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Abstract. The notion of minimal self-joinings for conservative nonsingular actions
is defined as a restriction on the nature of rational self-joinings. The need to consider
rational joinings is demonstrated by showing that any two type II, actions whose
Cartesian product is ergodic have type 111, nonsingular joinings. Lastly, actions of
all Krieger types with minimal self-joinings are constructed. Hence these actions
are prime and commute only with their powers.

0. Introduction

In [R], the notion of minimal self-joinings for a finite measure preserving transforma-
tion was introduced. Its original purpose was to provide a means of constructing
examples of dynamical systems with certain prescribed behavior. This notion has
grown and evolved since [R], [JR].

Our purpose here is to generalize the notion of minimal self-joinings (in fact, just
of 2-fold minimal self-joinings) to nonsingular conservative systems. Our basic
motivation is to use this concept to construct nonsingular actions of various Krieger
types which are prime and commute only with their powers. The original issue
which began this work was a problem proposed by Choksi and Eigen concerning
ergodic transformations on homogeneous measure algebras. This problem raised a
number of questions in the Lebesgue case. In particular they asked whether an
infinite measure preserving transformation could be prime. They also asked whether
T x S could have Bernoulli factors, when T is zero entropy mixing and S is type
II1 with no Bernoulli factors. Our work answers the former in the affirmative; the
latter question remains open.

Aaronson and Nadkarni in [AN] construct an example of an infinite measure
preserving transformation with no nontrivial o-finite factors. Their example is a
group rotation and does have non o-finite factors. Maharam has asked whether
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there exist infinite measure preserving transformations with no nontrivial 0-c0
sub-o-algebras. Our examples all have ergodic Cartesian squares and no nontrivial
factor algebras at all. (We let factor algebra mean factor sub-o-algebra, and identify
factor algebras (mod 0); the trivial algebras are the full algebra and {J, X}.)

The notion of a joining of two measures is by now well understood. In the measure
preserving case, it is natural to require the joining to also be invariant for the product
action. In the nonsingular case, it would seem natural to ask that the joining simply
be nonsingular for the product. This is inadequate. As we shall see, it does not
reduce to the measure preserving definition. In fact, we show that any two finite
measure preserving actions whose direct product is ergodic have nonsingular joinings
of type III, for any 0 <A < 1. As with much of our work, this argument leaves many
open questions (cf. Question A). They are more appropriately stated through the text.

In order to obtain a useful definition of minimal self-joinings we must restrict
ourselves to a class of joinings we call rational (cf. § 2). The joinings critical for
our needs, i.e. relatively independent joinings over factor algebras and joinings
supported on a single graph, are rational. Moreover any rational joining of type
I1,’s is of type II,. Thus we do obtain the finite measure preserving theory as a
special case.

Minimal self-joinings is defined as a condition on an action with respect to a
certain collection of equivalent measures. In the finite measure preserving case there
is just one measure, the invariant measure, to consider, but in the nonsingular case
no particular measure is distinguished.

The definition also differs from the measure preserving case in that we restrict
all rational joinings, not just the ergodic ones. The reason is that an ergodic
component of a nonsingular joining need not be a joining of measures equivalent
to the original [A]. This is true in the measure preserving case though, so once more
our definition reduces to the standard one there.

We investigate the structure of rational joinings when they are of minimal type.
Our arguments suggest many open questions.

Lastly, we construct actions of each Krieger type having minimal self-joinings
with respect to a sufficiently large class of measures to guarantee they are prime
and commute only with their powers.

1. Preliminaries

1.1. Basic definitions

Let (X, %, 1) be a probability measure space. A nonsingular transformation (or
nonsingular automorphism) T is a bijective bimeasurable map of X such that T(A)
is null if and only if A is null. We let u o T denote the measure u ° T(A) = u(T(A)).
The Radon-Nikodym derivative of T', i€ Z, is defined to be

du-T'
x).
n (x)
After discarding an invariant null set we may assume that the functions w; are

w(T; x)=w/(x)=
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positive and finite everywhere. We have,
wis;(x) = wi(x)w,(T'x) p-a.e. and

deu=J'fo T'w;du for all fe L'(w). (1.1.1)

A dynamical system (X, B, u, T) consists of a standard space (X, 8), a Borel
probability measure u, and a nonsingular automorphism T:(X, B, u) > (X, B, ).
In the sequel, all measure spaces are standard probability spaces. If the measure u
is completed with respect to null sets then (X, %, ) is a Lebesgue probability space,
and we may complete the measures and make use of the properties of Lebesgue
spaces without explicit references. We may sometimes simply write (X, u, T) or
(T, u) instead of (X, B, u, T).

A nonsingular factor map is a map ¢ :(X, B, u, T)> (W, @, p, U) such that:

(i) ¢7(2)< B,

(ii) m o ¢ '=p, i.e., they are equivalent measures, and

(iiif) po T=U-o.
In this case we say that (W, @, p, U) is a (nonsingular) factor of (X, B, n, T). If ¢
is a nonsingular factor map then ¢~ '(2) is a T-invariant sub-o-algebra of @. It
can be shown that all nonsingular factors can be identified in this way (up to
nonsingular isomorphism); we will use both representations interchangeably. We
note that the measure p can be replaced by an equivalent measure, namely o ¢ ',
so that ¢ becomes measure preserving. If no transformations are involved, we do
not require condition (iii) of the definition but still call ¢ a nonsingular factor map.

A transformation T is conservative if u(A\lJ,.., T'A) =0 for all Ae . This is
equivalent to Zfio w; =00 p-a.e. [M1]. It is easy to see that an ergodic nonsingular
automorphism is not conservative if and only if it is the shift map on Z. We shall
use the following version of the ergodic theorem.

Hurewicz erGopic THEOREM 1.1.1. ([H].) Let (X, B, u, T) be a dynamical sys-
tem. If T is conservative and f is integrable then

- Z,n:—olf° T'w,
Jim == =k,
where E, denotes the usual conditional expectation function, and $ the sub-o-
algebra of invariant sets.
1.2. The ratio set
We shall need a few basic facts from Krieger's classification of nonsingular
automorphisms - we refer to [Kr] or [HO], [S], [W] for further details and proofs
of the statements below.
Let T be a conservative ergodic nonsingular automorphism of (X, %, n). The
ratio set r(T) of T is defined to be
r(T)={teR"U{0}:VAe B, u(A)>0,Ve >0,
dn#0and B<c A, u(B)>0, such that
T"(B)c A and |w,(x)—t|< e Vxe B},
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r(T) depends only on the measure class of u, and r(T)\{0} is a closed multiplicative
subgroup of R*. Furthermore, r(T) is an invariant of orbit equivalence.

r(T)={1} if and only if (T, «) admits an equivalent o-finite invariant measure;
in this case we say T is type I If the equivalent invariant measure is finite, T is
type I1, and if it is infinite it is type II.. If 0€ r(T) then (T, n) admits no equivalent
o-finite invariant measure and is said to be type II1I. Further, T is type III,,0 <A <1,
if (TYy={A":neZ}u{0}, T is type III, if r(T)={0,1}, and T is type III, if
r(T)=R" U {0}. Transformations in different Krieger types are not orbit equivalent,
hence not isomorphic.

It is clear that a factor of a type II; transformation must be type II,, but a type
11, may have type I1I factors.
1.3. Disintegrations
Let ¢:(X, B, u)—> (W, @, p) be a nonsingular factor map. Then there exists (see
e.g. [M: § 2]) a disintegration of (X, %, u) with respect to ¢. That is, foreach we W
there exists a measure u,, on B N ¢~ '(w) such that:

(i) The real valued function

wop,(Ane (W)

is 9-measurable,
(i) p={ pwdp(w).
Furthermore, condition (ii) determines the disintegration almost uniquely. We may
denote the disintegration by {u,(y)}. It follows from (ii) that for any integrable
function f,

deM=Jdeun~dp(W)- (13.1)

Let 9 be a factor of (X, B, u, T), and let uy, T, and ¢ denote the factor
measure, transformation and map. We have the following useful formula.

du°T dug o T, d 0 ° T
’; (x)= "j 2 (p(x)) "j;” D" (x) p-ae., (13.2)
~ Ha o (x)

where {u, ()} denotes the disintegration of p with respect to %. This equation
follows from the relation,

d o d o @ T d ) ° T
IX" B2y = J a2 () BT L g forall Ae B,
du dpg dtex)

which can be proved using (1.1.1) and (1.3.1).
We refer to [S: § 6] for a proof of the following theorem.

ERGODIC DECOMPOSITION THEOREM 1.3.1. Let (X, B, u, T) be a dynamical system.
There exists a standard space (Z, €) and a nonsingular factor map 6:(X, B, u)~>
(Z,€,0),L=mo0", suchthat (X, B, u) disintegrates over 8, i.¢., there is a disintegra-
tion {v,}, and furthermore

(i) for all ze Z, v, is nonsingular and ergodic for T,

(ii) if u is invariant under T then so is every v,,
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(iii) if u is type II then so is every v,,

(iv) v.(67z})=1 for all ze Z. In particular, v, 1 v, whenever z,7 z,,

(v) 07 (€)= S and 7'(€)= (mod u).

(vi) (Uniqueness) If6':(X, B, u)>(Z', €, ') is another nonsingular factor map
and {v'} is a disintegration of (X, B, u) with respect to 8' satisfying (i)-(v)
then there is a nonsingular isomorphism ¢ :(Z, €,{)—>(Z', €', ') such that
Vi =V, for ae. zeZ.

(vii) When X is nonatomic, T is conservative if and only if v, is not the shift on Z.
1.4. Joinings
Let (X, B, 1), (X3, B,, 1,) be two standard spaces. A joining of u, and u, is a
probability measure 4 on %, X &, such that
A(AXX,)=u,(A) forall Ac B,, and
A(X,%x B)=pu,(B) for all Be &,.
Suppose (X, B, 1), (X5, B,, ) have a common factor (W, @, p), i.e., there are
nonsingular factor maps
®1:(Xy, By, 1) > (W, D, p), and
©2: (X2, B, 2) > (W, D, p).
Let {4, .}, {t2..} be the disintegrations of x, and u, over ¢, and ¢,, respectively.

The relatively independent joining & of w, and w, over (W, p) (or over the factor
algebra @) is defined by

a= J- K X 2, dp(W).

It is easy to check that & is a joining (cf. [F2], [JR] for an in-depth treatment and
basic properties of joinings that will be used here).

A nonsingular joining of two dynamical systems (X,,%,,u;,T,) and
(X3, B,, o, Ty) is a joining 4 of w, and u, such that T, x T, is nonsingular for g.
If (W, 2, p, U)isafactorof (X,, B,, u,, T;) and (X;, B, u,, T>), then the relatively
independent joining of u, and u, over (W, p) is a nonsingular joining of (X, u,, T)
and (X,, p,, T3). Clearly, product measure is also a nonsingular joining.

We will be mainly interested in self-joinings, that is nonsingular joinings & of
(X, p1, T) with (X, u,, T), i.e. joinings or nonsingular joinings over the same space
with perhaps different but equivalent measures. A non-singular self-joining & is
said to be of graph form if i is supported on some (single) graph

G, ={(x, T'(x)}.
A nonsingular joining totally supported on a union of graphs G; is called a graphic
joining.
1.5. Notation
wi(x) =‘1de'—;7—' (x) (When i=1 we drop the subscript.)
1

du,o T!
w?(y) =—”‘; 2(»)
2
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_d o (T X T,)'
di

We let {v,} stand for the ergodic decomposition of the nonsingular joining 4. v,

and »? denote the X,- and X,-marginals of »,. fi, and 4’ denote the vertical and

horizontal fibre measures of i, respectively.

(x, y).

‘si(xa )’)

2. Rational joinings

THEOREM 2.1. Let (X, By, u,, Ty) and (X,, B,, u», T>) be two finite measure
preserving systems such that T, x T, is ergodic. For every A\,0< A <1, there exists a
nonsingular joining i of w, and w, such that (T, x T, i) is conservative ergodic type
I1L,.

The proof proceeds in a series of lemmas. What we will do is construct, on a
series of Rohlin towers, modifications of product measure. Each successive
modification will project on its marginals to x, and u,, and in fact the Radon-
Nikodym cocycle will be a coboundary. The weak limit of these modifications will
be our desired measure.

By a rectangle we mean a set of theform AX B, Aec B,, Be B,.Let Ac B,, Be B,
and 0 <A < 1. We will describe a function w, 5: AX B - {1'},.z with the properties:

(i) {(x,y):wap(x,y)=A'}is a finite union of rectangles,
(ii) X po({(x, )i wa p(x, ) = A} = 3u,(A) px(B), and
(iii) for all x,€ A, yo€ B,

J Wa (X0, ¥) dua(y) = p,(B) and J wa (X, yo) duy(x) = u,(A).

B A

Select i(j) =»; o so that

12
21" -1)

Inductively select n(j)€Z™ so that

=27 = T n(haG) <=7,

j=

a(j) <2774

This gives
3 n(j)agi)=4.
iz

Pick A,c A with w,(A) = 3u,(A) and B,< B with u,(Bo) = 3u.(B). Partition A,
into subsets A;x,j=1,...,0,k=1,...,n(j) with u,(A;,)=a(j)u,(A). This is
possible since Y n(j)a(jlu,(A)=pu,(A)/2.

Similarly partition Ag, Boand Bginto A}, B;, and Bj, with u,(A],) = a(j)u,(A)
and ps(B;i) = po(Bji) = a(j)ua(B).
Define w, 5 to be:
(a) A, for (x, y)e AgX By or AgX Bg,
(b) AP for (x,y)€ A;x X B}, or A}, x B;;, and
(c) 1 otherwise.
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Conditions (a) and (b) are clear. For (c) we compute the case for x,€ A,. The rest
are symmetric.
For some unique j, k, xo€ A,

J- WA,B(xo, y)duxy)= J WA,B(XOa J’) duy(y)

By

+_[ ' WA,B(xo, )’) d#z(}’)""[ WA‘B(Xan) d#z(Y)

6\ Bk

= Aua(Bo) + A" uy (Bl + pua BO\Blx)
= pa( By) +% pm2(B)+ ux(Bji)

+ (AT = Do Bji) + o BO\Bj k)
= MZ(B)+()‘—;—1+(A"““— 1)a(j)> p2(B)

=u,(B) since (A7 ~1)a(j)=(1-1r)/2.

We now show how to use w, 5 to modify a joining & of w, and u,. Suppose we
are given such a joining. Suppose further we are given a partition H of X, x X,.
Suppose we are given a rectangle R = Ay X B, satisfying:

(i) 4 restricted to R is of the form c¢,(u; X i), i.e. a constant multiple of product
measure.

(ii)) For i=0,1,...,3N —1, for (x,y)e R, dii o (Tyx T3)/dii(x, y) =d, is a con-
stant,

(iii) Fori=0,1,...,3N—1, T} x T3 R) = A, x B, is contained in a single element

of H, and the sets A; x B; are disjoint.

We call the sequence of sets A, X B; a (ji, H)-pure column of length 3N.

On such a pure column we can modify 4 as follows. On the level sets
Tix T5(R)=A;x B;, N<i<2N, define

A'(DA (A xB))= J Wax sl T1 (%), T2 (»))xp(x, y) di.

A;x B;
Leave (i unchanged elsewhere.

'

LEMMA 2.1. For i’ defined as above, i’ is a joining of u, and wu, and for any set
DeH, i'(D)= i(D).
Proof. Notice that &' is equivalent to & and

A

di
dii

Thus for any De %,,

(%, ) =wan(T7'(x), T7'(y)) for (x,y)€ A;x B;, and 1 elsewhere.

ﬁ’(DxXz)=ﬁ(((D>< xzm(zb_' Ax B)) + 'Y (DAAYXB).
i=N

i=N
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Now 1 on A% B;is codi{ X ), so

ﬁ’((Dr‘\A,—)XB,—)=COd,~ J‘ (J WAanO(X, y) dﬂz) dI.L]
DnA; By

= codipo( Bi) (D N A;)
=g ((Dn A;) X B;).

Thus 4'(D x X,) = 2(D % X,) = u,(D). Similarly, the other marginal is still pu,.
If De H, then any A, x B, that intersects D nontrivially is actually contained in
D. A computation identical to that given above now tells us 2'( D) = a(D). O

Suppose we had some countable collection R', R ..., of bases for (4, H)-pure
columns of height 3 N, all of which were disjoint. We could simultaneously modify
all of the columns to obtain a new joining of w; and u,. We call the new joining
' obtained this way the A, N-modification of ji on the columns over R', R?,. ... Let
{P;} and {Q;} be refining and generating sequences of partitions of X, and X,,
respectively. We will define a sequence of joinings ;. We start with go= u, X u,.
Inductively we want:

(i) f; is equivalent to (i, and dji;/dj, takes on values {A’} only and its level
sets are disjoint unions of rectangles.

(ii) g+, is a A, N;-modification of f; on some collection of (i&;, p; X Q;)-pure
columns. N;,;=2"*"’N. and the columns cover a set of fi, measure at
least 0.9.

(iii) Because of (i) and (ii) above, there is a countable partition E; of X;x X,
into rectangles so that on any element of E;, di,/di, is a constant. Let
dy,...,d, be a finite collection of atoms of E; with 4,(;_, d)>1-27""
Let B, be the atoms of P, X Q,,, and A=d, n B,, for some k, u. The value
N, is so large that on a set of /i; measure at least 1—27'% for0<n=< N,,,,
for all D as above,

N

el

) > /\’A(T{>< T%(x, ) =09N . fio(A).

j=-n
Lemma 2.2. For (X,, B,, 1., T)) and (X,, B,, u», T,) finite measure preserving
processes with T, x T, u, X u,-ergodic, there is a sequence of joinings satisfying (i), (ii)
and (iii) above.

Proof. We start with o=, X u,. Suppose we have constructed 4;. We need first
to select N,,,. We require Ni,,=2'"""*""N, and having selected d,, ..., d, atoms
of E; with 4,(J;_, d;)>1-27"" the Birkhoff theorem gives us a further lower
bound for N,,, so that for 0=n< N,,,, for all A as in (iii),

Niyy—n-—1

L xa(T{xTix ) Z=09N..  fdo(A)

j==n

on a set of (x, y) of {i, measure at least 1 —27'°". Using this N,,, we must construct
the pure columns. In (X,, T;) select a Rohlin base F;,, for a tower of height 3N,,,
and error 0.01.
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Now F,,x X, is a rectangular Rohlin base for T, x T,. The span

IN, T .
V (T)xT,) (E;v Py, X Qi)
j=0
partitions F;,, x X, into rectangular bases for (i;, P,,, X Q;+,)-pure columns of
height 3N,,,. Let &,,, be the A, N;,,-modification of j on the columns over these
bases. O

CoroLLARY 2.3. The joinings [i; converge weakly to a joining i of u, and u,.
Furthermore, T, x T, is nonsingular for i and the ratio set of T, x T, with respect to
(i is contained in {A'} U {0}.

Proof. Since f,,, is a A, N;,,-modification of {; on (f;, P;+; X Qi,,)-pure columns,
for any set

De P X Qisy, frisi (D) = (D).

As the P, x Q, refine, for any j =i, 4,(D) = (i;,(D). Thus & is well defined and finitely
additive on the dense algebra (not o-algebra) of sets generated by |J); P, x Q..

Of course & projects to w, and u, on its marginals. This then implies that 4
extends to a joining measure on the o-algebra B, x %B,, since 4 satisfies the
Kolmogorov extension criteria.

Let L;=TN"Y(F)u T*M'(F)). For (x, y) & L, x X, we easily compute

dp, o (T, x T,)

_dlzi—l °(TyxT,)
i )=
i

(x,y -
di; -,

(x,y)

as it is on level T™N(F,)x X, of the Rohlin tower that the wa p are first introduced,
and on the T>™(F,) x X, they are removed.

Now p,(L;)<27'%*', Thus for 4, and gd-a.e. (x, y), (x, y) belongs to only finitely
many L;, and hence as i increases

dp, o (T, x T>)

i, (x,y)

ceases to vary on an ever larger subset of X, X X,. Since 4, @& weakly, this limit
must be

di o (T, x T>)

i (x, )

and must lie in {A;},.z. We conclude T, X T, is nonsingular and its ratio set with
respect to 4 is contained in {A‘} U {0}. a

To complete Theorem 2.1 we only need show that A itself is in the ratio set.

Lemma 2.4. For fi; as constructed above, for any set C € P,x Q; there is a subset
C'c C with

Lo (C)Y>0440,_,(C)—271001),
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C' is contained in the first N, levels of the Rohlin tower over F;x X,. For (x,y)e C'
there is an e(x, y), 1=e(x, y)<2N', so that
(T, x )" (x, y): C'> C is 1-1

mapping C' into the middle N; levels of the Rohlin tower over F, x X,. Lastly,

dii, o (T, X T;) <™

di;

Proof. Let d,,...,d, be atoms of E_, with g4, (U, d)>1-27""
Let C;=Cnd; and 4;i-(U;_, G) = ,,(C)=27"""". Let G< F,x X, consist of
those (x, y) such that for all j,

N,-1

kZ xc{T{x T5(x, ) =09N,io(C;) and
~0

(x,y)=A

2N,—1

) XC,(T,; X T:(X, Y= 0-9Nilio(cj)-

k=N,
If (x, y) ¢ G, then either

(a) for all 0=k < N,, T¥x T5(x, y) does not satisfy (iii) of Lemma 2.2, or

(b) for all N;=<k<2N,, Ttx T%(x, y) does not satisfy (iii) of Lemma 2.2.

Thus 2o( G)> u(F;) (1—-2-27'%). On any of the (&;_,, P11 X Q;+,)-pure columns
in the Rohlin tower over F; X X,, xc, is a constant on levels. Hence G is a union
of bases of such pure columns. Let AXx B be a base for a pure column in G. For
each C; select subsequences

0=<ki<ki<---<kj;;<N; and N,=kj<ki<---<kf;<2N,
with
(Tyx T))"(AxB)= G,
(T)x T)*"(Ax B)<= C;, and
1(j)>0.9N,do( C)).
Consider the set Ay, x Byu Agx Bg on which wa, g (x, y) = A. Let
1)
C'= U U (T xT)(Agx Byu Ajx Bf) < C.
AxXxBc G u=1
Now dfi;_,/di, is a constant on d; and hence C;. Call its value §;.
iji—l(cl) = Z I(j)‘sjlzo(G)/z
J
=0.9N,(1-2-27") u\(F) Z 8iito(C;)/2
J

0.81 _loi .
27(1‘2'2 lo)z,‘laiﬂ(cj)
j

0.81 : 1
—8(1 -2 2"0'),&,«_1((:(\ U dj)

J=1

2
0.4/.2,'_1(6‘1‘)—2—(10“‘”.

Vv
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For Ax B in G, for (x, p) € (T, x To)*"(Agx Byu AS X BY), define e(x, y) = ki —ki,.
Now (T x T,)*>™(x, y):C’'n G- Cis 1-1 and since dfi;_,/ dji, is a constant on C;,
diiy o (Ty X Tp) <™

dg;_y

(x,y)=1.

But in constructing i, for (x, y)e C'n C; we obtain
dii; o (T; X T)*>*»

7, (x,y)
ki di;_, o (T x T,)*>»
= Wap o (Ty % T) ™4, ) == (x, ) = . O
i1
COROLLARY 2.5. A is in the ratio set of T, X T, acting on 4.
Proof. To begin, consider the set
NN~ INAIN -1
L= U TFEVv U T'(F).
J=N=3N,_, i=2N,Z3N,_,
If (x,y)¢ L,x X, and 0=k <3N,_, then
di; o (T, x To)* Aty o (T, x T,)*
AT ()= R (k)

dg; ag,;_,
as along the piece of orbit (x, y), (Ty(x), To(¥)), ..., (TE(x), TE(y)) we never cross
from using to not using some w, 5. Now

12N, 12
plL)= N, 15“217(,37-

Thus a point (x, y) les in at most finitely many L. For any set C, £(C)> 0, select
i large enough and C e P, x Q; so that 4(C A C)=(A/100)£(C) and also by the
previous lemma there is a C'< C, C’ in the first third of the tower over F,x X,

Aioi{CY>034,_(C)r=034(C).

Furthermore, i is so large that
“(U L,-) <0.14(C)=014(C).
Jj=i

For (x, y)e C' we know
dii; o (T; X Tp)*>
di;
If furthermore (x, y) £ U;i,. L;, then
dii o (T x T) ™
dia
Now @(C\U7L, L)) =0.24(C).
Letting

(x,y)=A.

d‘io T.xT e(x.y)
(3, ) = B o 2 ey =a
i

C':{(xay)e C-’Q U Lj:(X,y)EC and (TIX Tz)e(x,y)e C},
j=i
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1(C)202 3(C)~— A(C) —— A(C)
pA=I=0cn 100 100"
=(0.2—-0.02)4(C)>0.
For (x,y)e C', (T, x T,)**”(x,y) e C and
di o (T, x T,)*>”
dp

and so A is in the ratio set. [

(x, y)=A,

Theorem 2.1 shows that weakly mixing finite measure preserving transformations
are not strongly simple [A], thus answering a question of Aaronson’s [A].

Question A. What Krieger types are obtainable as nonsingular joinings of two actions
of particular types? Can type III, of Theorem 2.1 be replaced with other Krieger
types? Type 111, as a joining of II,’s is an easy modification of our argument. Can
II,, be obtained? Beyond the obvious restriction that a II, joining implies II,
marginals, are other restrictions forced? How many distinct isomorphism classes of
type 111, can be obtained? If the original systems are of other Krieger types, what
types of joinings can exist?

Definition. Let fi be a nonsingular joining of (X,, 8,, u;, T\) and (X,, B,, p2, T5).
We say that 4 is a rational joining of wu, and u, if

(i) for u,-a.e. x,

(a(x’)’l)=w2(Y1) i
@(x, y,) wz(}’z),

(ii) for u,-a.e. y,
cB(x,,y)=wl(x1)
GG(X2, }’) wl(x2),

We may regard w'(x) and w?(y) as functions on X, X X, defined g-a.e. Define

a’-ae.

a(x,y)
w'(x)*(y)
¢(x, y) is defined and finite positive fi-a.e. By integrating the fiber measures in (i)
and (ii) above, it is clear the equalities in (i) and (ii) actually hold g-a.e. Thus
c(x, y) is ji-a.e. constant on vertical and horizontal fibers. The converse is also true,
i is rational if ¢(x, y) is fi-a.e. constant on vertical and horizontal fibers.

It follows that a rational joining of finite measure preserving systems is finite
measure preserving, since c(x, y) = d(x, y) and | &(x, y) diiy=1,s0 @ =1 ji-a.e.

We note that the ergodic components of a (conservative) rational joining need
not be nonsingular joinings (see [A: p. 260]).

c(x,y)=

PROPOSITION 2.6. The following nonsingular joinings are rational.
(i) Product measure.
(ii) Joinings of graph form.
(iii) Relatively independent joinings over factor algebras.
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Proof. 1t is clear that product measure and joinings of graph form are rational. Now
let & be the relatively independent joining over the factor algebra 9. By (1.3.2),
di o (TxT)
di

Aty Ty ° (TX T)
dlzé(x,_v)

_d,‘z@"(TX T)

i (¢(x,y)) (x,y) fi-a.e.
Mo

(x, )

By the properties of the relatively independent joining,

dig o (TXT) . dug T .
iz (TXT) (six ) =22 T (o(x)) g-ace.
diig d/J'Q
So
di o (TxT dug o T. d e T d oT
i o(TXT) (o yy e Ta gy oo T ) o T,
dp dug dptg(xy dpgy)
du-T ducT 1
= E ) .
du du dug o Ty
—d—‘(tp(y))
Mo

Thus c(x, y), for fixed y, is independent of x. The symmetric fact is, of course, also
true. O

3. Minimal self-joinings
3.1. Basic properties

Definition. A dynamical system (X, B, u, T) has minimal self-joinings over I, where
I is a class of probability measures equivalent to pu, if for every u,, u,€ I, for
every rational joining & of u, and u., for a.e. ergodic component v, of & we have:

(i) v,=vlx¥2, ie. is the product of its marginals,
or

(ii) v, is of graph form.

For finite measure preserving transformations, minimal self-joinings over {u} is
the same as the usual (2-fold) minimal self-joinings.

Minimal self-joinings restricts the nature of the ergodic components of a rational
joining. We now investigate the consequences of this restriction. We start with a
useful technical result (Proposition 3.1.5) which is essential to a number of later
results.

Lemma 3.1.1. Let (X,, By, uy, Ty) and (X,, B,, u2, T,) be two dynamical systems
and v be a measure on X, x X, nonsingular and conservative ergodic for T, x T,. If
v is nonsingular for T, x I, and

dV°T1XI( )_dV°T,
dv LY =T

(x) v-a.e.,

then v = v' x v?, the product of its marginals.
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Proof. We have
V(A X B) = J‘ [E[XAxBllexl] dv

n— i dvoe TXIi
J T14 Xaxoe (Tox 1)/ ) 220 ()

: | 4
Jim g e (T D) v
i=0 dV x’y

1 i

e ; dv o T
10 xa® Ti)X6(Y) — = ()

- J ll_{l;) dyl o Ti dv
Zizo dVl (x)
= I v (A)xs(y) dv=1v'(A)v’(B). O

LeEMMA 3.1.2. Let i be a rational joining of (X,, B, u,, T)) and (X5, B, p>, T»).
Then for a.e. ergodic component v, of ji, if v, is nonsingular for T, x I, then

dVZO(TIXI)_dV;° T,
dv, h dv!

Proof. Let A={z:v, is T, x I nonsingular}. Since £ is rational,

v,-a.c.

#(x,¥)= ' (x)o’(y)c(x, y) f-ae.,
where ¢ is fi-a.e. constant on horizontal and vertical fibres. So
c(x,y)=c(T\x,y)=c(T\x, T, y) v.-a.e.

Therefore c(x, y) = ¢, a constant, v.-a.e., and

dv, o (T, x T- du,° T, du,o T
v, o (T, >) (x,y)= 1 1 (x) M2 2 (P)e v.-ae.
dv, dp, du,
Using this equality and the chainrule on (T, X T5) o (T, X I) =(T, x I) o (T, x T,) we
obtain
du,o T, du,° T dv,o (T, xI)
B2 () S22 (g = (Tyx, Toy)
du, du, dv,
dv,o (T, x1I du,° T, du,° T
ST l) oyt D g B2 Ty e,
dv, du, du,
So
dv,o (T, x1I) dv, o (T, x I)
————(xy) —— " (T\x, Thy)
dv, B dv,
du,° T, (x) - du,° T, (T,x) raae
—_— —(Tx
dp, dp, l
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Put
dv, o (T, xI)
‘__d_"—"(X,,V)
(x, )= -
85 dp,° T, (x)
du,
Then g is well-defined v,-a.e. and g =g (T, X Tz) v,-a.e. Thus g = K(z) v-a.e. and
dv, o (T, x1
Bt X (= k() 2D (0 s ae,

dv, )

Now let 7./, v:|1,x denote the fibre measures of v, at x and T,x, respectively. Then
by (1.3.2) we have,

deo(TlxI) _dV;oTl dV’T!x
o =S 0 (),
Thus,
du,° T,
dv,| #d‘,u ()
z| Ty x - 1
dV:lx ( ) K(Z) dVLOTl( )
dv! x
Integrating with respect to dv,|.(y) gives,
d
”; L=k Bl 0 b e 31D O

LemMA 3.1.3. Suppose (X,, Ty, u,) and (X,, T, u,) are both ergodic and i is a
nonsingular joining. Further suppose

iL=7Y agu, wherea;z0,) a;=1,
i=1

and each (i; is (T, x T,)-nonsingular. If i! and &} are the marginals of ji,, then for
each i with a;> 0, ii! are equivalent to u;,j=1,2.
Proof. If 1!(A)>0 then u,(A)=E{AXX,)> a;i.(A)>0. On the other hand, if
i (A)>0 then u,(U;__ THA) =1 so £}(U;._o Ti(A))=1 and since T, is
(i -nonsingular, Z!(A)> 0. [
LemMa 3.1.4. Let 4 be a rational joining of (X, B,, u,, T\) and (X5, B,, u>, T>).
Then for a.e. conservative ergodic component v, of i, if v, is nonsingular for T, x I,

du,o T, dvieT, |, e

= v,-a.e.
du, dv}

Proof. Let A={z:v, is T, x I nonsingular}. We show that in equation (3.1.1), K =1
for {-a.e. ze A. Now given B<= Z, {(B)>0 (cf. Theorem 1.3.1), define

1
vy :5(—35 L v,d{(z).
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Let v} and v} denote the X,- and X,-marginals of v, respectively. Then
={(B)vg+(1-{(B))vg:.
It follows from Lemma 3.1.3 that u, =~ v};. Now suppose K(z)=k>1for ze B< A.

Then
dvgo (T, x1I du,° T
LoD (o o g BT,
dvg dp,
SO
1 [+] [+]
dvg 1lekd'ul Tl(x)’ or dvyo Tl d}‘«l (x)>k
dvg du, dvy du-o
But since u, = v, we would have a coboundary > 1, contradlctmg the conservativity
of Ty, so K(z)=1 {-a.e. on A and similarly K(z)=1 {-a.e. on A. O

ProposiTiON 3.1.5. Let (X, B, n, T)) and (X,, B,, u,, T>) be two conservative
ergodic dynamical systems. Let i be a rational joining of u, and w,. Then for a.e.
conservative ergodic component v, of i, if v, is nonsingular for T, x I, and hence for
I X T2, then V, = My X/.,Lz.
Proof. From the previous lemmas we have that »,=v!x»2 and so v, is IXT,
nonsingular. Let A={z:v». is T, x I and I x T, nonsingular}. Write

w (x)=dvie T,/ dv!.
Then wi(x)=w}(x) v,-a.e. Let {f;} be a dense family of functions in (X,, 8B,) so
that the Hurewicz ergodic theorem holds after removing a null set. Then for all
xe X,, and all j,

X f(T 1(x))wi(x) J-

lim dw,, and

e YL wl(x) fy dp

. X olf(T'(x))wz(X) J '

lim = — dv,.

n-oo Z' o a)z(x) fj
Thus | f;du, =1 f, dv!. Since this holds for a dense family of functions then u, = !,
and similarly u,=»2. O

Let 4 be a nonsingular joining of (T, i,) and (T, u,). We say that an ergodic
component v, of & is of product form if v,=v.x v?, the product of its marginals.

COROLLARY 3.1.6. Suppose (T, ) and (T,, u,) are conservative ergodic and i is
a rational joining. Then a.e. ergodic component v, of product form is u, X u, and must
be conservative.

Proof. First we show a.e. », of product form is conservative. If not then v, is the
shift map on the integers. Thus either (T, ».) or (T,, »?) must be the identity on
a one point space, and the other is the shift map on the integers as this is the only
way the shift can be written as a product. Let A,={ze Z:(T,, v.) is the shift map
on the integers}. If {(A, U A,) =0 we are done. But if {(A,)>0, then

1 .
I(A) j v ()

V=
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is absolutely continuous with respect to w; by Lemma 3.1.4 but (T;, #) is not
conservative.

Now for v, conservative and of product form, v, is T, x I nonsingular and by
Proposition 3.1.5 we are finished. [

LemMMA 3.1.7. Suppose ji is a rational joining of (X,, Ty, p,) and (X,, T», u,) and
g=av,+(1-a)v,, a #0, 1, and the v; are nonsingular for (T, x T,), but are mutually
singular. If v, is a rational joining of ., and u,, then v, is also.

Proof. Since both & and v, have u, and u, are marginals, so does v,. As v, and
v, are mutually singular, they are supported on disjoint invariant sets and

dip o (T, x T>) __dV2°(T1XT2)

i =T ()

for (x, y) € supp(v,). Hence v, is rational. a

CoROLLARY 3.1.8. Suppose [ is a rational joining of (X,, Ty, u,) and (X5, T, i)
almost all of whose ergodic components are of product form or of graph form. Then

A=a(p X u)+(1-a)ig,
where fis is a rational joining of p, and wu, almost all of whose ergodic components
are of graph form.
Proof. By Corollary 3.1.6 a.e. ergodic component », of product form is p; X u,.
Letting o be the measure of this set, it is in fact a single ergodic component. The

complementary set supports fig. That 4 is a rational joining follows from our
previous lemma. (]

ProrosiTiON 3.1.9. If (T, u,) and (T,, u,) are conservative ergodic and i is a
rational joining almost all of whose ergodic components are of product form or graph
Jorm, then i is conservative.

Proof. From Corollaries 3.1.6 and 3.1.8 we can assume g4 = jig is of graph form.
Thus £ =Y, , a:fi;, where f; is supported on G;. By Lemma 3.1.3, if ;> 0, then
! is absolutely continuous with respect to ;. Thus (T, x T, /i{) is nonsingularly
conjugate to (T}, &;) and is conservative. O

LemMA 3.1.10. If 4 is a graphic rational joining supported on a single graph G; then
M= p2° T

Proof. The projections ;:(x, T’(x))=>x and m:(x, T/(x))~> T/(x) satisfy
miem =f=pu,°m. As they are 1-1 their inverses are nonsingular and
Bi=paomemy = g0 T, O
THEOREM 3.1.11. Suppose (X, B, u, T) is conservative totally ergodic and has
minimal self-joinings over M. If Se€ C(T) (= the commutant of T) and for some
wi=p, €M and p,° S M then S=T' for some i.

Proof. Let i be a joining supported on the graph of S, i.e.,
A(AX B)=pu,(S(A)n B).
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Thus A ({(x, S(x)):xe X})=1. This joining is rational since g, is a point mass at
S(x) and 4” is a point mass at S~'(y). Clearly, the marginals on the first and second
coordinates are u,° S and pu,, respectively. Therefore,

p=a(poSxp)+ Y ab;,
i—0

where §; is a joining supported on G,. Since (X x X, Tx T, &) is isomorphic to
(X, T, u), it is ergodic. Hence the ergodic decomposition above has only one term.
This term must be one of the §; since (&, is a point mass. Thus £({(x, T'(x)):xe X})=
1andso S=T" a

THEOREM 3.1.12. Suppose (X, B, u, T) is conservative totally ergodic and has
minimal self-joinings over M. If M # & then T is prime.

Proof. Suppose (X, u, T) has a nontrivial factor &. Choose Ae @ with n(A)#0, 1.
Let & be the relatively independent joining of (X, u) with itsell over the factor
algebra 9. Then

A=a(pxp)+ Y ad;,
i=0

where §; is the joining supported on G,. Since 4 is a relatively independent joining,
for Ac 9, f(Ax A)=u(A). So

A(AXA)=au(A)Y+ Y aib;(AxA).
i=0

By Lemma 3.1.7,

- a;

=X 1— 8;

-
is a rational joining of w with itself, in particular a joining. Thus g(AXxA)=
m(AxX)=u(A). We conclude
p(A)=au(A)+(1—a)u(A).

This implies @ =0. Define the projection , ;:(x, T'(x))~> x. Then

> ;o 77'|_,:(Am T_i(A))) =Y a;8;° 771_}(A)

Since each term on the left is = each term on the right, if «;#0 then
A=AnT7(A) §;°m}-ae. Since all o, are equivalent to u, if ; #0 then
A=ANnT(A) u-ae. Since A is nontrivial and T totally ergodic, if a;#0
then i =0. Thus & = 8, and for all sets Ae B, A(AXx A)= A(AXx X)=u(A). Butitis
well-known (cf. [R], [JR]) that this formula characterizes the factor algebra 2, and
hence 9 = %. O

We now show that the assumption of total ergodicity in Theorems 3.1.11 and
3.1.12 is simply that X is nonatomic.

PROPOSITION 3.1.13. Suppose (X, B, u, T) has minimal self-joinings over M. If
M # D and T is not totally ergodic then u is atomic,
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Proof. Minimal self-joinings implies T is ergodic. Since T is not totally ergodic there
is an integer n and a partition {A,, A, ..., A,_1} of X with T(A;) = A(i+1)modn K#-2.5.
This partition forms an atomic T-invariant o-algebra &. Let i be the relatively
independent joining of u with itself over &. The proof of Theorem 3.1.11 implies
£ =Y a;8;. Hence the fibre measures of i over p are atomic. These though are the
fibre measures of u over &. Hence u restricted to & is atomic and relative to & is
atomic. We conclude p is atomic. O

Question B. Using rational joinings one can define a notion of rational disjointness
(cf. [F1]) for nonsingular transformations. Are weakly mixing or perhaps mildly
mixing transformations rationally disjoint from nonsingular group rotations? This
would answer a question of Aaronson’s, who has asked the authors whether compact
group rotations can have nontrivial weakly mixing factors (cf. [AN]).

3.2. Graphic rational joinings
We have seen that for any u, and u, product measure is a rational joining; also,
for any w,, if uo=p,° T/, then any average of product measure and w,° 7, is a
rational joining of u, and w,. We now want to argue that only under special
circumstances can a graphic rational joining of x, and u, exist supported on more
than one graph. We will first describe examples of how this might occur, and then
we will see that these examples are the only ones.
First example. Suppose w is an invariant probability measure for T. Let §; be the
off-diagonal supported on G, ={(x, T’x)}. Any measure

4 =) as;, where a;>0, Ya=1,
is a graphic joining of u with itself.

Under certain circumstances we can modify the marginals and joining above
simultaneously to still be a rational joining. Here are those circumstances.
Suppose there exist f, g€ L,(u) and that they satisfy

Y af(T'(x))=1 and Y ag(T '(x))=1 (3.1)

ieZ iez
This condition forces ]f=fg =1, and f, ge L™(u) since f(x), g(x)=<1/sup a;.
Define a new measure g supported on graphs G; by

da . . o A
2 (5 T =g (T € L¥().
To see that 4 is a probability measure we compute

d" .
j 9 j j g (T (x)) dii dp(x)
Xxx QM X J{x}xX

= I [_ZZ ajg(X)f(Tj(x))] du(x)=1.

Letting u, and u, be the marginals of 4, from our last computation

du, du,
;’:T(x>=g<x), ﬁ(y>=f(y>.
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To see that 4 is a rational joining of w, and u, note that

dis(TXT) ., g(TAT"(x)
T g T T
- dp,° T

2L 822 T p ),
(2 M2
It is natural to ask when the equations in condition (3.1) can have nonconstant
solutions f and g. Condition (3.1) is equivalent to asking for fe L™(x) with 0 in
the convex hull of the functions fo T' if we replace f by (f—essinff)/(Jf~
essinf f). For T an irrational rotation on the unit circle in C, it is easy to see that
J(x) =z and hence f(z) =re(z) = cos (0) satisfies an equation of the form (3.1). As
cos (—8)=cos (8), we can use f =g Thus for any non-weakly mixing T, nontrivial
versions of (3.1) hold. (We note that when T is type III, (3.1) may also have a
solution. In fact, in the case above of an irrational rotation, (3.1) holds everywhere,
not just a.e., therefore also for a type III measure.)

In an earlier version of this paper we asked whether (3.1) holds for weakly mixing
T. This question has been answered by J. F. Méla. We are indebted to Méla for the
proof of the lemma below.

LEmMMA 3.2.1. (Méla.) Let (X, u) be a probability space and T an ergodic measure
preserving transformation. Then there exist nonnegative constants a;, Y, a; <, and a
nonconstant f€ L™(u) with

Y af(T'(x)) =0 p-a.e.

ieZ
Proof. Choose f,e L™(u) a nonconstant function. Hence oy, its spectral measure,
has some support away from 0. For a> 0 let h € L*(K, 0y,) be a ‘tent’ function with
support on (—a, a). Then h(t) =Y a; ¢*"7', where a; = a_; as h is real. A computation
shows that ¥ |a;| <00. Choose a € supp (oy,), a # 0, so that
ho(£)=Y a; > "' = h(a+1)# 0 o, -a.c.
Choose a so that h(t)h,(t) =0 (i.e. make the two tents disjoint).

Let Z( f,) denote the cyclic subspace generated by f,, and W the isometry from
Z(f,) onto L*(K, oy,) taking f, to 1 and the action of T to multiplication by e*™"".
(cf. [P]for notation.) Let f,(x) =¥ a; €>"V*f,( T’x). Then f, € L*(x) and W( f;) = h,.
Now

W a,/i(T'x) =% aW(/[(T'x)) =T a; €™ W( fi(x))
=) a e h ()= h(t)h (1) =0 oy,-a.e.
Therefore ¥ a;f;(T'x) =0 u-a.e. To make f, real just define
f(x) =% a;e 7" f(T'x)
supported on (—a—a, —a+a). Then let f=f,+ 1. O
Second example. Suppose u is an infinite, o-finite invariant measure for T. We will

see here also that non-trivial graphic rational joinings of measures equivalent to u
may exist.
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Suppose {a;};.z is a sequence of nonnegative numbers. Again suppose f, g€ L} (u)
satisfy

Y af(T'(x))=1 and Y ag(T '(x))=1. (3.2)

ieZ ieZ
Since u is infinite, these imply ¥ a; = .

Condition (3.2) implies f, g€ L™(w), and we normalize them so that [ f=[g=1,
and then normalize the {a;} to maintain (3.2).

If we define a joining & =Y a,5;, where §; is the off-diagonal on G;, we get a
o-finite T X T-invariant measure. It is not a joining of u with itself as both marginals
give infinite measure to all sets of w-positive measure. We can modify 4 to g just
as in example 1 to give a rational joining. In fact, define & by

—Z’f (x, T/(x)) = g(x) f(T/(x)).
/7
We compute

J g(x)f(y)dﬁ=ZI g(x) f(T’(x)) di
XxX J

G/
=) a I g(x) f(T/(x)) du.
Now ge Li(u) and fe L™(u) so gfe T’ e L (u). By monotone convergence,
= J ¥ ag(x) f(T'(x)) du =1.

Thus 4 is a probability measure equivalent to 4. To compute its marginals u, and
Mo,

,u.(A)=;1(A><X)=J.AXX g(x) f(y) di
=§ L g(x) f(T'(x)) dii
=§ a; L g(x) f(T'(x)) du(x)
= L g(x) du(x), and
ux(A)=p(X xA)= LM g(x)f(y) dia
=§ L g(T7() f(y) did
=§ g L g(T7 (YN () du(y)

=f S(y) du(y).
A
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Thus
d d
Hix)=g(x) and TZ(y)=f(y).
du du

Just as in Example 1,

di > (TxT) (x T,-(x))=g(Tx)f(T"“(X))
dii ’ g(x) f(T(x))
_ du,° T du,° T ,-
. (x) s (T’(x)),

and g is a rational joining of w«, and u,.

In the infinite measure preserving case, the possible existence of nontrivial {a;},.z, f
and g is easy to see.

Let A be an exhaustive weakly wandering set of finite measure [JK],i.e. u(A) <o,
and there exist j(i) with T/”(A) disjoint and covering X. Let f,= x4 and

a;=1, if j=-j(i), forsome i, and a;=0 otherwise.
For a.e. x € X there is a unique i(x) with xe T*”(A). Thus
fo( T—j(i(X))x) =1.

Thus

Y af(T'(x))=1ae.

ieZ
To get fe Li(u) let
S |
f@=3 ¥ o
j=—x

Now f>0a.e. as T is ergodic. We still have | f(x) du =1 and
Y a,;f(T(x))=1ae.

ieZ

Jo(T?(x)).

Since A has finite measure, the sets T7'"(A) are also disjoint and cover X [EIH],
hence f=g solves ¥ a;g(T'(x))=1.

Question C. There are infinite measure preserving systems whose weakly wandering
exhaustive sets must have infinite measure [HK], [HIK]. Can solutions still exist in
this case?

PrOPOSITION 3.2.2. Suppose T is conservative and totally ergodic and g is a graphic
rational joining of u, and wu,. If i is supported on more than one graph, then ;1 is of
the form of either Example 1 or Example 2 above.

The proof proceeds in a series of lemmas.

LEmmMma 3.2.3. Suppose Tislconservative and totally ergodic and @ is a graphic rational
Jjoining of w, and w,. If i is supported on more than one graph, then there exist o-finite
invariant measures u! equivalent to w,. Furthermore, they are finite or infinite for all
i, where i varies over the graphs.
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Proof. Since T is totally ergodic, the G;={(x, T’(x)):xe€ X} are g-as. disjoint,
and T x T-invariant. Let G;(,, Gj(3), - - - , be the graphs of nonzero g-measure. Define
/'Z(Gj(i) NA)
/l(Gj(i))
Since i =Y 4i(Gj)) g, by Lemma 3.1.4, all the marginals &, and ; are absolutely
continuous with respect to u, and u, respectively.
The projections of g, to the first and second coordinates are measure preserving
to 4! and 47 and 1-1.
Hence the inverse maps
x> (x, T"(x)), mo x> (T7(x), x)
are measure preserving ! - g;, and so nonsingular from
(X, uy)~ (g, Gjm) and (X, u;)~> (/zi: Gj(i))-
We are assuming g is graphic and that at least two G, exist. The fibre
measure g, =E;[%B,|B,](x) is supported on the at most countable set
T'P(x), T"?(x), ..., hence is atomic. The mass

lli(A)=

~1

dpi | .
£ (x)2(Gj;)) >0 for u,-a.e. x.
du,

Also, since the Gj;, are disjoint and T x T-invariant, the g; are mutually singular
and so

AT V(x)) =B [ B, | By 1(x) =

dig; o (TxT . dipo(TxXT
B (XD (y, ity = 2 ATXT)
du; dp
Since g is rational we know that g-a.e.,
da o (TxT) duo T, duy,°T
()= — (x) —— (P)elx, ),
du du, du,
where ¢ is a.s. a constant on vertical and horizontal fibres of ji. Thus c(x, T77"(x))
is defined for ;-a.e. x and its value is independent of i. Similarly ¢(T/(x), x) is
defined for u,-a.e. x and its value is independent of i. Thus for u,-a.e. x, if we let
c.(x)=c(x, T'**'(x)), then
¢ (x) = c(x, T""(x))
:C(Tj(l)ﬁ'(ﬂ(x) Tj(!)—j(S)(Tj(S)(x))
= C‘(Tj(')‘j(s)(x)),
As we can select j(r)—j(s) #0 and since T is totally ergodic, ¢,(x) is a constant
wi-a.e. We already saw ¢,(x)=¢,(x) so c¢(x, y) is a constant ¢, zi-a.e. Thus for all
j{i) and p,-a.e. x

(x, Tj(i)(x)).

d ~,‘ ° TX T ok d ° T d o T s
Gt TXT) (o iy = Sa2 Ty B2 T i)
dp; dp, du,
Remember i, ° m;; is absolutely continuous with respect to u,. Let
dg; ° 75 Es[ G| B2]

£ =—d———(y)= (T7(y), )
M2

#’(Gj(i))
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and similarly

d/-zi ° 171_.'] (y) _ lE;2[Gj(i)| %]

Tt )
du, M(Gjm) ( (). %)

gi(x)=

Computing

di;, o (TxT . dii; ° _,-'OT .
B o (TXT) (0 oy =i 2 T sy
dpi; d; o m;

i+ o
=f;£i{Tj(i>(i);;) dl;jLzT(Tj“)(x))C-
Thus
du, ° T(x) :ﬁ(Tj(f’(Tx))‘
du, fi(T"(x))
For all k we conclude
wi(x) = BT STAT)
dp, (T O(x))

Since T is conservative and f;e L™(u), we know that there are arbitrarily large
values of k with

I=wi(x)=2 and
fi(Tj“)(Tkx))<
ATy 7

But then 1< c* =4 and hence ¢ =1. For all i then

N=
IA

duyo T W(T'(T)
dp, (T (x))
Symmetrically
du;° T(y) _ gi(T‘j‘f’_( )
du, g(T Jm(}’))
Defining

: 1
b= | —————du,,
He J AT000)
w6 is an invariant measure equivalent to ;. It must be either finite or o-finite for
all i O

LEMMA 3.2.4. Under the assumptions of Lemma 3.2.3, suppose the measures ! are
Jinite for all i. Then p is of the form of Example 1.

Proof. Since the u{ are finite, (fi(T"(x))™'e L'(u,). Let ¢; = (f(T'"(x))"" d,,,
and define

1
“":I (T
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This is a T-invariant probability measure, hence is unique. We conclude ¢, f;( T/V(x))

is independent of i. Computing
L ° T it 20 T
4 ()= dﬂk ,,(x) (T & )
=fk(T”"’(X)) gk(x) _ (M)
g(x)  g(T7®(x)) g(T7"(x))

we obtain

1 1
= J (T du,(x) = J 2 (T dus(x).
Thus

1
Since i1 =Y, £(Gji))ai, u2=%,; (G m))u, o7y and so
1= £(Gy) fi(x).

But we know, for all i,

Gfi(T'7(x)) = e, (T (x)).

Thus
I—Z#( m))( )f;(T"“’(X)).
Symmetrically
1=3 i(G (,)»( )g.(r‘”"(x)).
Setting
,U-( (.)) i e ags
f =
a={ o if j=j(i)
0 otherwise
we obtain
> ajclfl(T_j+j(l)(x)) =1 and
j
zajclgl(Tj_j(“(x))zl-
j
Since

k Tj(k) '
1= J’ gfk((#”(()(xx)))) d,LL2=J afu(T'(x)) due
we conclude f(x)=c,g,(T7""(x)) and g(x) = ¢, fi{ T "(x)) satisfy (3.2).
Define & on G, by
! _ 1
gx)(T(x)) ¢ fi(T"(x))gi(x)

We compute that £ is a probability measure.

dii o
= (x, T(x)) =
dp

https://doi.org/10.1017/50143385700005320 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700005320

784 D. J. Rudolph and C. E. Silva

[ s, ()
AT (x)gix) 12
/-Z(Gj(i)) [ du,(x)

J dip =Y. i (Gyn)
X xX i v

LT ) TR
=Z__M(Cj~<->) duso(x) = 1.

It is T x T invariant since

dit o (TXT) ( piyy) = 2o(TxT) &) M(T"(x))
dix * dp &(T(x) (T (x))
Thus its marginals must both be u,.
Arguing backwards,

di . .
= (5, T/(x)) = g () S(T"(x))
N
is of the form of example 1. O

LeEMMA 3.2.5. Under the assumptions of Lemma 3.2.3, suppose the measures u.! are
infinite for all i. Then g is of the form of Example 2.

Proof. As in Lemma 3.2.4, since w, is essentially unique,
S(T0(x)) = 6 i(TV(x))
and since

dp, - fi(T'(x))
()=

—j(i) _ —j(1)
Y T (TG BTN = an(THHE

Let

SN R
Mo = MHo= f](Tj“)(X)) i

just to normalize the selection. Just as in the previous case,

1= Z/‘L( ;(1)) ( f(X)) and

i i

1= Z"(C"‘)< cgi(x)).
Set
a(Giw) ... ..
aj= ¢ lf]_.](l),
0 otherwise

and f(x) =g (T7(x)), g(x) = fi( T’"(x)), and we conclude.
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Now
f(x) g(T7V(x))

_du
e~ ATy T, ™)

= s

(x

’

sO
J 1) =1,
g(x)
But it also is §f(x) duo. Hence f, and symmetrically g, belong to LY (uo), with
normed integral. Defining g&; on Gj; by
di, 1 1

ZHi J) = — = — .
a2 =T D= R AT ) TP )& )
We compute 4, is T x T invariant, just as for the previous example. Also,
dg; ° 7T1-i‘ dix; 0] dp ° 77'1_1‘1 du,
—— Xy ==, TV X)) — (X} ——(x
T () = (6 TG T () ot ()
1
= G i ¢ fi Ty (x
c‘f;(Tj(l)(x))g'(x) (g (x))( f( j( )( )))
=1.
Thus f; = ue° ;. Setting
R - A(G») .
A=Y i =ZT_’”“#.~,
we conclude that on G;(;),
du ; 1
T =—m oS
du ( AT O(x))g(x)
and so is of the form of Example 2. O

Thus whenever a graphic rational joining is supported on at least two graphs, the
joining is equivalent to a weighted average of off-diagonal measures for some finite
or infinite invariant measure, completing the proof of Proposition 3.2.2.

4. Examples
Our next task is to construct examples of systems of various Krieger types with
minimal self-joinings. These arguments owe much to [JRS] who show Chacén’s
map has minimal self-joinings.
4.1. a-matching structures
Let (X,, By, w1, T\) and (X,, B,, u,, T») be two ergodic dynamical systems and g
a conservative nonsingular joining of u, and u,. Furthermore, suppose {P:}
and {Q;} are refining and generating sequences of partitions on X, and X,. Let
Ac X;xX,, with 4(A)>0, and 0<a <1. An a-matching structure on A (for
(X1, By, pa, T, (Xs, By, o, T5), {P},{Q:}, ii}) isthe following. Forany (x, y) € A
there exist i, = i,(x, y), j, =Jj,(x, y) € Z, with

I =0=<ju, jo—i, 7 inn,

and subsets B,, B, <[i,,j.], and a bijection m,: B, » B/, so that:
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(i) both B, and B;, are disjoint unions of intervals each of length =n,
Ju
(ii) L ailxgy)za ¥ alxy)
ieB, i=i,
and
Jn
Z ('ai(x’ .V)Za Z wi('x’ y)a
ieB), i=i,
(ii1) for ie B,,
1 6y
a  .u(x%y)
(iv) for je B,, T{(x)e P,, iff T{»Y)(x)e P,,, and
Ti(x)€ Q,, iff T7"V7'(x) € Q..
(Here P,; denotes the Ith element of the partition P,.)

Notice that the set A of the @-matching structure can be assumed T, X T, invariant,
hence is a union of ergodic components of &. (If i,(x, y) and j,(x, y) exist then
these same translated by 1 will also work for (T,(x), T>(x)), perhaps adding one
further index if j,(x) is 0.)

Our next proposition concerns these ergodic components. (Notice that rationality
is not needed.)

ProrosiTiON 4.1.1. Let {(Xls %l s Mas Tl)a (XZa %29 M2, TZ)’ {Pl}’ {Qi}, [2} be as
above. If for some a > 0 there is a T, X T, invariant set A and an a-matching structure
on A, then for a.e. ergodic component v, of (i contained in A, v, is I x T, nonsingular.

B

We need a preliminary lemma. From now on we assume a fixed a-matching
structure exists on a set A.

LEMMA 4.1.2. For any fe LT (i), for i-a.e. (x,y) € A,

li ZieB,,f((TIX Tz)i(X, y)wi(x, y)
mm -
n>x ZiéB,, wi(x’ y)

=Ei[S12](x, ¥)

and

. EieB,;f((Tlx Tz)i(xa )’))‘:’i(x, y)
lim =

n-x Xies,; wi(x,y)
Proof. We argue the first limit. Fix £ >0 and select N, so that for n> N, and a

set G, 4(G)>1-¢>,if (x,y)eGand i=0=<j,j—i>n,
oo ST X T (x, p)) e (%, )
Zlk=i ai(x, y)
For all but a set of ergodic components ». of & of f-measure <g, v.(G)>1—¢,
since | v.(G) dii(z) = £(G).
Thus for (x, y) in a set A(g)< A, @(A(e))> a(A)—¢,
S et Xa (T X To)'(x, ), (x, )

lim ;
J,(xy) A
nee =i @106 )

=E;[ 1], y).

=E;{f]F](x, y) xe

>1-¢.
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Hence by (ii) of a-matching,

ie T X T i ) Ai >
> lim si:rf,Z 8, Xa((T, Az) o y)aixy) | e

n—>eo ZieB,, wi(xa J’) (23
We assume n> N so that B, consists of intervals of length =n. Let B,(¢)< B,
consist of those indices in an interval of length =n which also contain a point of
G. Now

Yien,e) f((Ti ¥ T.) (x, y)@;(x, y)
ZieB,,(s) aji(X,J’)

=Bl f19](x, y) £e,

(just average over the intervals).
Now for (x, y)€ A(e),

sup Zie 8, STy X T2)'(x, y))@i(x, y)

1 inf

n- ZieB,, éi(x, y)
is between
Yicn (¢) ‘3:'(3‘,)’)
(E:Lf f](x,y)—s)(—"—ﬂ——
“ I zie B, wi(xa )’)
and

”fIIOC(ZieB,,\B,,(E) ‘f)i(X, )’))>

<Eﬁ[f|f]<x,y)+6)+< Yic, ®i(x,y)

hence between
(Eﬁ[fwx,y)—e)(l—f) and E[/]91(xy)+e+] f]lo—.

This completes the proof. O

COROLLARY 4.1.3. For any set C€ P, x Qy, (IX T,(C)=C'e P, x To(Qy), and for
a.e. ergodic component v, z< A,
v.(C)

2
a

a’r.(C)=wv.(C")<

Proof. Let fi(x,y)=xc(x,y) and fo(x, y)=xc(x,y). Notice that if n>k and
(x,y)e A,je B, then
HUT X T) (x, 9)) = L((Ty x To) ™ (x, y).
For fj-a.e. v,,z< A, and (x, y) e z,
v(C) _ 1 Tien AT X T (5 1)@ (% ¥) Tye, 6,05 7)
v.(C') Y op HUTIX T) (%, y))@(x, ¥) L, p, @5(x, )
by Lemma 4.1.2. But this equals,

lim ( ZjeB,,fn((Tl X Tz)j(X, )’))ajj(X, y) ) <ZjeB,, ‘:)w(j)(X, y))
noo ng B, HUT X T) (%, )’))&3”(_;‘)(3‘, y) ngB” tﬁj(X, y) '
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Since f; is a characteristic function, by (iii) of a-matching, this limit is between o’
and 1/a° O

Notice that we have in fact shown

dv, o (IxT.
w22 UXT) (o vya?,
dix

which completes the proof of Proposition 4.1.1. O

4.2. Controlled rank-1 maps
From the arguments we will use in this section it is not difficult to see that there
exist type I1I Borel measures on a topological version of Chacén’s map that have
minimal self-joinings. However, it is not obvious how to obtain type Il examples
in the context of Chacdén’s map. Hence we have turned to a more general context.
Our examples will all be rank-1 - they are constructed by cutting and stacking with
precisely one spacer sequence used.

We first briefly discuss nonsingular cutting and stacking rank-1 constructions.

The construction is as in the measure preserving case except that the measures
of the columns into which the tower is subdivided will not all be equal (see e.g.
[Fr], [K]). However, the Radon-Nikodym derivative of T as it moves up the columns
will be a constant on each level set (except for the last one), this constant being
forced by the relative sizes of the intervals. (These transformations are a special
case of the nonsingular transformations satisfying property F introduced in [HW].)

ProPosITION 4.2.1. Any nonsingular rank-1 map is conservative ergodic.

Proof. We first note that the measure is clearly nonatomic and hence it suffices to
show ergodicity. The same idea as in [K] for the measure preserving case applies.
Suppose A is a T-invariant set. Given ¢ > 0, there is some set L that is a union of
levels in the n-block such that u(A A L) <e. Thus there is some level L; in L such
that u(L;~ A)>(1—¢e)u(L;). But since the Radon-Nikodym derivative is constant
between levels and A is invariant, u(B, n A)>1—¢, where B, is the n-block. Since
£ is arbitrary it follows that A is the whole space (mod 0). O

We now describe a class of nonsingular rank-1 maps that we call controlled
rank-1. To determine the relative proportions of the columns into which the (n—1)-
block is cut, all that is actually necessary is that we specify the Radon-Nikodym
derivative from the base of the ith (n —1)-block in an n-block to the base of the
(i+1)st. This sequence of values determines the relative sizes of the columns into
which the (n—1)-block must be cut to obtain these Radon-Nikodym derivatives.
We always assume the Radon-Nikodym derivative from any level into the spacer
is 1.

Our spacer sequence will also have a special form. Each (n—1)-block in an
n-block will be assigned a single spacer, which may be placed either below the
block or above it. Let N(n) be the number of columns into which we cut the
(n —1)-block, stacking them to form the n-block. Hence the spacer sequence of the
N(n) (n—1)-blocks in an n-block is determined by a sequence e}, ..., en, of 0's
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and 1's. If e =0 we place the spacer of the ith (n—1)-block before (below) the
block, and if e =1 we place it after (above). We will assume

ef=1 and eN.,=0.

This ensures that no more than 2 spacers ever occur between two n-blocks.

To define our process all that we need give are the values N(n), the sequences
{el,..., eN(m), and the Radon-Nikodym derivatives {A{,..., AN(s)-1}, where A7
is the Radon-Nikodym derivative from the bottom of the ith (n —1)-block to the
bottom of the (i+1)st, and the form of a 0-block. The 0-block will be formed by
stacking 3 intervals each of length ;. As the description of the construction evolves
we will place a series of restrictions on the parameters of the construction.

First, let {€;};~, be a sequence of positive values with ) & <1. We require that:

(1) For any two sub-blocks e}, els,, ..., elsc and €], e/, ..., e}, where i #j
and k=[e2N(n)],

#lo0=<t=<k:el,,=c e/, =d}>g(k+1)
for any choice of (c, d) € {(0, 0), (0, 1), (1, 0), (1, 1)}.

(Once ¢, is fixed, it is a standard argument (cf. [R]) that on the 2-shift, the
probability of a name e,,..., ey failing to satisfy condition (1) with variable N
replacing N(n), goes to zero exponentially in N. Hence if N(n) is large enough
we can select {e]'} satisfying (1).)

(2) There is a bound 0<y <1 such that for any block i,i+1,...,i+k with
k<2[e,N(n)],

i+k 1 N(n)—-1
y<Il Aj=—= and ] Aj=1
j=i Y j=1

This, of course, has to do with our selection of the A[’s. When we describe later
how to obtain all the various Krieger types, this will have to be obtained.

These two conditions are sufficient for our purposes. Notice the parameters can
be selected inductively as follows. Having constructed (n —1)-blocks, we are free
to select ,. Condition (1) places a lower bound on N(n) in order to have {e]}
available. Beyond this, N(n) can be chosen as large as we wish, and {A]} can be
chosen in any way giving (2). Once N(n) is fixed {e} can be selected and the
n-block constructed.

A construction as above governed by parameters ({¢,}, { N(n)}, {el'}, {A7}) satisfy-
ing (1) and (2) is called a controlled rank-1 map.

Suppose we have such a controlled rank-1 map. Let B, be the base of the n-block.
Since ef =1, B,., < B,. Let h(n) denote the height of the n-block.

h(0)=3,
hin+1)= N(n) (h(n)+1).
Let

n d[.L ° Tl'—l
ni = du

Thus 5{=1,i=1,2,3. And inductively for 1 <i= h(n),

(x),xe B, and 1=i=<h(n).
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nitt =77,

n+1 n+1

Nh(my+1= Nh(n)-
For 0< k< N(n+1), if e;1] =0 (i.e. the spacer is below the block)
Niihim+1+1 = Michim+1,  (into the spacer),
and for 1 =<i=< h(n),
+1 k +1
nz(h(n)+l)+i+]= H A;" "7:"';
=1

J

if ;"' =1 (i.e. the spacer is above the block) for 1=i=< h(n),

k
n+1 _ An+l n
Nk(h(m)+1)+iv1 = i M
it

7

and

n+1 — n+1 .
Nik+1)h(m+1) = Mk(h(m+D+hiny»  (iNto the spacer).

We now obtain some estimates on the Radon-Nikodym derivatives of controlled
rank-1 maps that will be needed in later proofs. They also given another proof of
the conservativity of controlled rank-1 maps.

LemMA 4.2.2. Let S] consist of all those points in the ith (n—1)-block in an n-block.
If li—j|=2[e,N(n)] then

ysﬂ(si‘)sl.
w(S;) v
Proof. For i<},
i—1
u(S)) = IT ALu(SD). O
=j
CoOROLLARY 4.2.3. Forany 1=i=< N(n),
(ST =5
" 2y[e.N(m)]

Proof. Let b be aninterval of 2[£,N(n)] consecutive integersin 1, ..., N(n) contain-
ing i. By Lemma 4.2.2,

w(SH2AeN(MI=~ 5 (S =~ 0
Y jeb Y

COROLLARY 4.2.4. Ifbis any set of at most 100[e2 N(n)] indicesin 1,..., N(n), then

100 ¢,
2 p(S)=—m.

jeb

Proof.

100[52"N(n)]<100 eiN(n)<100 £,
2y[e.N(n)] ~ ve,N(n) = y
(Note that (1) easily implies [¢ZN(n)]>1.) O
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COROLLARY 4.2.5. A point xe X a.s. lies in the first or last 100[eZN(n)]

(n—1)-blocks in an n-block for at most finitely many n. O
LEmMMA 4.2.6.
du°T 1
y=t—(x)=-.
du 4

Proof. First, since

N(n)—1 d ° Th(n)—l
[ Aj=1, forxeB,, r--
=t du

Arguing inductively, the result is true for x in the 0-block, except the top level.
Suppose we know the result for all x in (n—1)-blocks, except the top level. To
extend the conclusion across the gaps between (n —1)-blocks in the n-block, just
note that as we cross from the ith to the (i+1)st (n —1)-block, whenever we move
into a spacer, (du ° T/du)(x) =1 and when we move into the bottom level of the

(x)=1.

(i+1)st block, (diw o T/du)(x)=A7. O
CoRroLLARY 4.2.7. For all x and n,0=k=2[g,N(n)],
765 dy, o THH(m+1) (x)s_l_'
du y*

Proof. The section of orbit from x to T**"*1~1(x) covers a sequence of n-blocks.
At most one gap between n-blocks is actually separating m-blocks, m > n, the rest
are within (n+1)-blocks. This means that if x lies at the ith level of an n-block,
then T*"W*V(x) lies at level i—3,i—2,i—1,i or i+1 of an n-block. For any
complete passage through an n-block we get no contribution to the Radon-Nikodym
derivative. Hence the only contribution is from the gaps between n-blocks and the
at most 3 extra terms to add or delete to complete the partial end blocks.

The contribution from the gaps is in two sequences of A[’s of length <2[¢e,N(n)]
inside (n+1)-blocks and one A[".

Now use (2) and the previous lemmas to complete the proof. O

COROLLARY 4.2.8. Y7 w;(x)=co0.
Proof. In fact, for i=h(n), w;(x)> v . |
4.3. w-compatible measures
In this section we continue our study of controlled rank-1 maps. All the notation
introduced in § 4.2 will be used throughout. We would like to show that a controlled
rank-1 map (7, ) has minimal self-joinings over the class of all probability measures
equivalent to u; we are not able to do this but in fact do show minimal self-joinings
over a large enough class ¢, that we call the class of u-compatible measures. This
is rich enough for our purposes (cf. Lemma 4.3.1, Theorems 3.1.11 and 3.1.12).

A measure u; equivalent to u is said to be u-compatible if for some 6 >0, for all
x and n, and 0=k =2[¢,N(n)],

du,; o THhm+1) 1

6= =—,
= d[.L, (X) 6
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LeMMA 4.3.1. (a) w itself is p-compatible. (b) If S is any u-nonsingular transformation
with So T=To S, then p o S is w-compatible.
Proof. (a) Let 8 =%’ and apply Corollary 4.2.7. (b) Note that

d(uo8)e T du
sy =g (G =

ProprosITION 4.3.2. If u, and w, are u-compatible and (i is a rational joining of w,
and ., then there is a 8 > 0 so that for ji-a.e. (x, y), forallnand 0=k =<2[¢,N(n)],

d;i ° (TX T)k(h(n)+l)
di

5=

1
X, ==,
(x,y) Z

Proof. Since g is rational,

di o (Tx T)

du,o T’ d
H1 ()IJ'z

p (x,y)= (y)c (%, y),
dp dp, du,
where for u,-a.e. x, ¢;(x, y) = ¢;(x) independent of y for fi,-a.e. y. Since
dia o (TxT)y d
J 'u—d—( x, y) dii(y) = M' (X) we get
/0
1
c(x)= - ,
du,o T’ "
j E () diinly)
M2
and for j=k(h(n)+1),
1
d=¢i(x) SE
since w, is w-compatible. Thus let 5§=5° [

CoROLLARY 4.3.3. A rational joining fi of u-compatible measures is conservative. [

We now know g-a.e. (x, y) is generic for its ergodic component 7, i.e. satisfies
the Hurewicz ergodic Theorem 1.1.1.

Let G,={(x, T/(x)):xe X} and A= X><X\L_)J__oo G;. These graphs are all
(T x T)-invariant sets.

ProrosITION 4.3.4. If ((A)>0, then for a = 52/ 16 there is an a-matching structure
on A.

We develop the proof through a series of lemmas. Let Ey be the set of all x’s
either between N-blocks, or in the first or last 100[£3N(n)] (n—1)-blocks in an
n-block for some n> N.

LeEMMA 4.3.5. Given any £ >0 there is an N, so that for a.e. (x, y)€ X X X, there is
an M(x, y) so that for all n= NO i=0=j,andj—i+1=M(x,y),

i XE(TH(x)) B (%, y) _

Z wk(x ¥)
The same holds if x is replaced by y in T*(x).
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Proof. We know E;[E, x X|$#]= p,(E,). Weknow E,,, < E, and by Corollary 4.2.4

p1(M), E,) =0. Thus there is an N, with u,(En,) < £/2. Since 4 is conservative, for

n= N, once j—i+1 is large enough,

kmi XEno{ T8 (3, 9) _ T XE(TH(0)) (%, ¥)
]k=i a‘;k(x, )’) Jk=i‘6k(x9 )’)

&> O

For any x € X, let 1 < 8,(x) < N(n) be the index of the (n—1)-block containing
x in its n-block. If x is not in an (n—1)-block, B,(x) is undefined. Two points x
and y are on the same orbit if and only if 8,(x) and B, (y) are asymptotically equal.
By Corollary 4.2.4 we know, for a.e. x, once n is large enough,

100[ 2N (n)]=B.(x)= N(n)—100[£2N(n)].

Suppose (x, y) € A, hence in distinct orbits. By the above we can find an increasing
sequence n; = n;(x, y) with B, (x)# B,(y), and both lie more than 100[ &3 N(n;)]
from the ends of their n;-blocks.

Consider the overlap of n;-blocks containing x and y respectively. It is longer
than 198(h(n,— 1)+ 1)[83,'_N(H,-)]. Focus on a subinterval of this overlap containing
the origin a; =0< b; consisting of exactly M, full (n, —1)-blocks with their single
spacer in the x-orbit. Label these subintervals

| A AU A
with 2[53,‘,N(n,4)] =< M, =[e, N(n;)]. This interval is covered by a union of complete
(n; —1)-blocks, with their spacers, in the y-orbit

Jeovs iy ooy Jiam -1
The subscripts ¢ of I,, J, are the indices of the (n; —1)-blocks in their n-blocks. Thus

Le Jkrj1 Y Jk-ke = Jjra-1 0 S,
We say that i is a bad index if either d; or d;—1=0 and
#(1,nJ;)>100[ g5 N(n, —1)](h(n,—2)+1).
The reason this is ‘bad’ is that the overlaps of (n, — 1)-blocks is substantial on indices

which agree.

LemMMA 4.3.6. If i is a bad index, then i+1 is not.

Proof. If i is bad then the n;-blocks containing x and y overlap in at least
h(n;)— h(n; —1) places. But then for any n, n,,,> n> n,, the n-blocks containing x
and y overlap in at least h(n)—h(n;—1) places, as B,(x)=B,(y). Thus in the
n,.,-block when we consider [a;.,, b;+,], the overlaps of (n;,, —1)-blocks are either
of distinct indices or of length at most

h(n,=1)<h(n;,,—-2)< IOO[EiH.—]N("iH =1 J(h(ni —2)+1). a

We drop to a subsequence and assume no i is bad. Thus we always have one of
two cases:
(i) both d; and d,—1 are nonzero, or
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(ii) if one is zero, it corresponds to an overlap shorter than lOO[ef,,_le(n, —i)]x
(h(n;—2)+1), i.e. in the first or last 100[ £} ., N(n; —1)] of the (n; —2)-blocks
in the (n; —1)-block.

By Lemma 4.3.5 such indices contribute little once i is large enough.

In case (ii) above one of the two Ji. 41, Ji+q4 has already been identified as
‘larger’, the longer one. We call it J;..; . In case (i) we also want to make a selection
of a ‘larger’ one. Consider which of the two sums

z ‘:’i(X,J’), ) ‘f’i(x’)’)

L P iel, Nk 44,

is larger. Let d, be such that the sum over Iy, N I .5 is the larger one. Notice d; # 0.

LemMmA 4.3.7. If i is large enough, for any ki=j<k,+ M,—1,

52 b,
o(x, v)= a,(x, y).
ml{;}ﬁi @,(x,y) M, =Z (x,5)
Proof. Now [a;, b1=Ur"y" L.+ k(h(n,~1)+1), so for any k,<j=<k,+M,-1,
b, k+M,—1-j
Y aolgy)= ¥ T &(x,y)0knin-n+o)(T(x), T(y)).
t=gq; k=ki=j tel;
By Proposition 4.3.2 then
5§ &
Y axy)z— ¥ alx,y).
tel; it=a;
We also know from Proposition 4.3.2 that
s « « 1
o= Y alxy) L alxy)=z (4.3.1)
lE'lﬁ]H,J' lelL,mJ,\’ﬂ7'
In case (i) we can conclude, for all k,=sj<k+M,—1,
2 b,
@, (x,y)= Y @(x, ).
rel,-rg!,ﬂii Y Z(Mi)j=a; !
In case (ii), by Lemma 4.3.5, for any ¢ once i is large enough
Z]"(l=+;<:v"41 Zlel,f\f,uﬁ, a;l(x, ,V) - 1
b A =1l-¢€
Yita @i(x, y)
as the upper sum is over indices t with T'(x)e E;,_,.
Make (1 —€)> 6 and for some j, we must have
5 b
@,(x, y)=— w;(x, y).
’e”(lm"’(l""]: ( y) Mij=za, ! y)
Replacing k; by j, in expression (4.3.1) gives case (ii). O

The sets B, and B, will be unions of sets I, nJ;,, . Since M, 22[:-:3,,N(n,~)] and
d; # 0 we know that among the pairs (e}, ej13), ki=j=k;+ M;—~1, we see a fraction
of at least § of each possibility, (0, 0), (0, 1), (1, 0) and (1, 1). Thus we can find two
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subsets A;, A} < [k;, k;+ M; —1] with the same size
#[A]=#[A]=@)M,
and for je A;, (e}, ej13) = (0, 0), i.e. both spacers come before the block, and for
JEAL, (€], efi3)=(0,1), ie. the x-spacer is before, the y-spacer is after the block.
Let 7 be any bijection of A; to A]. Set
B, = U IjmJja—J,. and Bi= U IjmJj+E,~-
JjeA; JEA]
Define ;: B, > B by sending I, n J;. 3 to I;(;,n J;(;)+a by translation by (7(j) —j) X
Let P, be the partition of X into the levels of the (i — 1)st tower and its complement.
Thus {P,} is a refining and generating sequence of partitions.

LEMMA 4.3.8.
(a) Both B; and B are disjoint unions of intervals, all of the same length, and this
length goes to infinity with i.

. 8 b
(b) % wj(x,y)ZE 2 oi(x,y)
jesB; j=a;
and
52 &,
L oy)=r L axy),
JjeB; j=a;

(c) forjEBi,
a);j(x,y)
“A’mu)(x’y)

(d) forje B,

T'(x)e P, iff T (x)e P, and

A 1
o= >
705,

T/(y)e P, ift TV '(y)e P,,.

Proof. We know all the I;nJ;. are of the same length. As we chose d; to give us
the ‘larger’ sum, by Lemma 4.3.5 this length could not stay bounded on any
subsequence.

For (b) we just note that B;, B contain at least g in cardinality of the I, nJ.4
and apply Lemma 4.3.7.

For (c) note m(j)—j = k(h(n)+1) with |k|<[e, N(n;)], so we obtain the bounds
from Proposition 4.3.2.

For (d), of course, just note that (i—1)=n;,—1 and the effect of moving the
spacer in the y-block from below to above shifts ;(y) one level higher in the
tower. O

Proof of Proposition 4.3.4. Let a = 52/ 16. Now just drop to a subsequence of n;’s
to give the precise bound in (i) of a-matching. O
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COROLLARY 4.3.9. T x T is ergodic, hence weak mixing (cf. [ALW]).
Proof. For i=puxu, A=X xX and hence a.e.-v, is I X T invariant and hence
equals u X u. O

THEOREM 4.3.10. Let (X, u, T) be a controlled rank-1 map. Let I be the class of
wu-compatible measures. Then T has minimal self-joinings over M.

Proof. Let 4 be a rational joining. First write X x X =U;’;_w G, U A, where G; =
{(x, T/(x)):x€ X} and A is the remainder. We have seen by Propositions 4.1.1 and
4.3.4 that for any ergodic component v,, z < A, v, is I X T-nonsingular. By Proposi-
tion 3.1.5, v, = u, X u, and we can write

A=p0p(A)u, X u+ (A, where g, is graphic. O
Question D. Are there measures u, and u, equivalent to p but not u-compatible
for which T fails to have minimal self-joinings? More generally, if T has minimal
self-joinings with respect to some measure equivalent to u, must it have mini-
mal self-joinings with respect to all? If not, are there examples of systems with
minimal self-joinings with respect to all measures equivalent to u?

CoROLLARY 4.3.11. Any controlled rank-1 map has no nontrivial factor algebras and
the only nonsingular maps it commutes with are its powers. O

Now we are ready to show how to obtain controlled rank-1 maps for each Krieger
class I1,, Il,, and III,, 0= A <1.

4.4. Type II, example
This is almost trivial. Simply set all A7 =1. This gives a finite measure preserving
transformation that has minimal self-joinings in the usual sense.

4.5. Type II,, example

We choose ¢, =1/n20". Now condition (1) gives a lower limit for N(n). Split the
block of N(n)(n—1)-blocks into five sections. The first, third and fifth of length
N(n)(1—4ne,)/3, and the second and fourth, which connect them, of length
2ne,N(n).

For i in the first, third or fifth section A7=1. For i in the second,
Al =(35)"?N" and for i in the fourth section, A7 = (20)"/2*¥™_Thus the product
of the A[’s across sections 2,3 and 4 is 1.

For any k<2[e,N(n)] we get

. j+k
=[] A7 =20.
i=j
Thus we have a controlled rank-1 map. Let X, be those points in the levels of the
n-block corresponding to sections 1 and 5. Now since

I A7=()"

iesection2

section 3 has measure (35)” times that of sections 1 or 5. Sections 2 and 4 each have
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the same measure, at most 12ne,, times that of section 1 or 5. Thus

. 13 13
’“(X")Szo" #(X,.)<20,.~
Now since Y, u(X5) <1, u(),~, X,»)>0. It is an easy induction that if x, T’(x) e
(M,=; X, then (du e T?/du)(x)=1. Thus setting Y =(") ., X,,, T induced on Y is
measure preserving, hence T itself is either type II, or ..
Notice that on an orbit, occurrences of X, come in blocks of length

N(n)(1—4ne,)
3

(h(n—-1)+1),

alternately separated by a long block of length

I—VM (h(n—=1)+1)
and a short block of length 0, 1 or 2. Letting Y, =()/_, X,, it easily follows that
1 N -1 i 1
imsupy Z, o (TN =57
Hence
1 N-t )
[Ll_l‘)lgcﬁ ;Z'o xy(T'(x))=0a.e.

and (T, n) cannot be of type 1I,.

As discussed in the introduction, Aaronson and Nadkarni in [AN] construct an
example of an infinite measure preserving group rotation that has no nontrivial
o-finite invariant sub-o-algebras; however their example has 0-co invariant sub-o-
algebras. Maharam has asked, independently of [A], whether there exist infinite
measure preserving transformations with no 0-c0 invariant sub-o-algebras; our
example clearly satisfies this.

4.6. Type I1I, example (0< A <1.)
Let N(n) be odd for all n and set

Ai=A, fori odd,
for i even.

It is easy to check that we have a controlled rank-1 map with y = A. The ratio set
of T is obviously contained in the powers of A. We wish to show A is in the ratio set.

Let Ac X, u(A)=>0. Select n large enough so that for some level set L' in the
n-block,

’ - _L '
”(LGA)_(I 1000) w(L)-

In the (n+1)-block L' is the union of one level from each occurrence of the n-block.
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Write L=L,u L,, where L, consists of those occurrences in odd index i< N(n)
and L, those in even index n-blocks. For any x € L, there is a unique

j(x)e{h(n), h(n)+1, h(n)+2}, with T"“(x)e L,.

The choice depends on whether there are 0,1 or 2 spacers between the n-blocks.
Furthermore, (du ° T?*)/du)(x) = A and the map g:x - T/*)(x) is a bijection of
L,to L,. Thus w(L,)=Au(L,). Since

u(LmA)Z(l —L) u(L)

100
we get
p(L;nA)=098 u(L;), fori=1,2.
Thus
n(g(LinA))=098 u(L,), and
w(LynA)=0.98 w(L,).
Thus

p(g(LinA)n(L,nA))>0.

As j(x) takes on only three values, we can select a subset A, < L,n A,
w(A)=G)u(L;nA)>0, and on A,,j(x)=j is a constant. Thus A, <A,
T/(A,)< A and (dp o T'*”/du)(x) = A for all x€ A,. Therefore T is type III,.
4.7. Type III, example
To get the ratio set to be all of R* U {0} select 0 < A,, A, <1 with log (A,) and log (A,)
irrationally related. Do the construction as in Example 4.6 except that when building
n-blocks, for n odd use A,, and for n even use A,. Repeating the above argument
both Ay, A, are in the ratio set. As the ratio set (\{0}) is a closed multiplicative
subgroup it is all of R* L {0}.
4.8. Type 111, example
This construction is similar to that of example 4.5, using five sections. Define y(n)
inductively by y(1) =1, y(n+1) = (n+1) [T/_,v(i).

Let &,=1/log, (y(n))2”™. Condition (1) sets a lower bound on N(n). Let
g(n)=N(n)/2”"". We assume 27" divides N(n). Let

_ N(n)-2g(n) 272
k(n)= 2+ y(n) _N(n)<(2+y(n))2""’>’

which we also assume is an integer. Thus g(n) = ¢, log, (y(n))N(n) and
N(n)=(2+vy(n))k(n)+2g(n).

The five sections will have lengths k(n), g(n), y(n)k(n), g(n) and k(n) in that order.
As in Example 4.5, across sections 1,3 and 5, A7 = 1. Across section 2,

N .
Al =@)YN™ ] and across section 4

A:' = (z)l/r”N(n).
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Thus for any 0=k <¢,N(n),

N(m)—1
2, I Al=1,

i=1

N =
IA

j+k
=II Af
i=j

and we have a controlled rank-1 map.
Also notice

p(section 3) = y(n)2 7o, (section 1)
= u(section 1) = u(section 5).
Further,

n 1
wu(section 2) = u(section 4) s% wu(section 1) <5—;("—).
In other words, sections 2 and 4 have negligible mass and sections 1, 3 and 5 have
equal mass, but 3 is n-times as long as 1 and $.
We first show only 0 and 1 can be in the ratio set. Let E, be the set of all points

in the second and fourth sections of the n-block.
s o oc l 1
7 ,'=LJ3E" 52i§3—27(")<§.

Set E=J_, E,. Pick > &£>0 and now choose n with 1/y(n)<e and L a level
set in the n-block with (L~ E)>0.If xe LN E and for some j>0, T’(x)e LN E,
then j moves us from an odd section to an odd section of some m-block, m > n> 3.
In this case
du > T/ y(m) M1 ()
——(x)=1 oris >—g——>m oris <=L "——<1/m,
du I y(i) y(m)
hence = 1 oris <g or >1/e.
To see that 0 is in the ratio set, notice first that if L is a level of an n-block, then
for all m>n, (3—1/2"?)u(L) lies in each of sections 1,3 and § of the m-block.
For any set A, u(A)>0, and £ >0, select n with 1/y(n)<e, (3—1/2""%)> 5 and
so that some level set L of the n-block has u(An L)>0.99 u(L). Thus in the
(n+1)-block there must be level sets L,, L, each in sections 1 and 3 respectively,
all contained in L, with (A~ L;)>0.98 w(L;). Now Ly=T’(L,) and for x€ L,,
dyp o T/ 1

du (x)zv(nﬂ)’

a constant. Thus

u(T(ANL, A (AN L)) =0.96 u(Ls,).

Letting A;j=AnL, AT 7/(A),u(A,)>0,A,< A, and for xec A,

du o T/ 1
i (x)= <e.
du y(n+1)
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