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Abstract. The notion of minimal self-joinings for conservative nonsingular actions
is defined as a restriction on the nature of rational self-joinings. The need to consider
rational joinings is demonstrated by showing that any two type II] actions whose
Cartesian product is ergodic have type IIIA nonsingular joinings. Lastly, actions of
all Krieger types with minimal self-joinings are constructed. Hence these actions
are prime and commute only with their powers.

0. Introduction
In [R], the notion of minimal self-joinings for a finite measure preserving transforma-
tion was introduced. Its original purpose was to provide a means of constructing
examples of dynamical systems with certain prescribed behavior. This notion has
grown and evolved since [R], [JR].

Our purpose here is to generalize the notion of minimal self-joinings (in fact, just
of 2-fold minimal self-joinings) to nonsingular conservative systems. Our basic
motivation is to use this concept to construct nonsingular actions of various Krieger
types which are prime and commute only with their powers. The original issue
which began this work was a problem proposed by Choksi and Eigen concerning
ergodic transformations on homogeneous measure algebras. This problem raised a
number of questions in the Lebesgue case. In particular they asked whether an
infinite measure preserving transformation could be prime. They also asked whether
TxS could have Bernoulli factors, when T is zero entropy mixing and S is type
III with no Bernoulli factors. Our work answers the former in the affirmative; the
latter question remains open.

Aaronson and Nadkarni in [AN] construct an example of an infinite measure
preserving transformation with no nontrivial cr- finite factors. Their example is a
group rotation and does have non cr-finite factors. Maharam has asked whether
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there exist infinite measure preserving transformations with no nontrivial 0-<x>
sub-cr-algebras. Our examples all have ergodic Cartesian squares and no nontrivial
factor algebras at all. (We let factor algebra mean factor sub -a- algebra, and identify
factor algebras (mod 0); the trivial algebras are the full algebra and {0, X}.)

The notion of a joining of two measures is by now well understood. In the measure
preserving case, it is natural to require the joining to also be invariant for the product
action. In the nonsingular case, it would seem natural to ask that the joining simply
be nonsingular for the product. This is inadequate. As we shall see, it does not
reduce to the measure preserving definition. In fact, we show that any two finite
measure preserving actions whose direct product is ergodic have nonsingular joinings
of type IIIA for any 0< A < 1. As with much of our work, this argument leaves many
open questions (cf. Question A). They are more appropriately stated through the text.

In order to obtain a useful definition of minimal self-joinings we must restrict
ourselves to a class of joinings we call rational (cf. § 2). The joinings critical for
our needs, i.e. relatively independent joinings over factor algebras and joinings
supported on a single graph, are rational. Moreover any rational joining of type
Ill's is of type II,. Thus we do obtain the finite measure preserving theory as a
special case.

Minimal self-joinings is defined as a condition on an action with respect to a
certain collection of equivalent measures. In the finite measure preserving case there
is just one measure, the invariant measure, to consider, but in the nonsingular case
no particular measure is distinguished.

The definition also differs from the measure preserving case in that we restrict
all rational joinings, not just the ergodic ones. The reason is that an ergodic
component of a nonsingular joining need not be a joining of measures equivalent
to the original [A]. This is true in the measure preserving case though, so once more
our definition reduces to the standard one there.

We investigate the structure of rational joinings when they are of minimal type.
Our arguments suggest many open questions.

Lastly, we construct actions of each Krieger type having minimal self-joinings
with respect to a sufficiently large class of measures to guarantee they are prime
and commute only with their powers.

I. Preliminaries
1.1. Basic definitions
Let (X, SS, /A) be a probability measure space. A nonsingular transformation (or
nonsingular automorphism) T is a bijective bimeasurable map of X such that T(A)
is null if and only if A is null. We let ju. ° T denote the measure /JL ° T(A) = /A{T(A)).

The Radon-Nikodym derivative of V, ieZ, is defined to be

d^j, ° T'
u>i(T; x) = coi(x) = — (x).

dfi
After discarding an invariant null set we may assume that the functions w, are
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positive and finite everywhere. We have,

wi+J(x) = a)i(x)iOj(T'x) /i-a.e. and

\fdp,= ifoT'coidfj. for MfeL\fj.). (1.1.1)

A dynamical system (X,8ft,p., T) consists of a standard space (X, %), a Borel
probability measure p., and a nonsingular automorphism T: (X, 8%, p.)-> {X, %, p).
In the sequel, all measure spaces are standard probability spaces. If the measure p.
is completed with respect to null sets then (X, 8ft, p) is a Lebesgue probability space,
and we may complete the measures and make use of the properties of Lebesgue
spaces without explicit references. We may sometimes simply write (X, p, T) or
(T, p) instead of (X, 8ft, p., T).

A nonsingular factor map is a map <p : (X, 8ft, p, T)-> ( W, 2), p, U) such that:

(i) <p-\a>)css,
(ii) p ° (p~l » p, i.e., they are equivalent measures, and

(iii) <p o T= U ° (p.
In this case we say that (W, 3i, p, U) is a (nonsingular) factor of (X, <3l, p., T). If <p
is a nonsingular factor map then <p~\3)) is a T-invariant sub-o--algebra of 98. It
can be shown that all nonsingular factors can be identified in this way (up to
nonsingular isomorphism); we will use both representations interchangeably. We
note that the measure p can be replaced by an equivalent measure, namely /i ° <p~\
so that (p becomes measure preserving. If no transformations are involved, we do
not require condition (iii) of the definition but still call ip a nonsingular factor map.

A transformation T is conservative if p.(A\{Jlsl T~'A) = 0 for all Ae£%. This is
equivalent to X^o w> = °° M~a-e- [Ml]. It is easy to see that an ergodic nonsingular
automorphism is not conservative if and only if it is the shift map on Z. We shall
use the following version of the ergodic theorem.

HUREWICZ ERGODIC THEOREM 1.1.1. ([H].) Let (X, 8ft, p., T) be a dynamical sys-
tem. If T is conservative and f is integrable then

where EM denotes the usual conditional expectation function, and ^ the sub-o--
algebra of invariant sets.

1.2. The ratio set
We shall need a few basic facts from Krieger's classification of nonsingular
automorphisms - we refer to [Kr] or [HO], [S], [W] for further details and proofs
of the statements below.

Let T be a conservative ergodic nonsingular automorphism of (X, 88, p.). The
ratio set r( T) of T is defined to be

r(T) = {t eR+ u {0}:VAe @, p.(A)>0,Ve > 0,
3n^0andBcA,/i(B)>0, such that

A and \<on(x) -t\<eVxe B},
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r( T) depends only on the measure class of n, and r( T)\{0} is a closed multiplicative
subgroup of R+. Furthermore, r(T) is an invariant of orbit equivalence.

r(T) = {l} if and only if (T,/n) admits an equivalent cr-finite invariant measure;
in this case we say T is type II. If the equivalent invariant measure is finite, T is
type / / , and if it is infinite it is type 11^. If Oe r{T) then {T, /J.) admits no equivalent
cr-finite invariant measure and is said to be type III. Further, T is type IIIX, 0 < A < 1,
if r(T) = {A": «eZ}u{0}, T is type IIIo if r(7) = {0,1}, and T is type III, if
r( T) = U+ u {0}. Transformations in different Krieger types are not orbit equivalent,
hence not isomorphic.

It is clear that a factor of a type II, transformation must be type II i, but a type
Hoc, may have type III factors.

1.3. Disintegrations

Let <p:(X, 39, /j.)-*(W, 3), p) be a nonsingular factor map. Then there exists (see

e.g. [M: § 2]) a disintegration of (X, 39, /A) with respect to <p. That is, for each weW

there exists a measure fiK on 39 n (p~'(w) such that:

(i) The real valued function

is 3)- measurable,
(ii) ix.=\nKdp{w).

Furthermore, condition (ii) determines the disintegration almost uniquely. We may
denote the disintegration by {/xv(x)}. It follows from (ii) that for any integrable
function / ,

J/-JJ fdfiKdp{w). (1.3.1)

Let 2 be a factor of (X,3ft,n, T), and let /x&, Ta, and <p denote the factor
measure, transformation and map. We have the following useful formula.

(

where {/AV(X)} denotes the disintegration of fji with respect to 3>. This equation
follows from the relation,

f dy.oT [
XA~,— dn=

J dp J

dfis ° T dfiviT(X))° T
— (x)

which can be proved using (1.1.1) and (1.3.1).
We refer to [S: § 6] for a proof of the following theorem.

ERGODIC DECOMPOSITION THEOREM 1.3.1. Let (X, 39, fi, T) be a dynamical system.
There exists a standard space (Z, c€) and a nonsingular factor map 0:(X, 39, /u.)-*
(Z, % £), £ = fi o 0~\ such that (X, 39, n) disintegrates over d, i.e., there is a disintegra-
tion {r2}, and furthermore

(i) for all zeZ, vz is nonsingular and ergodic for T,
(ii) if n is invariant under T then so is every vz,
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(iii) if yu is type II then so is every vz,
(iv) vz(d'x{z}) = 1 for all zeZ. In particular, vZi _L vZ2 whenever z, 7̂  z2,
(v) d-l(<$)c:J> and 6~le$) = J (mod IM).
(vi) (Uniqueness) Ifd':(X,8ft,(i)->(Z', %>',£') is another nonsingular factor map

and {v'z} is a disintegration of (X, 38, /J.) with respect to 0' satisfying (i)-(v)
then there is a nonsingular isomorphism (p:(Z, <€, £)->(Z', c€', £') such that
v'v(^

xvzfor a.e. zaZ.
(vii) When X is nonatomic, T is conservative if and only if vz is not the shift on Z.

1.4. Joinings
Let (X,, 38,, /JLJ), (X2, 382, M2) be two standard spaces. A joining of /x, and /x2 is a
probability measure fi on S , x i 2 such that

for all A e 38,, and

Suppose (X,, 38,, /t,), (X2, 382, M2) have a common factor (W, 3), p), i.e., there are
nonsingular factor maps

?, :(*•,,»„/*,)-> (W, 3 , p), and
^2 : (X2 ,d32 ) M 2)^(^ ,®,p) .

Let {//,„,}, {fi2,w} be the disintegrations of /u., and /x2 over (p, and <p2, respectively.
The relatively independent joining fi. of /A, a«d /u2 ouer (W, p) (or over the factor
algebra 2) is defined by

It is easy to check that fi is a joining (cf. [F2], [JR] for an in-depth treatment and
basic properties of joinings that will be used here).

A nonsingular joining of two dynamical systems (X,, 33,, p.,, T,) and
(X2, 382, fx2, T2) is a joining /I of /J,, and /A2 such that T, x T2 is nonsingular for /I
If(W,2),p, LOisafactorof(X,,33,,/i,, r,)and(X2, 352, ;tt2, T2), then the relatively
independent joining of jt, and /i2over( W, p) is a nonsingular joining of (X,, p,,, T,)
and (X2, p,2, T2). Clearly, product measure is also a nonsingular joining.

We will be mainly interested in self-joinings, that is nonsingular joinings fi of
(X, p.,, T) with (X, fi2, T), i.e. joinings or nonsingular joinings over the same space
with perhaps different but equivalent measures. A non-singular self-joining pi is
said to be of graph form if fi is supported on some (single) graph

Gj = {(x,TJ(x)}.

A nonsingular joining totally supported on a union of graphs G, is called a graphic
joining.

1.5. Notation

da, ° T\
Ui(x) = -rzi l(x) (When / = 1 we drop the subscript.)

""M
r2/

, ( y )
dfi2
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dfio(TiXT2)'
<•>,(*, y) = —* (x, y).

dp
We let {vz} stand for the ergodic decomposition of the nonsingular joining fi.. v\
and v\ denote the X,- and X2-marginals of vz. fix and (Ly denote the vertical and
horizontal fibre measures of /x, respectively.

2. Rational joinings
THEOREM 2.1. Let (X, , 98,,/u.,, 7\) and (X2, 382, /x2, T2) be two finite measure
preserving systems such that T, x T2 is ergodic. For every A, 0 < A < 1, there exists a
nonsingular joining fi offi, and /u.2 such that (Tx x T2, fi.) is conservative ergodic type

IHA-

The proof proceeds in a series of lemmas. What we will do is construct, on a
series of Rohlin towers, modifications of product measure. Each successive
modification will project on its marginals to fit and /x2, and in fact the Radon-
Nikodym cocycle will be a coboundary. The weak limit of these modifications will
be our desired measure.

By a rectangle we mean a set of the form A x B, A e 38,, B e S82. Let A e <3lx, B e SS2

and 0 < A < 1. We will describe a function wAB: Ax B-»{A'},eZ with the properties:
(i) {(x, y): wA B(x, y) = A'} is a finite union of rectangles,

(ii) MixH2({(x,y): wAB(x,y) = X.} = ^1(A)/JL2(B), and
(iii) for all xoe A,yoe B,

wA,B(x0,y) dfi2(y) =/x2(B) and wAB{x, y0) d/x^x)
JB JA

Select i(j) -*} oo so that

Inductively select n(j)eZ+ so that

This gives

Pick Aoc A with fj,l(A0) = \^X(A) and Bo<^ B with fi2(B0) = 5)u,2(B). Partition Ao

into subsets Ajk,j= 1 , . . . , oo, /c = 1 , . . . , n(j) with /j.l{Alk) = a(j)ix](A). This is
possible since X nO')aO')Mi(^) = ^\{A)/2.

Similarly partition Ac
0, Bo and Bc

0 into Aj k , Bjk, and Bj fc with JU,,( Ajt) = a(7')/tii( A)
and M2(B,>) = / * 2 ( « M ) = a(j)/j.2(B).
Define wAB to be:
(a) A, for (x, y) e Ao x Bo or AJ x B^,
(b) A'U) for (x, y) € A,^ x B'lk or AJ,, x Blk, and
(c) 1 otherwise.
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Conditions (a) and (b) are clear. For (c) we compute the case for xoeAo. The rest
are symmetric.

For some unique j , k, x0e Ajk,

wA,B(xo,y)d>x,2(y)=\ wAiB(x0, y) d/i2(y)
JB J B0

wAJ}(x0,y) dn2(y)+\ wAtB(x0, y)
JB

fi2(B) + fi2

^-+ (A"'U) - D«0

= fi2(B) since (\-'(J)-l)a(j) = (l-\)/2.

We now show how to use wAB to modify a joining fi of /A, and /x2. Suppose we
are given such a joining. Suppose further we are given a partition H of X, x X2.
Suppose we are given a rectangle R = Aox Bo satisfying:

(i) fi, restricted to R is of the form co(/j.l x /j,2), i.e. a constant multiple of product
measure.

(ii) For i '=0,l 3 N - 1 , for (x,y)e R, dfi. ° (T\ x T2)/dfi.(x,y) = dt is a con-
stant,

(iii) For i = 0 , 1 , . . . , 3N- 1, T\ x T2{R) = A, x B, is contained in a single element
of H, and the sets A, x B, are disjoint.

We call the sequence of sets At x Bt a (/x, H)-pure column of length 3N.
On such a pure column we can modify (x as follows. On the level sets

T\ x T2(R) = A, x Bf, N < i < 2A/, define

/i'(Dn(AixB,))= I wAnxBn(Tr(x), T2'(y))XD(x,y) dfi.

Leave fi unchanged elsewhere.

LEMMA 2.1. For /!' defined as above, jl' is a joining of //,, and /t2 and for any set

Proof. Notice that /2' is equivalent to fi. and

da'
— (x, y) = wAuXBa( T, '(x), T2 '(y)) for (x, >>) € A, x B,, and 1 elsewhere.

Thus for any De38, ,

/ / /2N-I \ ' \ 2N-I

(L'(DxX2) = fi. [((DxX2)n[ \J A,xB, + ^ ^
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Now fi. on AjX Bj is Cod^^x (m2), so

= c0difi2(Bi)fii(DnAi)

\(DnAi)xBi) = cod,\ ( wAoXBo(x,y)dfi2)dfil
J Dr,A{ \JBa )

Thus fi.'(Dx X2) = fl{Dx X2) = p,{D). Similarly, the other marginal is still /J.2.
If D e H, then any At x B{ that intersects D nontrivially is actually contained in

D. A computation identical to that given above now tells us fi'(D) = /2(D). O

Suppose we had some countable collection Rl, R2,..., of bases for {(L, H)-pure
columns of height 3N, all of which were disjoint. We could simultaneously modify
all of the columns to obtain a new joining of ^x

 and fi2- We call the new joining
\x' obtained this way the A, N-modification of (i on the columns over Rl, R2,.... Let

{Pj} and {Q/} be refining and generating sequences of partitions of X, and X2,
respectively. We will define a sequence of joinings /2,-. We start with /20 = / t , x / i 2 .
Inductively we want:

(i) fij is equivalent to /Io and ^Mi/^Mo takes on values {A7} only and its level
sets are disjoint unions of rectangles.

(ii) fii+i is a A, Nrmodification of fi, on some collection of (/!,,/>, x Q,)-pure
columns. Af1+1 >21 0 < l + l ) N, and the columns cover a set of fl0 measure at
least 0.9.

(iii) Because of (i) and (ii) above, there is a countable partition E, of XtxX2

into rectangles so that on any element of £,, d{j.Jd(i0 is a constant. Let
dt,..., d, be a finite collection of atoms of E, with /t/(U7'=i 4 ) > 1 — 2~10'.
Let Bu be the atoms of PI+1 x Q1+1 and A = dk n Bu, for some k, u. The value
JVj+, is so large that on a set of/I, measure at least l -2~1 0 1 , forO< n < N,+1,
for all D as above,

N. + x-n-\

I XA(T{X T{(x, y))>0.9Ni+l{i0(A).
j = -n

LEMMA 2.2. For (X,, 39,, /*,, T,) and (X2, ^2,1^2, T2) finite measure preserving
processes with T, x T2 /x^x ft2-ergodic, there is a sequence of joinings satisfying (i), (ii)
and (iii) above.

Proof. We start with /xo = /u.i x ^2- Suppose we have constructed /£,-. We need first
to select N1+1. We require N,+, s2 l 0"+ 1 > 2N, and having selected d , , . . . , d , atoms
of £, with /x,(U/=i 4 ) > 1~2"101, the Birkhoff theorem gives us a further lower
bound for Ni+l so that for 0 ^ n < N{+1, for all A as in (iii),

on a set of (x, _y) of fi,0 measure at least 1 - 2 ~ I O n . Using this ^Vi+1 we must construct
the pure columns. In (X, , T,) select a Rohlin base F1+1 for a tower of height 3N1+,
and error 0.01.
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Now Fi+1 x X2 is a rectangular Rohlin base for TxxT2. The span

3 N i + 1 - l

V (r1xr2)-;(E,vP,+1x<?,.+1)

partitions Fi+|XX2 into rectangular bases for (/x,, P,+, x Q,+l)-pure columns of
height 3Nj+1. Let /x,+, be the A, Ni+1 -modification of fi on the columns over these
bases. •

COROLLARY 2.3. The joinings /x, converge weakly to a joining fi, of px and /x2.
Furthermore, Tx x T2 is nonsingular for fi. and the ratio set of X, x T2 with respect to
fl is contained in {A'}u{0}.

Proof. Since /2i+l is a A, Ni+l-modification of /x, on (/*,-, P(+1 x Q1+1)-pure columns,
for any set

As the P, x Q, refine, for any j z i, /xy(D) = fij(D). Thus /I is well defined and finitely
additive on the dense algebra (not cr-algebra) of sets generated by Ui P/ x Qi-

Of course /x projects to fj., and /M2 on its marginals. This then implies that jl.
extends to a joining measure on the cr-algebra 38, xS82, since /x satisfies the
Kolmogorov extension criteria.

Let L,= r"'" '(f;-)u T2N--l(Fi). For (x ,y)^L,xX 2 we easily compute

as it is on level TN'(Fj)xX2 of the Rohlin tower that the wAB are first introduced,
and on the T2N>(Fi)x X2 they are removed.

Now /i,(L,)<2"10'+1. Thus for fi0 and /x-a.e. (x, >>), (x, y) belongs to only finitely
many Li; and hence as i increases

d,lio(TlxT2)/
~p (x, y)

ceases to vary on an ever larger subset of X ,xX 2 . Since /x/-»/2 weakly, this limit
must be

and must lie in {Aj}jeZ. We conclude 7", x T2 is nonsingular and its ratio set with
respect to /x is contained in {A'}u{0}. •

To complete Theorem 2.1 we only need show that A itself is in the ratio set.

LEMMA 2.4. For /xf as constructed above, for any set C e P,x Q, there is a subset
C'cCwith
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C is contained in the first Nt levels of the Rohlin tower over F<x X2 • For (x,y)eC
there is an e(x, y), 1 £ e(x, y) s 27V', so that

(TlxT2y
ix-y\x,y):C'^C is 1-1

mapping C" into the middle TV, levels of the Rohlin tower over FtxX2. Lastly,

(x, y) = A.

Proof. Let dx,...,d, be atoms of £,_, with /I ,- ,(UJ '= 14)>1-2~1 O ( M ).
Let Cj=Cndj and fi.i-i(U'j=l CJ-)s:/21-_1(C)-2~10<1'"1). Let G^FtxX2 consist of
those (x,y) such that for all j ,

))^0.9N(fi0(Cj) and

T2
k(x,>'))s0.97Vl7:o(C;).

k=0

2N.-1

If (x, y) & G, then either
(a) for all 0< k < TV,, Tf x T2(x, y) does not satisfy (iii) of Lemma 2.2, or
(b) for all TV, s k <27V,, T\ X T2(X, y) does not satisfy (iii) of Lemma 2.2.
Thus fio(G) > fj.(Fi) (1 - 2 • 2~10'). On any of the (/!,_,, Pi+X x Q1+,)-pure columns

in the Rohlin tower over FjXX2,^C/ is a constant on levels. Hence G is a union
of bases of such pure columns. Let A x B be a base for a pure column in G. For
each Cj select subsequences

0ski<kJ
2<---< kj

Hj) < TV, and TV, < fcf < k{ < • • • < fc/O) < 2TV,

with

{T,xT2)
k'iAxB)^Cj,

(TlxT2)
k'iAxB)cCj, and

Consider the set Aox Bou Ac
ox BQ on which wA(uBo(x,y) = A. Let

' ( j )

C'= U U (T,xT2)
k"(AoxBouAc

oxBc
o)czC.

Now d/lj-Jdjl0 is a constant on dt and hence C,. Call its value 5,.

-0.97V,(l-2-2-10l)/x1(Fi)I5,/Io(C,)/2
j
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For A x 8 in G, for (x, y)e(Tlx T2)
k»(A0x Bou Alx Bo), define e(x, y) = k{, - k{.

Now (T, x T2)
e{x-y)(x, y): C'n C} -> Cj is 1-1 and since </£_,/rf/£0 is a constant on CJt

But in constructing fi,it for {x, y)eC'n C} we obtain

—'• j ~ (x, y)

COROLLARY 2.5. A is in the ratio set of Tj x T2 acting on pi.

Proof. To begin, consider the set

U= U TJ(F,)u (J TJ(Ft).

If (x,y)4LiXX2 and 0<A:<3A^_, then

^,.°(r,xr2)f c dfi^QJT.xT^
— (x,y)= — (x,y)
d/Xi dfii-t

as along the piece of orbit (x, y), (T,(x), T2(y)),...,(T'l(x), r*(y)) we never cross
from using to not using some wAB. Now

12

Ni 2 1 O < 1 ) 2 -

Thus a point (x, / ) lies in at most finitely many L,. For any set C, fi(C) > 0, select
j large enough and Ce^xQ, so that fi,(C & C)<(A/100)f2(C) and also by the
previous lemma there is a C 'c C, C" in the first third of the tower over FtxX2,

Furthermore, i is so large that

For (x, j ) e C' we know

— j ~ (x, y)« A.

If furthermore (x, y) i. U^L, Lh

_ (x,y) = — (x, y) = A.
dfx, d/j-i

How fi(C\\J?-lL3)*0.2fi(C).
Letting

C'=\(x,y)eC'3>ULj:(x,y)eC and (T, x T2)
e(JC-v)e c l ,
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>(0.2-0.02)£(C)>0.

F o r (x, y) e C, ( T , x T2)
e(x-y\x, y)eC a n d

and so A is in the ratio set. D

Theorem 2.1 shows that weakly mixing finite measure preserving transformations
are not strongly simple [A], thus answering a question of Aaronson's [A].

Question A. What Krieger types are obtainable as nonsingular joinings of two actions
of particular types? Can type IIIA of Theorem 2.1 be replaced with other Krieger
types? Type III, as a joining of II,'s is an easy modification of our argument. Can
IIoo be obtained? Beyond the obvious restriction that a II, joining implies II,
marginals, are other restrictions forced? How many distinct isomorphism classes of
type IIIA can be obtained? If the original systems are of other Krieger types, what
types of joinings can exist?

Definition. Let p. be a nonsingular joining of (X,, 35,, ̂ i,, 7",) and (X2, 532, M2» T2).
We say that /x is a rational joining of //,, and fx2 if

(i) for /i,-a.e. x,

<a{x,yi) w2{yx)
/ix-a.e.

(ii) for /u,2-a.e. y,

<o(x,y2)

to

2(y2)

'(*,)
<o(x2,y) oi\x2Y

We may regard (ol(x) and <o2(y) as functions on X, xX2 defined /t-a.e. Define

a>(x, y)
c(x,y)= 1 ; , •

c(x, y) is defined and finite positive /2-a.e. By integrating the fiber measures in (i)
and (ii) above, it is clear the equalities in (i) and (ii) actually hold /I-a.e. Thus
c(x, y) is /x-a.e. constant on vertical and horizontal fibers. The converse is also true,
fi. is rational if c{x, y) is /x-a.e. constant on vertical and horizontal fibers.

It follows that a rational joining of finite measure preserving systems is finite
measure preserving, since c(x, y) = w(x, y) and J <w(x, y) d(Lx = 1, so w = 1 /2-a.e.

We note that the ergodic components of a (conservative) rational joining need
not be nonsingular joinings (see [A: p. 260]).

PROPOSITION 2.6. The following nonsingulaV joinings are rational.
(i) Product measure.

(ii) Joinings of graph form.
(iii) Relatively independent joinings over factor algebras.
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Proof. It is clear that product measure and joinings of graph form are rational. Now
let /x be the relatively independent joining over the factor algebra <2). By (1.3.2),

, y) = —* (<p(x, y)) — ^ fz^ (x, y) /t-a.e.

By the properties of the relatively independent joining,

dj!3°(TxT)

So

d/u,°T
(

Thus c(x, >»), for fixed j , is independent of x. The symmetric fact is, of course, also
true. •

3. Minimal self-joinings
3.1. Basic properties

Definition. A dynamical system (X, S3, ix, T) has minimal self-joinings over 2??, where
Wl is a class of probability measures equivalent to fi, if for every ^t,,/i2e3J?, for
every rational joining fi of fix and /u,2, for a.e. ergodic component vz of /I we have:

(i) vz = v\ x v\, i.e. is the product of its marginals,
or

(ii) vz is of graph form.
For finite measure preserving transformations, minimal self-joinings over {̂ i} is

the same as the usual (2-fold) minimal self-joinings.
Minimal self-joinings restricts the nature of the ergodic components of a rational

joining. We now investigate the consequences of this restriction. We start with a
useful technical result (Proposition 3.1.5) which is essential to a number of later
results.

LEMMA 3.1.1. Let (X,, 38,, /A, , T,) and (X2, 882, M2, T2) be two dynamical systems
and v be a measure on Xx x X2 nonsingular and conservative ergodic for TtxT2. If
v is nonsingular for T, x /, and

dv°TxxIr dvoTt,
— ~ A — (*' y^= A 1 w "-a-e->

dp dv
then v = vl x v2, the product of its marginals.
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Proof. We have

J n->°°

(x,

I,=o 1

dv

f Si=

= lim —
J n->co

dv

= J v\A)xB(y) dv = v\A)v\B). D

LEMMA 3.1.2. Let (L be a rational joining of (X,, 58,, /*,, 7",) a/irf (X2, S82, M2, T2).
Then for a.e. ergodic component vz of (L, if vz is nonsingular for T, x /, then

dvz°(Tx*I) dv\°Tx
~A = A 1 ^" a - e -

Proof. Let A = {z: vz is T, x / nonsingular}. Since /x is rational,

w(x, j ) = w1(x)w2(>')c(x, y) /x-a.e.,

where c is /I-a.e. constant on horizontal and vertical fibres. So

Therefore c(x, y) = c, a constant, vz-a.e., and

d ẑ e (r , x r2) d/t,° r,
^ (*,.>>) = — (x)

Using this equality and the chain rule on (T, x T2) ° (T, x /) = (T, x 7) ° (T, x T2) we
obtain

(y)c (T,x, T2y)
dvz

So

• J') -, (Ttx,T2y)
dvz

d/j,{ o T,

d/x,
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Put

g(x,y)=-

Then g is well-defined vz-a.e. and g = g ° (T, x T2) iva.e. Thus g = K(z) v-a.e. and

(x, >>) = K(z) — (x) vz-a.t.
dvz o>.

Now let vz\x, ^2|T,X denote the fibre measures of vz at x and T,x, respectively. Then
by (1.3.2) we have,

dv2°(TiXl) dpj° T, dvz\TxX,
(*J>) (x) ' (>-)

Thus,

Integrating with respect to dvz\x(y) gives,

^ i ( x ) = K(z)^fJl{xUz.a.e. (3.1.1) •
dvz dfjLt

LEMMA 3.1.3. Suppose (Xt, T,,^,) and (X2, T2, ix2) are both ergodic and fi. is a
nonsingular joining. Further suppose

oc

fi = Z atfii, where a, s 0, £ a<, = 1,

and eacft /2j is (T, x T2)-nonsingular. If fi] and fi] are the marginals of fiit then for
each i with a, > 0, fi{ are equivalent to /j.j,j = 1, 2.

Proof. If fi)(A)>0 then /x,(A) = fi(AxX2)> aifi](A)>0. On the other hand, if
Ht(A)>0 then ^.(UL-co rf(A)) = 1 so /2}(U^-« ^f(/4)) = 1 and since T, is
/Ij-nonsingular, fi](A)>0. D

LEMMA 3.1.4. Let fi be a rational joining of (Xx, £8,, /A, , T,) and (A2, S82» M2, ^2)-
Then for a.e. conservative ergodic component vz of fi, if vz is nonsingular for T, x/ ,

P»-oo/ Let A = {z: f2 is T, x / nonsingular}. We show that in equation (3.1.1), K = 1
for £-a.e. ze A Now given ficZ, ^(B)>0 (cf. Theorem 1.3.1), define
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Let vB and v\ denote the X,- and X2-marginals of vB, respectively. Then

It follows from Lemma 3.1.3 that /i, == vB. Now suppose K(z)>k> 1 for ze Be A.
Then

so

dvB d/x, ' dvB dfx ° T,

But since fix = vB, we would have a coboundary > 1, contradicting the conservativity
of Tj, so K ( z ) s l £-a.e. on A and similarly K{z)>\ £-a.e. on A •

PROPOSITION 3.1.5. Let (X,, 38,, /u,, T,) and (X2, S32, /a2, T2) be fwo conservative
ergodic dynamical systems. Let ft be a rational joining of fix and fi2. Then for a.e.
conservative ergodic component vz of ft, if vz is nonsingular for 7", x /, and hence for
I xT2, then vz = /x, x fi2.

Proof. From the previous lemmas we have that vz = v\xv\, and so vz is IxT2

nonsingular. Let A = {z:vz is T, x I and I x T2 nonsingular}. Write

<0*{x) = dv\oTJdv\.

Then w*(x) = w)(x) fz-a.e. Let {£} be a dense family of functions in (X,, 33,) so
that the Hurewicz ergodic theorem holds after removing a null set. Then for all
x e X,, and all j ,

£"ro'fAT\(x))w)(x) f , ,
hm „_,—7-— = I fjdfi), and

Thus ifjdfXi =\fjdv\. Since this holds for a dense family of functions then H\ = v\,
and similarly fi2 = v\. D

Let jl. be a nonsingular joining of (T,, /t,) and (7"2, /u,2). We say that an ergodic
component vz of (L is of product form if ^z = v\ x v\, the product of its marginals.

COROLLARY 3.1.6. Suppose (T,, /x,) and (T2, JU2) are conservative ergodic and fi is
a rational joining. Then a.e. ergodic component vz of product form is /A, X /A2 and must
be conservative.

Proof. First we show a.e. vz of product form is conservative. If not then vz is the
shift map on the integers. Thus either (T,, v\) or (T2, v\) must be the identity on
a one point space, and the other is the shift map on the integers as this is the only
way the shift can be written as a product. Let Ai = {z^Z:(Ti, v'z) is the shift map
on the integers}. If £ (A, u A2) = 0 we are done. But if f( A,) > 0, then

1
v =
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is absolutely continuous with respect to /*, by Lemma 3.1.4 but (T,,i>) is not
conservative.

Now for vz conservative and of product form, vz is T, x / nonsingular and by
Proposition 3.1.5 we are finished. •

LEMMA 3.1.7. Suppose fi is a rational joining of (X,, T,, /A,) and (X2, T2, /x2)
fi = avx + (\ — a)i>2, a ^0, 1, and the vt are nonsingular for (T, x T2), but are mutually
singular. If v, is a rational joining of /A, and /u,2, then v2 is also.

Proof. Since both fi and vx have >u., and /t2 are marginals, so does v2. As vx and
v2 are mutually singular, they are supported on disjoint invariant sets and

dfio{TlxT2)t dp2o{T,xT2)f— (x, y) = (x, y)
a/j. dv2

for (x, j)esupp(f2). Hence v2 is rational. •

COROLLARY 3.1.8. Suppose fi is a rational joining of (X,, 7, , fxx) and (X2, T2, /t2)
almost all of whose ergodic components are of product form or of graph form. Then

fi = a(/ii x fi2) + (1 - a)p.a,

where fio is a rational joining of /J., and /J,2 almost all of whose ergodic components
are of graph form.

Proof. By Corollary 3.1.6 a.e. ergodic component vz of product form is p.,x/i,2.
Letting a be the measure of this set, it is in fact a single ergodic component. The
complementary set supports fiG. That fiG is a rational joining follows from our
previous lemma. •

PROPOSITION 3.1.9. If (Ti,/u,i) and (T2,/x2) are conservative ergodic and fi is a
rational joining almost all of whose ergodic components are of product form or graph
form, then fi is conservative.

Proof. From Corollaries 3.1.6 and 3.1.8 we can assume fi = fic is of graph form.
Thus fi =£° l i otifii, where fi, is supported on G,. By Lemma 3.1.3, if a , > 0 , then
fi{ is absolutely continuous with respect to /*,-. Thus (T, x T2, fij) is nonsingularly
conjugate to (7}, /A,-) and is conservative. •

LEMMA 3.1.10. If fi is a graphic rational joining supported on a single graph G, then

Mi=^2° TJ.

Proof. The projections TT, : (x, TJ(x))-*x and TT2:(X, TJ(X))-> T'(X) satisfy
At, o ir, = fi = n2° TT2. As they are 1-1 their inverses are nonsingular and

THEOREM 3.1.11. Suppose (X,3t,fj.,T) is conservative totally ergodic and has
minimal self-joinings over SM. If SeC(T) (= the commutant of T) and for some
/*! = n, /j., eW and ^t, ° 5 € W then S= V for some i.

Proof. Let fi be a joining supported on the graph of 5, i.e.,
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Thus fi{{(x, S(x)): x e X}) = 1. This joining is rational since /xx is a point mass at
S(x) and fi y is a point mass at S~l(y). Clearly, the marginals on the first and second
coordinates are /J,1 ° S and /u.,, respectively. Therefore,

fj. = a( /U|
i = 0

where 8, is a joining supported on Gt. Since (XxX, TxT,(t) is isomorphic to
(X, T, (JL), it is ergodic. Hence the ergodic decomposition above has only one term.
This term must be one of the 5, since fi.x is a point mass. Thus fi({(x, T'(x)):xe X}) =
1 and so S = T. U

THEOREM 3.1.12. Suppose (X, 35, n, T) is conservative totally ergodic and has
minimal self-joinings over SM. If SM T* 0 then T is prime.

Proof. Suppose (X, /A, T) has a nontrivial factor 9). Choose Ae 2 with (J.(A) # 0,1.
Let fi. be the relatively independent joining of (X, n) with itself over the factor
algebra 3). Then

where 5, is the joining supported on Gt. Since /x is a relatively independent joining,
for AeS),/2(J4X/\) = /A04). SO

ix A) = >

By Lemma 3.1.7,

is a rational joining of ft with itself, in particular a joining. Thus /I(/4xA)
x X) = /J.(A). We conclude

This implies a =0. Define the projection TT, ,:(x, T'(x))-»x Then

I a,5, o ^~\{An T\A))) = 1 a,5, ° w !

Since each term on the left is s each term on the right, if a^O then
A = An T~'(A) 8,;° Tr^J-a.e. Since all 8, ° TT̂ J are equivalent to p, if a, 5*0 then
i4 = AnT~'(A)^-a.e. Since A is nontrivial and T totally ergodic, if a^O
then i = 0. Thus fi = So and for all sets A e 38, /!(A x A) = fi.{A x X) = /^(A). But it is
well-known (cf. [R], [JR]) that this formula characterizes the factor algebra 2>, and
hence 2 = 33. •

We now show that the assumption of total ergodicity in Theorems 3.1.11 and
3.1.12 is simply that X is nonatomic.

PROPOSITION 3.1.13. Suppose (X, 35, /x, T) has minimal self-joinings over Wl. If
Tl ^ 0 and T is not totally ergodic then /J, is atomic.
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Proof. Minimal self-joinings implies T is ergodic. Since T is not totally ergodic there
is an integer n and a partition {Ao, Ax,..., <4n_i} of X with T(At) = A(l+1)modn /x-a.s.
This partition forms an atomic T-invariant cr-algebra 3). Let /I be the relatively
independent joining of /u, with itself over 3l. The proof of Theorem 3.1.11 implies
fi =Z flA- Hence the fibre measures of fi. over n are atomic. These though are the
fibre measures of fi over 3). Hence /x restricted to 3) is atomic and relative to 3) is
atomic. We conclude /J. is atomic. •

Question B. Using rational joinings one can define a notion of rational disjointness
(cf. [Fl]) for nonsingular transformations. Are weakly mixing or perhaps mildly
mixing transformations rationally disjoint from nonsingular group rotations? This
would answer a question of Aaronson's, who has asked the authors whether compact
group rotations can have nontrivial weakly mixing factors (cf. [AN]).

3.2. Graphic rational joinings
We have seen that for any ixx and /JL2 product measure is a rational joining; also,
for any /x.,, if fi2 = Mi ° T~J, then any average of product measure and /x., ° TT, is a
rational joining of /xt and /x2- We now want to argue that only under special
circumstances can a graphic rational joining of ftt and /J.2 exist supported on more
than one graph. We will first describe examples of how this might occur, and then
we will see that these examples are the only ones.

First example. Suppose /u. is an invariant probability measure for T. Let 5, be the
off-diagonal supported on Gj = {(x, TJx)}. Any measure

M = I OJSJ, where a, > 0, I a,- = 1,

is a graphic joining of /JL with itself.

Under certain circumstances we can modify the marginals and joining above
simultaneously to still be a rational joining. Here are those circumstances.

Suppose there exist/ ge L+(M) a nd t n a t they satisfy

I a,f(T'(x)) = l and I a / g ( r ' W ) = l. (3.1)
ieZ ieZ

This condition forces J / = Jg = 1, and f ge L°°(/LI) since/(X), g(x)< 1/sup a,.
Define a new measure /I supported on graphs G, by

^ (x, Tj(x)) = g(x)f(Tj(x)) e L°°(/2).

To see that /I is a probability measure we compute

g(x)f(TJ(x))dfixdfi(x)

= I I I «#
Jx UeZ

Letting /a, and fi2 be the marginals of /I, from our last computation

[
X J{x}xX
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To see that /I is a rational joining of fit and fj,2 note that

dfi'jTxT) _g(Tx)f(V+\x))
dfi (X' (X)> g(x)f(T>(x))

d^x ° T,
(TJ{x)).

It is natural to ask when the equations in condition (3.1) can have nonconstant
solutions / and g. Condition (3.1) is equivalent to asking for fe L°°(/A) with 0 in
the convex hull of the functions f°T' if we replace / by (/— essinf/)/(j/—
ess inf/). For T an irrational rotation on the unit circle in C, it is easy to see that
f(x) = z and hence /(z) = re(z) = cos (0) satisfies an equation of the form (3.1). As
cos (-0) = cos (0), we can u s e / = g. Thus for any non-weakly mixing T, nontrivial
versions of (3.1) hold. (We note that when T is type III, (3.1) may also have a
solution. In fact, in the case above of an irrational rotation, (3.1) holds everywhere,
not just a.e., therefore also for a type III measure.)

In an earlier version of this paper we asked whether (3.1) holds for weakly mixing
T. This question has been answered by J. F. Mela. We are indebted to Mela for the
proof of the lemma below.

LEMMA 3.2.1. (Mela.) Let (X, /A) be a probability space and T an ergodic measure
preserving transformation. Then there exist nonnegative constants a,, £ a, < oo, and a
nonconstant fe L°°(IJ.) with

Proof. Choose/oe L°°(/i) a nonconstant function. Hence oy0, its spectral measure,
has some support away from 0. For a > 0 let h e L2(K, oyo) be a 'tent' function with
support on (-a, a). Then h(t) = £ a, e2iru', where a, = a_, as h is real. A computation
shows that X |a,| < oo. Choose a e supp (oyo), a ^ 0, so that

ha(t) = laje2"'Jae27riJ' = h(a + t)*0cTfo-a.e.

Choose a so that h(t)ha(t) = O (i.e. make the two tents disjoint).
Let Z(/o) denote the cyclic subspace generated by f0, and W the isometry from

Z(/o) onto L2(K, oy0) taking/0 to 1 and the action of T to multiplication by e2nlJ'.
(cf. [P] for notation.) Let/,(x) = £ a} e

27riJaf0(T
Jx). Thence L°V) and W(ft) = ha.

Now
Jx)) = I ajW(MTJx)) = I a, e2

= 1 a, e2vijlha(t) = h(t)ha(t) = 0 o-/o-a.e.

Therefore £ <*jfi(TJx) = 0 ̂ ,-a.e. To make fx real just define

supported on (-a -a, -a + a). Then l e t / = / 1 + / 2 . D

Second example. Suppose /x is an infinite, cr-finite invariant measure for T. We will
see here also that non-trivial graphic rational joinings of measures equivalent to /A
may exist.
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Suppose {a,-},-eZ is a sequence of nonnegative numbers. Again suppose/, g e L+(/i)
satisfy

I fl,./(r(x)) = l and I a,s(7-'(x)) = l. (3.2)

Since /x is infinite, these imply £ a< = °°-
Condition (3.2) implies f g e Lx(fx), and we normalize them so that J / = J g = 1,

and then normalize the {a,} to maintain (3.2).
If we define a joining jx = £ 0,5,, where 5, is the off-diagonal on G,, we get a

cr-finite Tx T-invariant measure. It is not a joining of fj, with itself as both marginals
give infinite measure to all sets of /^-positive measure. We can modify jx to jx just
as in example 1 to give a rational joining. In fact, define jx by

^(x, TJ(x)) = g(x)f(TJ(x)).

We compute

f f
M=I g(x)f(TJ(x))dji

j Ja,
I

Now geL+(/n) a n d / e L^ifx) so g/° TJ G L+(/i). By monotone convergence,

= [[
x j

Thus jx is a probability measure equivalent to /2. To compute its marginals [ix and

JAxX
g(x)f(y)dfi

g{x)f{TJ(x))dfi.
A

-?4«
= g(x) d/x(x), and

xA)=\ g{x)f{y)djl
JXxA

g{T-j{y))f{y)djl

= laj\ g(T-J(y))f(y)dtx(y)
j JA
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Thus

= g(x) and —^(v)
rf/i

Just as in Example 1,

dfio(TxT) j g(Tx)f(TJ+l(x))
d . (x, (x)) g{x)f{TJ{x))

and /I is a rational joining of txx and fi2.
In the infinite measure preserving case, the possible existence of nontrivial {a,},eZ, /

and g is easy to see.
Let A be an exhaustive weakly wandering set of finite measure [JK], i.e. fx{A) < oo,

and there exist 7(7) with TjU)(A) disjoint and covering X. Let/0 = ̂  and

cij = 1, if j = -j(i), for some 1", and a, = 0 otherwise.

For a.e. xe X there is a unique i(x) with xe TJU(X))(A). Thus

Thus

T o g e t / e U ( M ) l e t

Now / > 0 a.e. as T is ergodic. We still have J/(x) d/j. = 1 and

ieZ

Since A has finite measure, the sets T~A'\A) are also disjoint and cover X [EIH],
hence f=g solves £ atg{T'(x)) = 1.

Question C. There are infinite measure preserving systems whose weakly wandering
exhaustive sets must have infinite measure [HK], [HIK]. Can solutions still exist in
this case?

PROPOSITION 3.2.2. Suppose T is conservative and totally ergodic and p, is a graphic
rational joining of pLX and fi2- If fr is supported on more than one graph, then jx is of
the form of either Example 1 or Example 2 above.

The proof proceeds in a series of lemmas.

LEMMA 3.2.3. Suppose Tis conservative and totally ergodic and /I is a graphic rational
joining of ft, and /x2 • If p. is supported on more than one graph, then there exist a-finite
invariant measures fil equivalent to fix. Furthermore, they are finite or infinite for all
i, where i varies over the graphs.
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Proof. Since T is totally ergodic, the G, = {(x, Tj(x)):xe X} are /I-a.s. disjoint,
and Tx T-invariant. Let G,(I), G,(2),..., be the graphs of nonzero /t-measure. Define

/j(GjU)nA)

Since /I = £ /I(G,(l))/I,, by Lemma 3.1.4, all the marginals p.) and fi.2 are absolutely
continuous with respect to (JL, and fi2 respectively.

The projections of /l^ to the first and second coordinates are measure preserving
to /i) and [L] and 1-1.

Hence the inverse maps

7r~''x-»(x T^'Hx)) IT ' • x -» (T~^'Hx) x)

are measure preserving /I/^/I , , and so nonsingular from

( X , M ) ) ^ ( M O G , ( 0 ) and {X,n2) + {iL,,Gjin).

We are assuming /I is graphic and that at least two G,(l) exist. The fibre
measure /Ix = E^[S82|^,](x) is supported on the at most countable set
TJ(1)(x), Tn2\x),..., hence is atomic. The mass

vvr'V"!!]!; ' " IOr fX^'d.C X.

Also, since the GjU) are disjoint and Tx T-invariant, the /I, are mutually singular
and so

Since /I is rational we know that /I-a.e.,

d/J°(TxT), d(ix ° T/ > » r ,
TT (x, j ) = — (x) — (j)c(x, >>),

where c is a.s. a constant on vertical and horizontal fibres of/I. Thus c(x, TJ<l)(x))
is defined for /Ii-a.e. x and its value is independent of i. Similarly c(T~A'\x), x) is
defined for /j,2-a.e. x and its value is independent of i. Thus for pii-a.e. x, if we \et
cs(x) = c(x, TJ{s)(x)), then

<:,(*) = c(x, r<r)(x))

= c,(TJU)-Jl'\x)).

As we can select j(t)-j{s) 5̂ 0 and since T is totally ergodic, c,(x) is a constant
/u,-a.e. We already saw c,(x) = c,(x) so c(x,y) is a constant c,/I-a.e. Thus for all
j(i) and /i,-a.e. x

Remember /I, ° TrT,1 is absolutely continuous with respect to fj.2- Let
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and similarly

Computing

Thus

T, , f{Ti(i\Tx))

For all /c we conclude

Tk
t . f(Ti('\Tkx))
x ) B

Since T is conservative and / e L°°(/A), we know that there are arbitrarily large
values of k with

)<2 and
1 f,(T"'XTkx))
2 f,(TJ(i\x))

But then i < c ' t < 4 and hence c = l . For all i then

dMl
 (X) f(Tn'\X)) •

Symmetrically

dfi2°T gi(T-JU)(Ty))

d/x2
 (y>

 gi(T
J{i\y)) "

Defining

^•i is an invariant measure equivalent to /A, . It must be either finite or cr-finite for
all i. •

LEMMA 3.2.4. Under the assumptions of Lemma 3.2.3, suppose the measures /i? are
finite for all i. Then /I is of the form of Example 1.

Proof. Since the M? are finite, ( / (^ ' " ( jOr 'e L'(Ml). Let c,, = / ( / ( r ' " ^ " 1 «*„„
and define

' J
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This is a T-invariant probability measure, hence is unique. We conclude c,-/J( TJU>(x))
is independent of i. Computing

-2 U/J.k°TTu dlA2 dfi.2

fk(T
Mk)(x)) gk(x) fk(T

Jlk\x))
gk(x) gk(T-Jik\x)) gk(T~j(k\x))

we obtain

ck =

Thus

- J 1

Since /I = 1 , ^(G,-,,,))/!^ ^2 = 1; /I(G,(l)))/I, ° TrJk1 and so

But we know, for all /',

Thus

Symmetrically

Setting

0 otherwise

we obtain
+J(l)(x)) = l and

Since

1 _ /T—iik)/..\\uH'2 1-kJkK1 \->

we conclude f(x) = cigl(T~ni\x)) and g(x) = cJx{T'i{i\x)) satisfy (3.2).
Define /2 on GJ(i) by

We compute that fi, is a probability measure.
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))

_ fJ{Gm) f <*/*,(*)
/ c, J c,-/(r(/)(x)

= 1 ^— d(io(x) = l.
c, J

It is TxT invariant since

dfiojTxT) djl o (TxT) gi(x)f(TJU)(x))

a/x a ix

Thus its marginals must both be fi0.
Arguing backwards,

%(x,T(x)) g
d/x

is of the form of example 1. •

LEMMA 3.2.5. Under the assumptions of Lemma 3.2.3, suppose the measures /*" are
infinite for all i. Then /I is of the form of Example 2.

Proof. As in Lemma 3.2.4, since ix0 is essentially unique,

and since

Let

just to normalize the selection. Just as in the previous case,

-(cj,(x)) and

Set

[0 otherwise

= gl(T^i){x)),g(x)=fl(T
jU\x)), and we conclude.

https://doi.org/10.1017/S0143385700005320 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005320


Minimal self-joinings for nonsingular transformations 785

Now

g(x)

so

fix) gl(r->
(1)(x)) <fr,

()) w W j'

I •dtil(x) = l.
g(x)

But it also is j / ( x ) d/x0. Hence / , and symmetrically g, belong to L+(/x0), with
normed integral. Defining /x, on G,(1) by

We compute /x, is 7 x T invariant, just as for the previous example. Also,

diii ° 77], . . dflji, _,-(,•), , x d(L ° 77",, dfit

«/X 1 u /X0

1

Thus (I, - fi0 ° ir\j . Setting

we conclude that on GjU),

and so is of the form of Example 2. •

Thus whenever a graphic rational joining is supported on at least two graphs, the
joining is equivalent to a weighted average of off-diagonal measures for some finite
or infinite invariant measure, completing the proof of Proposition 3.2.2.

4. Examples
Our next task is to construct examples of systems of various Krieger types with
minimal self-joinings. These arguments owe much to fJRSJ who show Chacon's
map has minimal self-joinings.

4.1. a-matching structures
Let (X,, 38,, n,, 7,) and (X2, 3fl2, /x2, T2) be two ergodic dynamical systems and fi,
a conservative nonsingular joining of /x, and /x2. Furthermore, suppose {PJ
and {Qj} are refining and generating sequences of partitions on X, and X2. Let
A^XxxX2, with fl(A)>0, and 0 < a < l . An a-matching structure on A (for
{ ( X , , 3 8 , , /*,, T , ) , (X2, ® 2 , I L 2 , T 2 ) , {Pt}, {<?,.}, fl}) i s t h e f o l l o w i n g . F o r a n y ( x , y ) e A
there exist in = in(x,y),jn =jn(x,y)eZ, with

*„ ^0<jn,jn -in / oo in n,

and subsets Bn, B'n c [in,7n], and a bijection nn:Bn-> B'n so that:
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(i) both Bn and B'n are disjoint unions of intervals each of length >n,
j , ,

(ii) X coi{x,y)>a £ wt{x,y)

and

(iii) for i e Bn,

1 «,(*,
_ -> a,

a w^,,)(x, >>)
(iv) for jeBn, T{(x)ePnJ iff 77"O)(x)e PnJ, and

(Here Pn/ denotes the /th element of the partition Pn.)
Notice that the set A of the a-matching structure can be assumed 7", x T2 invariant,

hence is a union of ergodic components of fi,. (If in(x,y) and jn(x, y) exist then
these same translated by 1 will also work for (T,(x), T2(x)), perhaps adding one
further index if jn(x) is 0.)

Our next proposition concerns these ergodic components. (Notice that rationality
is not needed.)

PROPOSITION 4.1.1. Let {(Xu S3,, /u,, 7",), (X2, S32, y,2, T2), {P,}, {<?,}, /I} be as
above. If for some a > 0 f/iere is a TtxT2 invariant set A and an a-matching structure
on A, then for a.e. ergodic component v, of (L contained in A, v2 is I xT2 nonsingular.

We need a preliminary lemma. From now on we assume a fixed a-matching
structure exists on a set A.

L E M M A 4 . 1 . 2 . For anyfe L+(/2),for fi-a.e. ( x , y)e A ,

l i m "

a n d

Proof. We argue the first limit. Fix e > 0 and select Af0 so that for n> No, and a
set G, fi(G)>l-e2, if (x, y)eG and i < 0 < j , j - i > n ,

^ ^
lk=i<»k(x,y)

For all but a set of ergodic components v. of /x of /x-measure <E, V:{G)> 1 — e,
since j v2{G) dfi.(z) = /2(G).

Thus for (x, y) in a set /4(e)c A, /2(/\(e))>
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Hence by (ii) of a-matching,

x T2Y(x, y))^(x, y) e
>1

We assume n> No so that Bn consists of intervals of length >«. Let Bn(e)a Bn

consist of those indices in an interval of length >n which also contain a point of
G. Now

WWrxrjW)M,(,;,)_

(just average over the intervals).
Now for (x, y)e A(e),

is between

and

hence between

( ^ ) and

This completes the proof. •

COROLLARY 4.1.3. For any set C e PkxQk,(I xT2(C) = C'e PkxT2(Qk), and for
a.e. ergodic component vz, z<= A,

Proo/ Let /i(x,^) = ̂ c (x , j ) and /2(x,y) = A'c(^,y)- Notice that if n>k and
(x,y)eAJeBn then

/i(( 7", x T2)
J(x, y)) =/2(( T, x 72rU)(x, j;)).

For /x-a.e. vz, z <= /i, and (x, j ) e z,

T,)j(x, y))a>,{x, y) lieB, w,(x, y)
vz{C) -™ I j 6 g , / 2((T,x r2)J(x,y))c

by Lemma 4.1.2. But this equals,

x T2)
J(x, y))a>j(x, y) ,sB,, 6v(j)(x, y)\

ZJeBn »j(x, y) / '

https://doi.org/10.1017/S0143385700005320 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005320


788 D. J. Rudolph and C. E. Silva

Since/] is a characteristic function, by (iii) of a-matching, this limit is between a2

and I/a2. D

Notice that we have in fact shown

, dvz °(IxT2)/ ^ , ,
a ^ ^ { x , y ) \ / a ,

dy,

which completes the proof of Proposition 4.1.1. •

4.2. Controlled rank-1 maps
From the arguments we will use in this section it is not difficult to see that there
exist type III Borel measures on a topological version of Chacon's map that have
minimal self-joinings. However, it is not obvious how to obtain type I loo examples
in the context of Chacon's map. Hence we have turned to a more general context.
Our examples will all be rank-1 - they are constructed by cutting and stacking with
precisely one spacer sequence used.

We first briefly discuss nonsingular cutting and stacking rank-1 constructions.
The construction is as in the measure preserving case except that the measures

of the columns into which the tower is subdivided will not all be equal (see e.g.
[Fr], [K]). However, the Radon-Nikodym derivative of T as it moves up the columns
will be a constant on each level set (except for the last one), this constant being
forced by the relative sizes of the intervals. (These transformations are a special
case of the nonsingular transformations satisfying property F introduced in [HW].)

PROPOSITION 4.2.1. Any nonsingular rank-1 map is conservative ergodic.

Proof. We first note that the measure is clearly nonatomic and hence it suffices to
show ergodicity. The same idea as in [K] for the measure preserving case applies.
Suppose A is a T-invariant set. Given e>0, there is some set L that is a union of
levels in the n-block such that /J.(A A L) < e. Thus there is some level L, in L such
that fi(LtnA)> (1 -e)n{Lj). But since the Radon-Nikodym derivative is constant
between levels and A is invariant, fi(Bn n A) > 1 - e, where Bn is the n-block. Since
e is arbitrary it follows that A is the whole space (mod 0). •

We now describe a class of nonsingular rank-1 maps that we call controlled
rank-1. To determine the relative proportions of the columns into which the (n -1)-
block is cut, all that is actually necessary is that we specify the Radon-Nikodym
derivative from the base of the ith (n - l)-block in an n-block to the base of the
(/'+ l)st. This sequence of values determines the relative sizes of the columns into
which the (n — l)-block must be cut to obtain these Radon-Nikodym derivatives.
We always assume the Radon-Nikodym derivative from any level into the spacer
is 1.

Our spacer sequence will also have a special form. Each (n —1)-block in an
n-block will be assigned a single spacer, which may be placed either below the
block or above it. Let N(n) be the number of columns into which we cut the
(n -1)-block, stacking them to form the n-block. Hence the spacer sequence of the
N(n) (n - l)-blocks in an n-block is determined by a sequence e",..., e"mn) of 0's
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and l's. If e" = 0 we place the spacer of the ith (n -l)-block before (below) the
block, and if e" = 1 we place it after (above). We will assume

e1 = \ and <?"„,„, = 0.

This ensures that no more than 2 spacers ever occur between two «-blocks.
To define our process all that we need give are the values N(n), the sequences

{el,..., e"Nin)}, and the Radon-Nikodym derivatives {A",..., A^(n)_,}, where A"
is the Radon-Nikodym derivative from the bottom of the ith (n - l)-block to the
bottom of the (i'+l)st, and the form of a 0-block. The 0-block will be formed by
stacking 3 intervals each of length | . As the description of the construction evolves
we will place a series of restrictions on the parameters of the construction.

First, let {ei}i^l be a sequence of positive values with £ £; < 1- We require that:
(1) For any two sub-blocks e", e"+1,..., e"+k and e", e"+,,..., e]+k, where i ¥^j

and k>[e2
nN(n)],

for any choice of (c, d) e {(0,0), (0,1), (1,0), (1,1)}.
(Once en is fixed, it is a standard argument (cf. [R]) that on the 2-shift, the

probability of a name e , , . . . , eN failing to satisfy condition (1) with variable N
replacing N(n), goes to zero exponentially in N. Hence if N(n) is large enough
we can select {e"} satisfying (1).)

(2) There is a bound 0 < y < l such that for any block i, i + l , . . . , i + k, with
k<2[enN(n)],

i + k 1 JV(n)-l

r < n A ; < - and n A; = I.

This, of course, has to do with our selection of the Aj"s. When we describe later
how to obtain all the various Krieger types, this will have to be obtained.

These two conditions are sufficient for our purposes. Notice the parameters can
be selected inductively as follows. Having constructed (n -l)-blocks, we are free
to select £„. Condition (1) places a lower bound on N(n) in order to have {e"}
available. Beyond this, N(n) can be chosen as large as we wish, and {A"} can be
chosen in any way giving (2). Once N(n) is fixed {e"} can be selected and the
n-block constructed.

A construction as above governed by parameters ({en}, {N(n)}, {e"}, {\"}) satisfy-
ing (1) and (2) is called a controlled rank-1 map.

Suppose we have such a controlled rank-1 map. Let Bn be the base of the n-block.
Since e" = 1, Bn+I <= Bn. Let h{n) denote the height of the M-block.

h(n + l) = N(n)(h(n) +

Let

V"^^]7 (x),xeBn and 1 < /
d/x

Thus i}1=l, i = 1,2,3. And inductively for l< i< / i (« ) ,
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n + l _ n + l
Vh(n)+\ — Vh(n)-

For 0<fc<7V(rt + l), if e"kX\ =0 (i.e. the spacer is below the block)

i!(+»(»)+i)+i = ijffini+i), (into the spacer),

and for 1< /</»(«),
A.

rt + 1 r-i . n + l n .
Vk(h(n)+l) + i + \ — 11 A7 T?! >

if e^+1 = 1 (i.e. the spacer is above the block) for 1 < i< /i(n),

and

v"k+i)ih(n)+D= Vkth(n)+D+h(n), (into the spacer).

We now obtain some estimates on the Radon-Nikodym derivatives of controlled
rank-1 maps that will be needed in later proofs. They also given another proof of
the conservativity of controlled rank-1 maps.

LEMMA 4.2.2. Let S" consist of all those points in the ith (n — \)-block in an n-block.
If\i-j\^2[enN(n)] then

Proof. For i^j,

k=j

COROLLARY 4.2.3. For any 1 < / £ N(/i),

1
2y[enN(n)]

Proof. Let b be an interval of 2[enN(n)] consecutive integers in 1 , . . . , N(n) contain-
ing i. By Lemma 4.2.2,

/*(SD2[eBN(ii)]<- I fJL(S;)^~. D
yj^b y

COROLLARY 4.2.4. If b is any set of at most lOQ[e2
nN(n)~\ indicesin 1 , . . . , N(n), then

Proof.

\0Q[e2
nN(n)] \Q0 e2

nN(n) ; 100 en\Q0 e2

2y[enN(n)] ~

(Note that (1) easily implies [e2
nN(n)]> 1.) •
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COROLLARY 4.2.5. A point x e X a . s . lies in the first or last 100[e^N(n)]
(n - I)-blocks in an n-block for at most finitely many n. •

LEMMA 4.2.6.

dfi ° T 1
d/x y'

Proof. First, since
JV(n)-l A.. o fh(n)-\

Arguing inductively, the result is true for x in the 0-block, except the top level.
Suppose we know the result for all x in (n-1)-blocks, except the top level. To
extend the conclusion across the gaps between (n —1)-blocks in the n-block, just
note that as we cross from the ith to the (i + l)st (n — 1)-block, whenever we move
into a spacer, (dfi, ° T/d/x)(x) = 1 and when we move into the bottom level of the
(j+l)st block, (dn° T/dfji){x) = K". •

COROLLARY 4.2.7. For all x and n, 0< fc<2[enJV(n)],

dn y

Proof. The section of orbit from x to Tklhin)+i)~1(x) covers a sequence of n-blocks.
At most one gap between n-blocks is actually separating m-blocks, m> n, the rest
are within (/i + l)-blocks. This means that if x lies at the /'th level of an n-block,
then Tk{hin)+V(x) lies at level i - 3 , i-2, i - l , i or i + l of an n-block. For any
complete passage through an n-block we get no contribution to the Radon-Nikodym
derivative. Hence the only contribution is from the gaps between n-blocks and the
at most 3 extra terms to add or delete to complete the partial end blocks.

The contribution from the gaps is in two sequences of Aj"s of length <2[enN(n)]
inside (n + l)-blocks and one Af\

Now use (2) and the previous lemmas to complete the proof. •

COROLLARY 4.2.8. £°l0 &>,(*) = °°-

Proof. In fact, for i = h(n), w,(x) > y1. •

4.3. ^-compatible measures
In this section we continue our study of controlled rank-1 maps. All the notation
introduced in § 4.2 will be used throughout. We would like to show that a controlled
rank-1 map (T, fi) has minimal self-joinings over the class of all probability measures
equivalent to fi; we are not able to do this but in fact do show minimal self-joinings
over a large enough class SX>1, that we call the class of /x-compatible measures. This
is rich enough for our purposes (cf. Lemma 4.3.1, Theorems 3.1.11 and 3.1.12).

A measure /tt, equivalent to fi is said to be fi-compatible if for some 8 > 0, for all
x and n, and 0< k<2[enN(n)],

https://doi.org/10.1017/S0143385700005320 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005320


792 D. J. Rudolph and C. E. Silva

LEMMA 4.3.1. (a) /x itself is ^-compatible, (b) If S is any fi-nonsingular transformation
with S ° T = T ° S, then /x ° S is ^-compatible.

Proof, (a) Let 8 = y5 and apply Corollary 4.2.7. (b) Note that

fMplsW).
S) dyu

PROPOSITION 4.3.2. If /x, and /J.2 are ^-compatible and (L is a rational joining of /x,
and fjL2, then there is a 8 > 0 so that for /x-a.e. (x, y), for all n and Os k^2[enN(n)],

\ x 1
(x, y)*-*.

8

Proof. Since fi is rational,

'X dfji\ a/x2

where for /^,-a .e . x, c,(x, y) = c,(x) independen t of y for /xx-a.e. y . Since

—— (x, y) dfi,x(y) = —— (x), we get

, , 1

I
J

and for j = k(h(n)+ 1),

since /x2 is /t-compatible. Thus let 5 = 83. D

COROLLARY 4.3.3. A rational joining (J. of ^-compatible measures is conservative. •

We now know /I-a.e. (x, y) is generic for its ergodic component A,, i.e. satisfies
the Hurewicz ergodic Theorem 1.1.1.

Let Gj; = {(x, TJ(x)):xe X} and A = X xX\[JJ>
=_xGj. These graphs are all

(Tx T)-invariant sets.

PROPOSITION 4.3.4. If/2(A) > 0, then for a = 82/16 there is an a-matching structure
on A.

We develop the proof through a series of lemmas. Let EN be the set of all x's
either between N-blocks, or in the first or last 100[e^iV(n)] (n-l)-blocks in an
«-block for some n> N.

LEMMA 4.3.5. Given any e > 0 there is an No so that for a.e. (x, y)e X xX, there is
an M{x,y) so that for all n > No, i<0<_/, and j-i + l & M(x,y),

— < e.

The same holds if x is replaced by y in Tk(x).
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Proof. We knowE4[£n xX\S] = /*,(£„). We know En+1 c £„ and by Corollary 4.2.4
/x,(Pln £ J = 0- Thus there is an No with /x,(£N()) < e/2. Since /I is conservative, for
n > No once _/ — i" +1 is large enough,

For any x e X, let 1 < )8n(x) s N(n) be the index of the (n -1)-block containing
x in its n-block. If x is not in an (n-l)-block, y3n(x) is undefined. Two points x
and y are on the same orbit if and only if (in(x) and fin(y) are asymptotically equal.
By Corollary 4.2.4 we know, for a.e. x, once n is large enough,

100[e2
nN(n)]<f3n(x)^N(n)-l00[e2

nN(n)].

Suppose (x, y) e A, hence in distinct orbits. By the above we can find an increasing
sequence Mj = M;(x, y) with j8n.(x)# j8n.0>), and both lie more than 100[e^JV(n,)]
from the ends of their «rblocks.

Consider the overlap of n,-blocks containing x and y respectively. It is longer
than 198(/i(nf-l) + l)[e^.JV(n,-)]. Focus on a subinterval of this overlap containing
the origin Oi<0<fe, consisting of exactly M, full (/!,•- l)-blocks with their single
spacer in the x-orbit. Label these subintervals

Ik, > Ik, + l > • • • > Iki + M,-\ )

with 2[e^JV(nj)]<M,<[eniN(n1)]. This interval is covered by a union of complete
(«j -1)-blocks, with their spacers, in the _y-orbit

Jk'-l > Jk'it • • • , Jk\+M,-\ •

The subscripts t of /„ J, are the indices of the (M, - 1)-blocks in their M-blocks. Thus

Ij c Jk',-k,+j-\ ^ Jk'i-kt+j = Jj+di-i ^ //+<*,- •

We say that i is a bad index if either d, or d, - 1 = 0 and

The reason this is 'bad' is that the overlaps of (M, -1)-blocks is substantial on indices
which agree.

L E M M A 4.3.6. If i is a bad index, then j + 1 is not.

Proof. If i is bad then the n,-blocks containing x and y overlap in at least
h(fif) - h(n, -1) places. But then for any n, ni+x > n > «,, the n-blocks containing x
and y overlap in at least h{n)-h{nt-\) places, as /3n(x) = (2n(y). Thus in the
«I+1-block when we consider [ai+1, bi+l], the overlaps of (ni+l - l)-blocks are either
of distinct indices or of length at most

h(n, -1) £ h(nl+l-2) < 100[£2
n,+l_,N(/j,+1 - l)](*(«l+1 -2) +1). •

We drop to a subsequence and assume no i is bad. Thus we always have one of
two cases:

(i) both d, and d, - 1 are nonzero, or
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(ii) if one is zero, it corresponds to an overlap shorter than 100[e^._tN(nt - i)] x
(h(n,-2) +1), i.e. in the first or last l00[e2

n ̂ ,N(w, -1)] of the (w(-2)-blocks
in the (Mj-lJ-block.

By Lemma 4.3.5 such indices contribute little once / is large enough.
In case (ii) above one of the two Jj+dl-l,Jj+<ii has already been identified as

'larger', the longer one. We call it •/,+<?,. In case (i) we also want to make a selection
of a 'larger' one. Consider which of the two sums

is larger. Let 3, be such that the sum over Iki n h,+a, is the larger one. Notice dt # 0.

LEMMA 4.3.7. / / i is large enough, for any /c,<7<fc, + M, - 1,

82 h*
£ *»,(*, >>)>—- X <o,{x,y).

Proof. Now [aj,b,] = Ur=o1 h. + HHn,- 1)+ 1), so for any k, < j < Jk, + M,:-1,
h, fc + M,-l-j

By Proposition 4.3.2 then

X <o,(x,y)^— I w,(x, y).
re/, M,- , = „,.

We also know from Proposition 4.3.2 that

8 s £ w,(x,y) / ^ £ <5,(* , ;K)<| . (4.3.1)

In case (i) we can conclude, for all fc, <_/ < fc; + M, - 1 ,
j2 h

In case (ii), by Lemma 4.3.5, for any e once i is large enough

L^h L'ei^Jn-e, uAx,y)^ j _ ̂

X = *Pj (̂ » J7)

as the upper sum is over indices t with T'(x)e £"„_,.
Make (1 — e) > 5 and for some j0 we must have

Replacing fc, byy0 in expression (4.3.1) gives case (ii). •
The sets Bn and B'n will be unions of sets IjnJj+lr Since Mj>2[e^N(n,)] and

Jj 5̂  0 we know that among the pairs (ey, e"\.a), fc, < j s k{ + M,, - 1, we see a fraction
of at least | of each possibility, (0,0), (0,1), (1, 0) and (1,1). Thus we can find two
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subsets A,, A[ c [fcf, fc, + M, -1 ] with the same size

and for je A,, {e"<, e"ij) = (0,0), i.e. both spacers come before the block, and for
je\'i,(e"i, e"i3]) = (0,1), i.e. the x-spacer is before, the j-spacer is after the block.

Let ft be any bijection of A, to A[. Set

B,= U IjnJj+3, and B',= \J

Define IT, : Bt -* B\ by sending /,- n Jj+a. to Inj) n Jn^+a, by translation by (#(7) -7) x
(h(n,,-l) + l).

Let /* be the partition of X into the levels of the (1 - l)st tower and its complement.
Thus {PJ is a refining and generating sequence of partitions.

LEMMA 4.3.8.
(a) Both Bj and B\ are disjoint unions of intervals, all of the same length, and this

length goes to infinity with i.

(b) I wj(x,y)z%- I wfay)

(c)

(d)

and

I , »y

/!> '
o ^ ^^

TJ(x)

S2

(X,y)2 —

,(j)(x, y) ~

Bn,

e P,, iff T

I ^(x,y),

8 '

">u\x)ePn, and

Proof. We know all the /, n Jj+s, are of the same length. As we chose dt to give us
the 'larger' sum, by Lemma 4.3.5 this length could not stay bounded on any
subsequence.

For (b) we just note that Bt, B\ contain at least \ in cardinality of the 7, n Jj+sl

and apply Lemma 4.3.7.
For (c) note ir(j)—j = k(h(n) + l) with |fc|s[en.N(«,)], so we obtain the bounds

from Proposition 4.3.2.
For (d), of course, just note that ( / - l ) < « j - l and the effect of moving the

spacer in the y-block from below to above shifts tr,(y) one level higher in the
tower. •

Proof of Proposition A3 A. Let a = S /16. Now just drop to a subsequence of nf's
to give the precise bound in (i) of a-matching. •
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COROLLARY 4.3.9. TxT is ergodic, hence weak mixing (cf. [ALW]).

Proof. For jl = fj,x.(i, A = XxX and hence a.e.-^ is 7x7" invariant and hence
equals / ix/ i . •

THEOREM 4.3.10. Let (X, /A, T) be a controlled rank-l map. Let $Jl be the class of
fi-compatible measures. Then T has minimal self-joinings over $Jl.

Proof. Let ft be a rational joining. First write X x X = Ujl-oo Gj u A where G, =
{(x, TJ(x)):xeX) and A is the remainder. We have seen by Propositions 4.1.1 and
4.3.4 that for any ergodic component vz, z<= A, vz is I x T-nonsingular. By Proposi-
tion 3.1.5, vz = /t, x fx2 and we can write

/! =/l(A)fj.lx/x2 +fl(Ac)il0, where/Io is graphic. •

Question D. Are there measures /*, and /t2 equivalent to /A but not /^-compatible
for which T fails to have minimal self-joinings? More generally, if T has minimal
self-joinings with respect to some measure equivalent to /t, must it have mini-
mal self-joinings with respect to all? If not, are there examples of systems with
minimal self-joinings with respect to all measures equivalent to /x ?

COROLLARY 4.3.11. Any controlled rank-l map has no nontrivialfactor algebras and
the only nonsingular maps it commutes with are its powers. •

Now we are ready to show how to obtain controlled rank-l maps for each Krieger
class II,,IIoo, and IIIA,O<A<1.

4.4. Type 77, example
This is almost trivial. Simply set all A" = 1. This gives a finite measure preserving
transformation that has minimal self-joinings in the usual sense.

4.5. Type Hx example
We choose en = l/n20". Now condition (1) gives a lower limit for N(n). Split the
block of N(n) (n-l)-blocks into five sections. The first, third and fifth of length
N(n)(l-4nen)/3, and the second and fourth, which connect them, of length
2nenN(n).

For i in the first, third or fifth section A" = l. For i in the second,
A? = Qo)U2e"N{"\ and for i in the fourth section, A" = (20)1/2E'N(n). Thus the product
of the A"'s across sections 2, 3 and 4 is 1.

For any k<2[enN(n)] we get

Thus we have a controlled rank-l map. Let Xn be those points in the levels of the
n-block corresponding to sections 1 and 5. Now since

n xr=&)",
ie section 2

section 3 has measure (^)rt times that of sections 1 or 5. Sections 2 and 4 each have
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the same measure, at most I2nen times that of section 1 or 5. Thus

Now since £„ fJ.{Xc
n) < 1, /* (final %„) > 0. It is an easy induction that if x, TJ(x) e

PlBai X-n then (d/t ° TJ/d/j,)(x) = l. Thus setting V = n n 2 , *n, 7" induced on V is
measure preserving, hence T itself is either type II, or Hoc-

Notice that on an orbit, occurrences of Xn come in blocks of length

alternately separated by a long block of length

and a short block of length 0,1 or 2. Letting Yn =0^=1 *•> lt easily follows that

Hence

and (T,/J.) cannot be of type IIt.
As discussed in the introduction, Aaronson and Nadkarni in [AN] construct an

example of an infinite measure preserving group rotation that has no nontrivial
o--finite invariant sub-<x-algebras; however their example has 0-oo invariant sub-o--
algebras. Maharam has asked, independently of [A], whether there exist infinite
measure preserving transformations with no 0-oo invariant sub-cr-algebras; our
example clearly satisfies this.

4.6. Type IHK example (0 < A < 1.)
Let N(n) be odd for all n and set

A" = A, for i odd,

A" = —, for i even.
A

It is easy to check that we have a controlled rank-1 map with y = A. The ratio set
of T is obviously contained in the powers of A. We wish to show A is in the ratio set.

Let A^ X, n(A)>0. Select n large enough so that for some level set L' in the
n-block,

In the (n + 1)-block L' is the union of one level from each occurrence of the H-block.
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Write L = L , u L 2 , where L, consists of those occurrences in odd index i<N(n)
and L2 those in even index n-blocks. For any x e L, there is a unique

j(x)e{h(n),h(n) + l,h(n) + 2}, with Ti(x)(x)eL2.

The choice depends on whether there are 0,1 or 2 spacers between the n-blocks.
Furthermore, (d/i ° THx)/dfi)(x) = A and the map g:x-» TJM(x) is a bijection of
L, to L2. Thus fi(L2) = A/A(L,). Since

we get

/tt(L,nA)>0.98A«.(A), for/= 1,2.

Thus

), and

Thus

/ i (g(L,nA)n(L 2 nA))>0.

As _/(x) takes on only three values, we can select a subset A,c L{nA,
n(Al)>(j)/A(LlnA)>0, and on A,,>(x)=; is a constant. Thus A,cA,
T\Ax)czA and (<fc ° Ti(x)/dn)(x) = k for all xe-4,. Therefore T is type IIIA.
4.7. Type ///, example
To get the ratio set to be all of U+ u {0} select 0 < A,, A2 < 1 with log (A,) and log (A2)
irrationally related. Do the construction as in Example 4.6 except that when building
M-blocks, for n odd use A,, and for n even use A2. Repeating the above argument
both A,,A2 are in the ratio set. As the ratio set (\{0}) is a closed multiplicative
subgroup it is all of R+ u {0}.

4.8. Type III0 example
This construction is similar to that of example 4.5, using five sections. Define y{n)
inductively by y(l) = l,y(n + l) = (n + l)Y\"=ly(i).

Let £„ = l/log2(-y(n))2r<"). Condition (1) sets a lower bound on N{n). Let
g(n) = N(n)/2yin). We assume 2y(n) divides N(n). Let

N(n)-2g(n)
ki") 2+y(n) N ( M

which we also assume is an integer. Thus g(n) = en log2 (y(n))N(n) and

N(n) = (2+y(n))k(n) + 2g(n).

The five sections will have lengths k(n),g(n), y(n)k(n), g(n) and k(n) in that order.
As in Example 4.5, across sections 1, 3 and 5, A" = 1. Across section 2,

AT = (2-)
1/f..N("), and across section 4
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Thus for any 0< fc< enN(n),

j+k N(n)-1

i<nAr<2, n Ar = i,

and we have a controlled rank-1 map.
Also notice

^(section 3) = y(n)2-'og2<T<n)V(section 1)

= /x(section 1) = /u.(section 5).

Further,

^(section 2) = /* (section 4)< jit (section 1)<
,,(„,•

In other words, sections 2 and 4 have negligible mass and sections 1,3 and 5 have
equal mass, but 3 is n-times as long as 1 and 5.

We first show only 0 and 1 can be in the ratio set. Let En be the set of all points
in the second and fourth sections of the n-block.

( 0

Set £ = U " 3 ^ " ' Pick 5 > e > 0 and now choose n with l/y(n)<e and L a level
set in the n-block with / i ( L n £ ) > 0 . If xe Ln E and for somej>0, Tj(x) e Ln E,
then j moves us from an odd section to an odd section of some m-block, m > n > 3.
In this case

-=- : (x)=l or is > " '>m or is < u - ' \V '<\/m,

hence = 1 or is <e or > l /e .
To see that 0 is in the ratio set, notice first that if L is a level of an n-block, then

for all m > n, (5- l/2"~2)fi(L) lies in each of sections 1,3 and 5 of the m-block.
For any set A, fi(A)>0, and e>0, select n with l /y(n)<e, (5—1/2"~2)> ^ and

so that some level set L of the n-block has fi(An L)>0.99 fi(L). Thus in the
(n + l)-block there must be level sets Lx, L3 each in sections 1 and 3 respectively,
all contained in L, with /x(An L,)>0.98 /i(L,-). Now L3= TJ(Lt) and for xeL 2 ,

dp, ° T7(x) 1
1 (*)=——TTT,

a constant. Thus

fi(Tj(AnLtn(An L3))>0.96n(L3).

Letting Ax = AnL^n T~J(A), /JL(A,)>0, Atc: A, and for x€ AX,

dfi o TJM
 t 1
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