
AN APPLICATION OF THE PATH-SPACE TECHNIQUE
TO THE THEORY OF TRIADS

YASUTOSHI NOMURA

One of the most powerful tools in homotopy theory is the homotopy groups

of a triad introduced by Blakers and Massey in OJ. Our aim here is to

develop systematically the formal, elementary aspects of the theory of a

generalized triad and the mapping track associated with it. This will be used

in §5 to deduce a result (Theorem 5.5) which seems to be closely related to

an exact sequence established by Brown [2].

There is an application of our theorem to the realization problem of

Whitehead products. In this direction we obtain the following result: given

θ G Hnf+1{πy n π1) and a pairing W πf<g>π~*G such that the cup-product

θϋc relative to W lies in the image of θ* : flrΛ+Λf+1(7r', w' + l ; G) -*Hn+"+1(π,

n\ G), there exists a space whose first invariant is 6 and whose Whitehead

product pairing is just Wt where c<=Hn(π, n\ π) is the basic class.

It will be assumed that all spaces and mappings occurring in this paper

are taken from the category with base-points, and the notations introduced in

[12] will be used without specific reference.

§ 1. The mapping track of a triad

In this paper we shall understand by a triad (/ : g) a pair of maps
/ g

A—> Y<—B. For such a triad the following construction is basic:

EAg = {(a, b, β)<ΞAxBxYI\Λa)=β(O), g(b) =

Ker (/ : #) = {(*, b) e AxB\f(a) =g(b)).

These constructions give rise to the following diagrams:

A

(1.1) Ker (/ : g) Y

π*\± / g

B

Received February 14, 1962.

169

https://doi.org/10.1017/S0027763000011089 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000011089


170 YASUTOSHI NOMURA

ΩA A
ΩPi/ \Ωf Pi /

/ \ / / \

(1.2) >ΩE/,g ΩY—>Efg Y
\ / \ /

ΩP2\ /Ωg P2\ /g
ΩB B

where Ω is the loop functor the maps are defined by setting πi(a, b) = α,

π2(a, b)=b, PΛa, b, β) = a, P2(a, b, β) = b, I(β) = (Λ0, bo, β), and Y1 denotes

the space of paths 7=[0, 1]->F with CO-topology. We note that (1.1) is

commutative and (1.2) is homotopy-commutative.

We shall call Effg the mapping track of a triad (/ : g). In case / and g

are inclusions this has been considered by Hu [5]. Various specializations of

(/ : & yield various spaces. For example, we have

for y*

Ef = {(*, j9) e XxEY\f(x) = /3(1)}, for jy0

for F -

ô>, for Z-

for Y-

f g
We have furthermore that Ker (/ : g) - A Π B for inclusions A—>Yf B—>Y

and, when g is a fibering, Ker (/ : g) is the fibering induced by / from g.

PROPOSITION 1.3. (a, b, β)-» (&, «, /9"1) yields a homeomorphism Ef.g-*Eg,f.

THEOREM 1.4. If g is a fibering then E/tg is homotopically equivalent to the

induced fibre space Ker (/ : g).

Proof. Let A : Zg->Bι(λ *• Zg^B) be, respectively, a (path) lifting function

for g (see [12], p. 113). Define 0 : Ker (/ : g) --> E/,g and F : Eftg-+Ker (fig)

as follows:

(1.5) Φ(Λ, 6) - (β, by ey)y y =f(a) =g(b),

(1.6) ψ(a, b, β) - (a, λ(b, βϊ),

where ey is the constant path at y. Since there exists a homotopy between

1B : B-+B and the map b-^λib, ey) which moves points along fibres, it follows

that ΨΦ-1. ΦΨ^l is shown by considering a homotopy given by
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THEORY OF TRIADS 171

{a, b, β) -> (a, A(b, β)(t), ft, *), 0 ̂  f ̂  1.

THEOREM 1.7. The sequence

π(V,ΩA) π(V, A)
/ \

π(V, Λr)-4τr(V, E/.g) π(V, Y)
\ /

\ /
π(V, ΩB) π(V, B)

is exact for any space V in the following sense (cf. Olum [13]):

(i) a&π(V, A) and b^π(V, B) have the same image in π(F, Y) if, and

only if, there exists c^π{V, E/tg) such that a = P^{c) and b = P2*{c);

(ii) Ker Pi* Π Ker P 2* = Im /*

(iii) du d2<^π(V, ΩY) satisfy I*(di) = /*(d2) if, and only if there exist

a<Ξπ(V, ΩA) andb<=π(V, ΩB) such that (Ωf)Λa)*d2 = dr(Ωg)*(b), where the

dots denote the group operation in π(V, ΩY) determined by the loop-multipli-

cation.

Proof, (i) Let hi, h2 represent a, b respectively. If f°hι^g°h2 we can

find a homotopy Hi, O ^ ί ^ l , such that Ho=f°hι, H-g°h2\ then it suffices

to define a representative k: V-*E/>g for c as follows:

k(v) = (hι(υ), h(v), β(v))9 v^V,

where β(v) is the path in Y given by β(v)(t) =Ht(v), O ^ ί ^ l .

(ii) Let k' V-*E/,g be expressed as k(v) = (hL(v), h2(υ), γ(v)), v^V, and

let hi-0, fe-0. We denote by a{v) and β(υ) the elements of EA and EB

determined by the contractions of hi(v) and h2(v). Then it is easy to see that

(iii) Let du d2' V-+ΩY represent dlt d2 respectively, and let Ht : V-*E/,g

be such that Ho = Idi and Hi = Id2. Then we have only to take for a. b the

elements represented by PxHt and P2Ht, O^t^l.

THEOREM 1.8. If g is a fibering, then (1.1) induces an exact diagram:

π(V, A)

π(V, ΩY)^π{V, Ker(/: g)) τr(F, Y),
\ /

π(V, B)
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where J^Ψ°I> Ψ E/,g->Keτ (/ : g) being an equivalence in the proof of

Theorem 1.4.

Proof. This follows from Theorems 1.4 and 1.7, since P± = πι¥ and P2—π2Ψ.

PROPOSITION 1.9. P i : Ef)g-*A, P2 E/,g-+ B and PiX P2- E/,g->AxB are

fiberings with fibres Egy Ef and ΩY respectively.

Proof. A path lifting function A for P\ is defined by setting

Λ(a, b, β, x)(s) = («{s), b, β8),

for 0 ̂  s ^ 1, a e A\ cc(l) = a> in which βs is a path in Y given by

fcc{2t + s),

βs(t)=

Similarly for P2 and Pi x P 2 .

§ 2. Transformation between triads

Let the following diagram be given:

A-f ~* ~
(2.1)

/' g'

If (2.1) is homotopy-commutative, then we say that (2.1) is a transformation

from a triad (/ : g) to a triad (/' : gf). We call it a map if it is strictly

commutative.

Let now Gt, Ht, O^t^l, be fixed homotopies such that GO = /VΊ> d = <?/,

Ho = g'ψ2, Hi = ψg. We define Z = E(ψu Ψ, Ψ* I G, H ) : Eftg-*Ef>,g> by setting

(2.2)

where β1 is the path in Yf given by

β'(s) =

2_
3
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For a map (2.1) we shall set βr = φβ in (2.2), and denote simply by E{ψu φ,

Φt).

Further let

/ ' g'
A' —> Y' A-J3'

4 ψΊ

be another transformation with homotopies Gl, H\ such that G[ = f"φίy

G), (/Γoi?) whichG[ = ?>'/', HΌ = g"ψf

2, Hi = ?'#'. Consider the homotopies

are given by

for a^ Ay b^ B. Then it is immediate to verify

PROPOSITION 2.3. E(ψ[ψ2, ψ'ψ, Φ\ψ%\ G'°Gy H
f°H) is hornotopic to E(φ[, ψ\

φί \ H')oE(ψlt ψy φ2; G, H).

PROPOSITION 2.4. Let (2.1) be given and let ψ — ψ, ψi-Ψu ψz-ψz. Then

there exist homotopies G : f'ψ^ψf and Ή : g'φ2-ψg such that E(ψlt ψy φ2;

G, H)-E{φu φ, φ2; G, H).

Proof. Let ψτ : ψ-ψ, φl : ψi-φu Φl '• Φ2-Φ2. Define G] : A-> Y' by

, τ - 3 f

and define & similarly. Then £"(0ί, ^ τ, ̂ 2 '•> Gi, Hi) gives the desired homotopy.

PROPOSITION 2.5. Ml^, lis l^ί Gf H) is a homotopy equivalence.

Proof. Let G", H~ be defined by GΓ = Gw, Hϊ = Ά-t, O ^ ί ^ l . By
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Proposition 2.3 we have E(1A, lr, 1B; G", H~) ° M L , ly, W, G, H) -

ly, 1B; G~°G, H~°H). If G?, Hh O ^ r ^ l , are defined by

1

Gl= G l " 2 τ ί ' ° i~
ί"T '

and similarly for Ht> then we have

by the homotopy E{1, 1, 1; G?, //?). Since 2?(1, 1,1; /, ^) is homotopic to

the identity map of E/,gf it follows that E(l, 1, 1; G", H~) is a left homotopy

inverse of E(l, 1,1; G, H). We see similarly that E(l, 1, 1; G~, fl") is a

right homotopy inverse, and this completes the proof.

As an immediate consequence of the above three propositions we have

THEOREM 2.6. Let a transformation (2.1) be given, and suppose that vertical

maps are homotopy equivalences. Then E{ψu φ, ψ2 G, H) is also an equivalence,

that is, E/,g is an invariant object under homotopy equivalences.

Now we see that a transformation (2.1) gives rise to a new map-

Eφ χ >Eφ ̂  E φ 2

(2.7) P4n\ pψ[[
f g

where 7i = £(/ ' , / ; G) and χ2 = E(g',g; H). From (2.1) and (2.7) we obtain

a sequence

, £ ( P ^ i , Pς&, Pίfe) JE(^i, p, ^ 2 ; G, /ί)
(2.8) ^χi,χ2 -̂β/.fi: >E/',g'

We shall prove

PROPOSITION 2.9. (2.8) induces, for any space V, an exact sequence

π{V, fix,.*,)—>τr(F, E/.,)-^τr(V; ̂ , ^ ) .

Proof. First we shows that X°E(Pψ\, Pψ, Pψ2) is nullhomotopic. Take

any point of £Xl,χ2, that is (α, a', b, β', γff)=x^Ax EA' xBx EB' x Y1 x

such that
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4*1 (Λ) = α'(D, Φz(b) = β'(l), ψr(s) = f (1, 5), 0 ̂  s

/(β) =r(0), gib) =r(D, f(0, ί) =j»ί,

/V(2 *),

g'β'(2s),

f (s, 0) =

f (s, 1) =

Therefore

r E{Pφι, Pψ, Fφ»)(a, a', b, β>, γ, f) = («'(1), j9'(l), δ),

where δ is the path in Y' given by

δ(t) =

Guia), 0;

n(3ί-D, - |

Hz-zt(b), -~-

- f - 3 '

Let p : 7x/->7x/ be a homeomorphism such that p(0x/)=0x7, p(Ixi) =

| , l]) = [-\.

xl, p(l x -s-» ^ J j = 1x7 and p is linear on the indicated segments. Then

it is clear that (x, τ) -> (α'(r), j9'(r), fpk x 7) is a homotopy deforming ΛΓ->

(α'(l), j9'(l), 5) into the constant map.

Conversely, let k V-+E/)g be expressed by

k(v) = (β(»), i e F

and let (At(v), Bt(v), Ct(v)) : 0^7ok{v). We denote by α'(ι ) and β'(v) the

paths determined by At(v), Bt(v) respectively, and we define f(v) 7x7->Y'

by ΐ(v)(t, s) = Cί'(ι;)(sO, where (tf, s') = p"x(ί, s). It is obvious that h - V->Ext,x2,

given by

), a'(v), Hv), β'(v), γiv), f(ι )),

satisfies k = E{Pφi, Pψ, Pψ2)°h. Thus the proof is complete.
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Applying the above proposition and Theorem 2.6, and noting that

is homeomorphic to ΩE/tg) we reach the final result.

THEOREM 2.10. Every transformation (2.1) induces, for any space V, an

exact sequence

>π{Vy ΩEf,g>)—>π(V, £χlfχ2)—>τr(F, E/tg)—>τr(F, Ef,,g>).

f g
COROLLARY 2.11. Let A—>Y<—B be a triad and suppose there exists a

map h A-^B such that g°h = f. Then the sequence

>π(V9 ΩEg)->π(V, Eh)->π(V, Ef)-»π(V9 Eg)

is exact

Proof. Apply Theorem 2.10 to the map

VΛ\ ί
Finally, we prove

/ g
LEMMA 2.12. For an arbitrary triad A—>Y<—B, there exists a homotopically

equivalent triad A—>M<—B such that j \ and j \ are both inclusions and cofi-

berings.

Proof. It suffices to take for M the mapping cylinder of / V# : Ay B-+Y,

jι and j2 being natural inclusions.

§3. Some exact sequences

In this section we extend exact sequences established by Massey [9] and

Hu [5]. Given a triad A-^Y^-B, let

Tf,g={(a, β, f)^EAxEBxEEY\f(s, 1) =fa(s), f(l, t)=gβ(t)}9

S/,g= {(a, 0)eiEAxEB\fa(l)=gβ(l)}.

We observe that S/,g is just E t for the natural inclusion i-mXn* : Ker (f:g)

-*AxB. Corresponding to these constructions we consider the following

maps
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p: Tf,g-*S/.g defined by p(a, β, f) = (a, β),

m' Sf.g-+ΩY defined by mice, β) = (fa) (gβ)~\

n: Ω2Y-> Tf.g defined by n(r) = (eao,ebD, f),

n * S/,g-*Enχ defined by n(αr, 0) = ( α ( l ) , 0(1), a),

r2- S/.g-Έn, defined by r 2 ( α , /?) = ( α ( l ) , j9(l), β).

These maps are obviously imbedded into the following sequences

Ωm n p m
(3.1) —>Ω2Y—>Tf,g—+Sf, g—>Ω Y,

Ωn Q2 ui n

(3.2) -~^ΩEπ—->ΩB—>S/,g—>E*19

q\ u\ n
—>ΩA—>Sf,g—>En2i

in which «2

 : ΩB->Sf,g and q2 : ΩE^->ΩB are defined by

u2(β) = (eao, β),

qάcc, β, a) = β'1 for a e ΩA, β e ΩB, ά^ΩEA

such that foe =gβ, α(l, t) = α(ί),

and u\ and î are similarly defined.

It is easily seen that Em is homeomorphic to T/yg. Thus we have

PROPOSITION 3.3. The sequence (3.1) induces an exact sequence

• •—>τr(F, Tfig)-->π(V, Sf.g)^>π(V, ΩY).

Now we consider h : ΩB->Eri and /2 : ΩA-*Er% defined by

/i(/3) = (^ 0 , β; eao, eb0, e), h(a) = (a, ebol eao> ebo> e)

where e IxI-*A (or B) is the constant map. Then we prove

LEMMA 3.4. h and U are homotopy equivalencs.

Proof. Every point of Eu is of the form (or, β; oc\ βf, f)^EAx

EBxEAxEBxEEA, where fa(l)=gβ(l), af(l)=a(l), β'(l)=β(l)y f(s, 1)

= a(s), f(l, t) =a'(t). We define fe : Erι->ΩB by

M α ; β; oc\ p, r)^β (β')"1.

Clearly hi°h — l. h°hj is also deformed into the identity map by the following

homotopy:

(α,j8; α',/9', f)->(α:τ, /9τ αί,τ, j9ί,τ, fτ), 0 ̂  r ^ 1,
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where

a~(s) =r(s, r), frit, s)=f(f, τs),

= s = 2~

By Lemma 3.4 we have

PROPOSITION 3.5. (3.2) induce exact sequences

π(V, ΩEnι)—^>π(V, ΩB)—^τr( V, Sf,g)—^πiV, EΛl)

and

π(V, ΩEπ2)-^π{V, ΩA)-^>π(V, S/tg)^π(V9 Eπ2)

The above Propositions 3.3 and 3.5 may be regarded as an extension of

the exact sequences established by Massey [9],

We now observe that (1.1) yields maps YΛ = E(f, π2) : E^ -> Eg and

7,2 = E(g, πι) - Eπ%->Ef, and that E%x and E%2 can be identified with T/]g. Thus

we conclude

PROPOSITION 3.6. The sequences

->τr(F, ΩEg)->π(V, T/,g)-*π(V, £ Λ ι )-^τr(F, Eg)

and

->τr(F, ΩEf)-*π(V, Tf,g)->π(V, E,2)^π(V, E/)

are exact.

This is a generalization of exact sequences of a usual triad [1].

Finally we prove

/ g
PROPOSION 3.7. Let A—>Y<—B be a triad in which g is a fibering.

Then

(i) 7i EΛl->Eg is a homotopy equivalence:

(ii) Tf,g is contractible

(iii) X2 - EΛ2->E/ has a right inverse.

Proof. 7i is given by Xι(a, b, a) = (b, fa) for (a, by a) e AxBxEA with

f(a)=g(b),a(l)=a. Let λ Zg-+B denote a lifting function for g. We define
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Γi : Eg^EΛι by setting Λ(6, γ) = U , K£, r), e*0) for r ^ f f i #(£) = r(D. It

follows at once that J\ is a homotopy inverse of 7h which prove (i). (ii) is

an immediate consequence of (i) and Proposition 3.6. To prove (iii), consider

Γ2 ' Ef-*Eπ2 which is defined by Γ2(#, γ) = (ay λ(bQ, r"1), Λ(&0, r" 1)" 1), where

Λ : Zg-^B1 is the path lifting function with which λ is associated. Clearly

'/2°Γ2 = lf as we wish to prove.

§4. Cotriad

/ g
In order to dualize the preceding results, we shall call Λ<—X—>B a

cotriad and denote by </ : g>. Then the argument is quite automatic, but

briefly indicated.
/ g

With a given cotriad A<—X—>B} we associate the following spaces

C/,s = the space obtained from Aϋ Xx IU B by the identifications

(x, 0) = / ( * ) , (x, l)=g(x), Uo, s) = (ΛΓO, ί), tf^X, S, ί E / ,

Coker </ : g> = the space obtained from AD B by the identifications

/(*)=*(*), Λ E X

In case / and g" are inclusions Coker </ : g> is the union of A and 23, and in

case g is a cofibering it is the cofiber space induced by /. Further, C/,gf

which may be called the mapping cylinder of a co-triad </ g>, has already

appeared in the book of Eilenberg-Steenrod [4], p. 51, G, 4 for inclusions / and

g-

We have now the (homotopy-) commutative diagrams

A
f/ \ίi

/ \

(4.1) X Coker </ : g>

B

A SA
f/ \/i Sf/ \sh

/ \ Q / \

(4.2) Z C/,^—^SZ SC/g—+
\ / \ / '
g\ /h Sg\ /Sh

B SB
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where iχy έ, h and 72 are appropriate injections, and Q is the map which

pinches A U B to a point.

(4.3) (4.2) induces, for any space V, an exact diagram:

π(A, V)

τr(Z, F) τr(C/f5, F)^-τr(SZ, V)

\ /

**\ /Iϊ
π(B, V)

Let us now suppose that g is a cofibering with an extension function λ' -

B->Mg. Let Φf : C/,^->Coker </ : ^> and r : Coker </ : g>->C/ig be the

maps defined by

=b, φ'(x, s) =f(x) =g(x),

for flsA, Z> G B, x^X, 0 ̂  s ^ 1,

r
where λ' denotes the composition B—>Mg—->C/9 g.

(4.4) The above Φf and W are mutually inverse homotopy equivalences.

(4.5) The following diagram is exact:

τr(A, V)
f* / \ f *

^ \ (Qo*')*
π{X, V) ττ(Coker </ : g>, V)< π(SX, V)

\ /

«*\ / it
π(B, V)

We note that this may be considered as a generalization of the Mayer-

Vietoris cohomology sequence of a proper triad [4], p. 43.

Let

V f ^ g' ^

be homotopy-commutative, and let Gt - f'ψ — ψif and Ht ' g'ψ — ψ2g be homo-

topies. We define X' = C{ψi, ψ, φz : G, H): Cf,g-+Cf>.g> by
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7Λa) = ψiia), 7J(b) = ψ2(b), a^A, beB,

(4.6) If ψu Ϋ and 02 are homotopy equivalences, then so is Z'.
/ g

Let A<?—X—>B be a cotriad, and let us consider

Tf,g = the space obtained from CA U CCXU CB by the identifications:

(x, s, 1) = (/(#), S), (#, 1, *) = (#(*), ί), * ε X , 0 ^ , ^ l ,

S}f ̂  = the space obtained from CA U CB by the identifications :

(/(*), 1) = (#(*), 1), Λ G X

Then the following sequences are obviously defined:

m' p' ri o

(4.7) SX—>S'f,g—>Tf.g—>S2X—>
(4.8) dx—>Sf,g—>SB—>SCiι—>• - and d2—>S/,g—>SA—>Sd2—>•

(4.9) Cf—>Ci—>Tftg—>SCf—>• and Cg—>Ci—>T'f,g—>SCg—>•

It is easy to verify

(4.10) The above sequences (4.7)-(4.9) induces exact sequences.
/ g

(4.11) Let A<r—X—>B be a cotriad in which g is a cofibering. Then

(i) C(/, i2) Cg—>Cit is a homotopy equivalence;

(ii) Tftg is contractible

(iii) C(g, ii) - C/—>d2 has a left inverse.

This proposition shows that π{T/,gi K{π, n)) is an analogue of cohomology

groups of a triad (cf. [4], p. 204, Theorem 11.3)

§ 5. Cohomology of induced fibrations

/ g

Let A—>Y<—B be a triad in which all spaces are assumed to be path-

connected. We now define

μ9 #! : (E/xEg, ΩYxEg)-+(Ef.g, Eg)

by setting

μ(a, r, by δ) = (α, b, γ δ),

Ήx{a, r, b, δ) = (α, b0) γ)
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for U r, b, δ)^AxEΎxBxEY with /(β) = r(0), g(b) = δ(l).

THEOREM 5.1. (μ*-ΠΪ)°P? : fl*(A, aQ)-^ HQ{E/x Egi ΩYxEg) is trivial

for all q^O.

Proof. T h i s i s c l e a r , s i n c e w e h a v e Px° μ(a, γ, b, δ) = a = P^ΠΊia, γ, b, δ ) .

The goal of this section is to prove

THEOREM 5.2. Let A be a r-connected space ( r ^ 2 ) with non-degenerate

base-point ao and let Y be a t-connected space {t>2) with non-degenerate base-

point y0. Suppose further that Eg is s-connected, s^l. Then the sequence

P* μ*-n*
Hq(A, ao)—>HQ(E/,g, Eg) ->HQ(EJxEg) ΩYxEg)

is exact for q£r +s +t + 2.

Proof. Given a transformation (2.1), we have μ ° (7± x Z2) - 1 ° μ, Hi ° (7Λ x X2)

= Z°77i and 0I°JPL = PI°Z, where X = E(ψu ψ, ψ2; G, ίί), ϊi = E(ψi, ψ, 0; G, 0),

X2 = E(0, ψ, φ2\ 0, /7). Therefore we can assume, by Lemma 2.12, that / and

g are inclusions.

Let now (Y; A, JB) be a usual triad with base-point 3̂ 0. For subspaces

K and L of Y, let U , L denote the space of paths γ in Y such that r(0) ^K

and r(l)eZ,. We shall write μ for multiplication of paths in Y, 77i for the

projection on the first factor and P1% P2 for the maps taking, respectively, the

initial and final point of paths. Let W= \γ^EA,Aϊ[-9-) = > } . We need the

following two lemmas

LEMMA 5.3. (a) There exists a neighborhood VΊ of Eyo>B in EA,B such that

EyD,B is a strong deformation retract of VΊ.

(b) There exists a neighborhood V2 of ΩY in EAίy0 such that ΩY is a strong

deformation retract of V2.

(c) There exists a neighborhood F3 of W in EA,Y such that (W, WΠ (EA)B

ΌEY)) is a strong deformation retract of (F3, Vzf) (EA,BUEY)).

LEMMA 5.4. (EA,Y, £j,*U£YU W) is (r+s + t+ 3)-connected.

The first lemma is easily checked in a manner similar to those in [17]

(cf. [15]), and the proof of the second will be postponed later.

Consider now the following commutative diagram
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-^>Hq(EA,B, EyD,B) >HQ{EA,yύxEyΰ,B, ΩYxEyo>B)

H"(EA y, EY)—>H\EA,B U EY, EY) ^Hq{EA,yax£Λ,B UΩYxEY, ΩYxEY)

4 4
HQ+1(EA>Y, EA,BVEY)—^HQ+1(EA,yoxEY, EA,yoxEyo,BU ΩYxEY)

Hq+1(EA,γ; EA,BΌEY, W)^HQ"\EA,Y, EA,BΌ EY)-->HQ+1(W, Wf) (EA,BΌ EY)),

in which δ are coboundary homomorphisms, i, j , kι, fa are appropriate inclusions

and μ at the right lower corner is a homeomorphism. Since the vertical Pi is

a homotopy equivalence, P* is an isomorphism onto. By Lemma 5.3 and

Theorem 11.3 of Eilenberg-Steenrod [4], k? and kΐ are exision isomorphisms,

and moreover we see from Lemma 5.4 that

HQ+1(EA,Y; EA>BΌEY, W)~Hq+1(EA,Y, EA,BU EYΌ W) =0

for q ^ r 4- s + t + 2.

We next remark that the bottom line is a triadic cohomology sequence of

a triad (EA}Y; EA,BUEY, W) and hence exact. Take any element xeHQ(EAfB,

Ey0>B) such that (μ* - IT*) (x) =0 for tf^r + s + ί + 2; then j*dkf~x(x) =0.

Since y* is a momomorphism, there exists a ^ e Hq(A, a0) such that Λi*""1 )̂ =

i*p*(jy), noting that Ker δ = Im *"*. Thus Λ: = P I * ( ^ ) which completes the proof

of Theorem 5.2.
/ g

Suppose now that there is given a triad A—>Y<—B such that g is a

fibering with fibre F. We denote by λ : Zg-*B a. lifting function for g (see

[12], p. 113). We define

μ, Πi '(E/xF, J2ΓxF)->(Ker(/ : g), F)

b y μ(α, γ, b) = (α, λ(b, γ ) ) , ΠΛα, γ, b) = (α, λ(b0, γ)) for α^A, γ^EΎ, b^B

with f(α) =r(0), g(b) =jy0. In view of Theorem 1.4 we see that these maps

correspond to μ, 77i in Theorem 5.2. Thus we conclude

THEOREM 5.5. Let (/ •* g) be as above. Suppose further that A, F, Y are

respectively r-, s-, t-connected, r ^ 2 , 5^1, ί g 2 , and that A and Y have non-

degenerate base-points. Then the sequence
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Hq(A, aQ)—+HQ(Ker(f : g), F) -+HQ(E/xF, ΩY x F)

is exact for q^rJrs + t-{-2.

In case 5 = t - 1 , it seems likely that the above theorem gives a geometric

version to a part of an exact sequence obtained by E. H. Brown ([2], p. 240).

Finally, we shall give a proof of Lemma 5.4.

Proof of Lemma 5.4. Since Pi x P2 are both fibre maps in the diagram

>m(W9 W Π (EA,BΌ EY))1~>πi(EA,Y, EA, Bϋ EY) -»

(PiχP2)* \ /(AxPfe)*

7r, (Λxy, Ax.BU.yoxy)

exactness of the horizontal line implies πi(EA>γ; EA,BUEY, W)=Q for ί > 2 .

Hence, by considering the homotopy sequence of a tetrad (EA,γ) EA,B^ EYl) W,

EA,BUEY, W), we have

πi+i(EA,y, EA>BΌEY{J W)-πi+1(EA,γ; EA,BU EYU W, EA>BV EY, W)

-πi(EAtBUEYUW; EA}BUEY, W)

for ί'i>2. But it follows from the Kiinneth theorem that

m(W, Wn(EA,BVEY))^πi(Ax Y, A xB Όyox Y) = 0

for ί ^ r + 5 + 2, since (A, yQ) is ^-connected and Eyo>B = Eg is s-connected.

On the other hand m{EAtB^EY9 Wf) {EA,BΌ EY))^πi(EA,Y, W) and, moreover,

we see that γ-^γ ey, y = r(D> yields a homotopy equivalence ({EA>Yi EA,y<)->

(EA,Y, W). Therefore it follows from (P2)* : m(EAjYi EA,yϋ)~πi(Y,yo) that

(EA.BVEY, WΠ(EA,B{JEY)) is ί-connected. Applying the Blakers-Massey

theorem [1], we have that (EA,BΌEYΌW; EA>BΌEY, W) is (r+s+t + 2)-

connected and hence

(5.6) πi(EA.γ, EA.BVEYU W) =0 for 3 ^ ί ^ r + s + f + 3.

Consider now the exact sequence

π2{EA,γ)->π2(EA,Yi EA,BΌEYϋ W) ->m(EA,B U EYϋ W)-*πι(EA,Y)

->7Γi(^,y, EA,BΌEY\J W)->0,

where πi(EA,γ) ^ πi(EA,γ, EY) ~ m (A) = 0 for i^.2. Upon noticing that

πι(EA,y9)^π2(Y, A) = 0 and πι(EA,B) ^πJEA.n, Ey9fB) ^ πi(A) = 0, it
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follows from van Kampen's theorem [13] that πJEA.nVEYU W) = 0. Hence

πi(EA,γ, EΛ,BUEYU W) = 0 for i = 1, 2. Combining this with (5.6), we obtain

the desired conclusion.

§ 6. Realizability of Whitehead products

In this section we shall state a result which is dual to a theorem of I. M.

James [8] as an application of Theorem 5.2. See also [6, 7, 11, 18].

Let / •' X-* Y be a map in which Y possesses a non-degenerate base-point.

Ψ : Z/->X denote the homotopy equivalence given by Ψ (xy β) = x, x e X,

β e Y1, fix) = 0(1). We set Pf= ¥ \Ef. Let / : (EΎ, ΩY) -> (Z/, Ef) be the

inclusion, l(β) = (XQ, β)} and let P : (Z/, E/)-+{X, y0) denote the map defined

by P(x, β) = β{0)

There is defined the path-multiplication μ : E~YxEY->Y* in an obvious

manner. This induces maps E~YxE/->Z/ and ΩYx E/-> Ef which are denoted

by the same letter μ. In what follows, we use πi, π2 to denote projections on

the first and the second factors respectively.

We have then the following commutative diagram

5

E/)<—Hq"\ΩYx

s

—HQ '\E f)

where v=β* — π*l*, v = μ* — π*— π*(If)*y d are coboundary homomorphisms,

and /, /, /i, f2, i3 are appropriate injections.

THEOREM 6.1. U ) z7op* = o.

(^) 1/Y and Ef are respectively r-and s-connected, r^2y s > l , then P*

HQ(Y)^HQ(Zfy Ef) is a monomorphism for q^r+ s-\-2 and the sequence

Hq(Y)—>HQ{Zf, Ef)-^Hq(E-YxEf, ΩYxEf)

is exact for q^
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(c) δ is monomorphic on Ker if and Im z^cKer if.

The first half of (b) follows from Serre's theorem since P is a fibre map

with fibre Ef. (a) and (b) are obtained by applying Theorems 5.1 and 5.2

to a triad Y—>Y<—X. (c) is an immediate consequence of the fact that it

is an isomorphism.

In the sequel assume that all spaces considered have the same homotopy

type of a CW-complex. To simplify the notation we do not distinguish between

a map and the homotopy class or the cohomology class it represents.

Now we shall take θ K(π, n)-*Kiπ\ n1 +1) instead of / : X-* Y in the

foregoing consideration, where 2t^n<nf, and consider φ EQ->K(G, n + n1).

Let W denote the Whitehead product pairing π'®π->G in EΦ. We call EΦ a

space of type {W, θ). Let c^Hn(π, n; π), tr EΞ Hn'+I(π'y n' + l; πf) be basic

classes respectively. In these situations it is proven that

LEMMA 6.2. (Meyer [10] and Peterson-Stein [14]) v(ψ) = τri*(V) U πf(PΘ)*(c\

where V denotes the suspension of cf and the cup-product is with respect to W.

The proof of our result stated in the introduction is based on the following

theorem.

THEOREM 6.3. δ(φ) = P * ( ^ ) U Ψ*(c) + P*(p) for unique p e Hn+n'+1(π't

n1 + 1 G), where the cup-product is relative to W.

Proof. For convenience we consider the p r o j e c t i o n ^ : E~YXEQ->EQ and

the injection k - ΩYxEQ-*E~YxEQ, and let p : (E~Y, ΩY)-*(Y,y0) be the

fibre map given by p(β) = j9(0). h : E~Y->ZQ denotes the map determined by

/. Since ftf*it)=O, we have ττ?7*LPV) U t*(c)l = 0. Further,

vδ(φ) = δp(φ) = dDri*<Λ0 U πf(PΘ)*(c)l by Lemma 6.2,

c) by [16], (3.2),

= τri*5(V) U πfΨ*(c), since iop2 = τr2,

= μ*P*W) UJLI*Ψ*(C) by Theorem 6.1 (a),
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This calculation leads to vίδ(φ) - P*(e') U Ψ*(c)l=Q. Hence, by Theorem 6.1

(b), we see that there exists a unique p e Hn+n'+1(πt, n1 + 1 G) with the desired

property.

THEOREM 6.4. Let β : K(π, n)~»KW, ri+ 1), where 2^n<nf, and let W-

π1 ® π -» G be a given homomorphism. Let θ U c denote the cup-product of β and

the basic class of K{π, n) relative to W. Then there exists a space of type

(W, 0) if, and only if, β U c is contained in the image of the homomorphism

0* : Hn+n'+\π', Λ' + 1 ; G)->Hn*"+1U n\ G).

Proof. Applying (f**)"1/* to the formula in Theorem 6.3, we obtain

O = 0*(ί')U< + 0*(p), i.e., 0 U r = - 0 * ( p ) , which proves the "only if" part.

Conversely, suppose there exists p<^Hn+n'+1{π', w' + l ; G) such that - 0*(p)

= ΘUc rel W. Here "rel W" indicates that the cup-product is to be taken

relative to W. This shows that P*(c') U Ψ*(e) rel W + P*(p) lies in the kernel

of /*, so that, by exactness of the cohomology sequence of the pair (2Ό, EQ),

there is φ e Hn+n'(EQ) such that 5(0) = P*(ίO U y*(^) rel PF+ P*(p). We shall

show that the space Eφ is of type (ΪV, 0). Let P7 denote the Whitehead

product pairng in Eφ. Now

ΐiPθfic) rel W~\

U y*(ί) rel ^ ] from the proof of Th. 6.3,

=δv(φ) by Theorem 6.1, (a),

= δ[ττί(V) Uττ2*(P/?)*(O rel PF] by Lemma 6.2.

Therefore, Theorem 6.1, (c), implies τn*(V) U τr2*(/^)*(O rel ^=7n*(V)U

πΐ(PΘ)*(c) rel P7. This means that FΓ= PF.

COROLLARY 6.5. T ^ r ^ always exists a space of type (W, 0).

COROLLARY 6.6. Under the same notation as in Theorem 6.3, we have

This is deduced by applying cΓ1/* to the formula in Theorem 6.3, where

δ : Hn+n'W, nf; G)^Hn¥nfJr\E~K(π\ w' + l ) , ΩKW, ri + l); G).

COROLLARY 6.7. Let θ : K(π, n)-^K{π\ 2 n), n^2, and let Wi, Wz be,

respectively, given pairings π<g>π->π\ π'<g>π^>G. Then there exists a space

whose first invariant is θ and whose Whitehead product pairings are just Wi

and W2, if and only if (μ*-π*-π?){θ) = π*U)\Jπ*(c) rel Wi and ΘΌ:
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rel W2 e θ*H3t7(π', 2 n G), where μ : if(π, n)xK(π} n)->K(π, n) is the H-structure

map.

This follows from a result proved by Copeland [3].

COROLLARY 6.8. If cat K(π, n) ^ 2 , ί/zgw £/zer£ always exists a space of type

(W, θ).
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