3.16) becomes 

2Sia > m + 2a 
or 
(3.17) 2*i > m/a + 2 = jfe/\ + 1, 

a contradiction. Hence, at least two or/s must equal 1, which means that there 
is at least one element 9e 1 in G which can be represented exactly once in the 
form d2a, d in D, i.e., exactly once in the form dr~

lds, r ^ s, where dr = ds~
1a~l. 

Such an element appears, by (3.1), an even number of times in the form dr~
lds, 

r 7e s, where dr ^ ds~
1a~1

J whence altogether an odd number of times among 
the differences {d^dj}, a contradiction since X is even. Hence our original 
supposition is false, and thus 1 cannot be a multiplier of (G, D). 

COROLLARY 3.6. Let (G, D) be a v, k, X abelian group difference set where v 
is even and the S'(2) in G is cyclic. Then 1 is not a multiplier of (G, D). 

Proof. The S(2) in G has sx = 1 component. Now 21 = 2 < k/X + 1 
since X < k; hence we have the corollary by Theorem 3.5. 

COROLLARY 3.7. Let (G, D) be a v, k, X cyclic group difference set. Then 1 
( — 1, if we represent G by the additive group of integers modulo v) is not a multi­
plier of (G,D). 

Proof. If v is odd, we have the corollary by Theorem 3.1. If v is even, then, 
since the S(2) in G is cyclic, we have the corollary by Corollary 3.6. 

4. Remarks and examples. From the results in the previous section it 
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appears that the existence and behaviour of the multiplier i for a v, k, X 
abelian group difference set (G, D) depend considerably on the structure of 
the 5(2) in G. It would be interesting to know whether the multiplier i must 
always fix a block of (G, D). As a purely formal matter, Theorem 3.5 rules 
out other cases besides those for which the 5(2) in G is cyclic. In fact, for 
v = 6480 = 24-34-5, k = 342, X = 18, where m = 18 and a = 1, we have for 
2*i < 18/1 + 2 = 20 that *i = 1, 2, 3,4, so that here no abelian group of 
order v can have a difference set with the multiplier t. The inequality condition 
in Theorem 3.5, however, is not sufficient to rule out every abelian group 
having no difference set with multiplier t. This can be seen in Example 1 
below. However, within the limits of this condition it is not known by the 
author how strong Theorem 3.5 really is. Its proof rests on the fact that D 
contains a component Dt with an odd number of elements which are not of 
orders 1 or 2. The form of this condition used in our proof, however, is special : 
namely, that there is a Dt in D which has only one element of this kind. Never­
theless, a condition such as this inequality cannot be eliminated altogether. In 
the two examples below we show for the two lowest values of v given by 
Theorem 3.4, 16 and 36, that this inequality is tight. 

Example 1. v = 16 = 24, k = 6, X = 2. Here G = 5(2). The abelian groups 
of order 16 are of types (24), (23, 2), (22, 22), (22, 2, 2), and (2, 2, 2, 2). Now 
251 < 6/2 + 1 = 4 or 5i = 1 which only eliminates type (24). For si = 2 
and G of type (22, 22) with generators a, b where a4 = b4 = 1 we have a 
difference set D = {1, a, b, a2b2, a3, bs} which is fixed by i. For s\ = 3 and G 
of type (22, 2, 2) with generators a, by c where a4 = b2 = c2 = 1 we have a 
difference set D = {a, a2, as.b, cy be} which is fixed by t. For s\ — 4 and G 
of type (2, 2, 2, 2) with generators a, b, c, d where a2 = b2 = c2 = d2 — 1 we 
have a difference set given by Bruck (1), D = {a, b, c, d, ab, cd), which is 
fixed by t. We note that for Si = 2 and G of type (23, 2) with generators a, 6 
where a8 = b2 = 1 there are only two non-equivalent difference sets (two 
v, kj X abelian group difference sets (G, D) and (G, £) are called equivalent 
if £ = Z>g, g in G, where 0 is an automorphism of G), which may be repre­
sented by Di = {1, a, a2, 6, a5, a66} and D2 = {1, a, a2, J, a56, a6}. Neither Dx 

nor J92 has the multiplier L. Since t commutes with all automorphisms of a 
group, either all or none of a set of equivalent abelian group difference sets 
has the multiplier t. Hence, for this group G there are no difference sets with 
the multiplier t. However, Theorem 3.5 cannot show this. 

Menon (4) has constructed v,k,\ abelian group difference sets (G, D) 
where G is the elementary abelian group of order v = 22n, k = 22n~l — 2W~1, 
and X = 22w~2 — 2n~1, n = 2, 3, . . . . For n = 2 we have the same group as 
the one in Bruck's example above. In these groups every element is of order 2 
and hence is its own inverse, so i fixes all elements and blocks of (G, D). In 
a sense this is a trivial situation, since here i coincides with the identity 
multiplier of (G, D). 
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Example 2. v = 36 = 22-32, k = 15, X = 6. An abelian group of order 36 
has an 5(2) either of type (22) or (2, 2). Now 2<* < 15/6 + 1 = 3£ or sx = 1, 
which eliminates type (22). For Si = 2 and G having an 5(2) of type (2, 2) 
and an 5(3) of type (3, 3) with generators a, b and £, d, respectively, where 
a2 = b2 = â — dd = 1, we have the following example due to Richard Turyn. 
The fifteen elements aci,b(cd)i,ab{cd2)\ cd\ c2d\ where i = 0, 1,2, form a 
difference set which is fixed by t. 

REFERENCES 

1. R. H. Bruck, Difference sets in a finite group, Trans. Amer. Math. Soc, 78 (1955), 464-481. 
2. S. Chowla and H. J. Ryser, Combinatorial problems, Can. J. Math., 2 (1950), 93-99. 
3. H. B. Mann, Balanced incomplete block designs and abelian difference sets, Illinois J. Math., 

8 (1964), 252-261. 
4. P. Menon, Difference sets in abelian groups, Proc. Amer. Math. Soc, 11 (1960), 368-376. 
5. H. J. Ryser, A note on a combinatorial problem, Proc. Amer. Math. Soc, 1 (1950), 422-424. 
6. Combinatorial mathematics, Carus Maht. Monograph. No. 14 (Math. Ass'n. Amer., 

1963). 

National Bureau of Standards, 
Washington, D.C. 

https://doi.org/10.4153/CJM-1964-076-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-076-5

