AN APPLICATION OF THE PATH-SPACE TECHNIQUE
TO THE THEORY OF TRIADS

YASUTOSHI NOMURA

One of the most powerful tools in homotopy theory is the homotopy groups
of a triad introduced by Blakers and Massey in [1]. Our aim here is to
develop systematically the formal, elementary aspects of the theory of a
generalized triad and the mapping track associated with it. This will be used
in §5 to deduce a result (Theorem 5.5) which seems to be closely related to
an exact sequence established by Brown [2].

There is an application of our theorem to the realization problem of
Whitehead products. In this direction we obtain the following result: given
6 H* " (z, n; #') and a pairing W : o’®=z~G such that the cup-product
6 U relative to W lies in the image of §* : H™™ " (a', w'+1; G)-»H""""!(z,
n; G), there exists a space whose first invariant is § and whose Whitehead
product pairing is just W, where ¢ H"(n, n; =) is the basic class.

It will be assumed that all spaces and mappings occurring in this paper
are taken from the category with base-points, and the notations introduced in
[12] will be used without specific reference.

§1. The mapping track of a triad
In this paper we shall understand by a #riad (f : g) a pair of maps

Ai> Y«g—B. For such a triad the following construction is basic:

Ef¢={(a, b, B) e AxBxY"|f(a) =p(0), g(b) = (1)},
Ker (f : g)={(a, b) € AxB|f(a)=g(b)}.

These constructions give rise to the following diagrams :

A
n/ NS
/ N
(1.1 Ker (f : g) Y
AN /!
nmN 8
B
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2A A
or,/" N\of P NS
/ I / N
(1.2) c > 0Ff 4 RY—>Ey, g Y
N e . S
.QPz\ /.Qg P \ /g
2B B

where 2 is the loop functor; the maps are defined by setting mi(a, b) =a,
m(a, b) =b, Pya, b, B) =a, Pila, b, B) =0, I(B) =(ay by, B), and Y’ denotes
the space of paths I=[0, 11- Y with CO-topology. We note that (1.1) is
commutative and (1.2) is homotopy-commutative.

We shall call Ey ¢ the mapping track of a triad (f : g). In case f and g
are inclusions this has been considered by Hu [5]. Various specializations of

(f : &) yield various spaces. For example, we have

EY={p Y'IB(0) = y), for yo—»Yél—Y,
Ef ={(x, B) € XX EY|f(x) =p(1)}, for yo——>Y<LX,
Zs = {(x, B) € Xx Y'|f(x) = B(1)}, for Y—1—>Y<LX,
Ef ={(x 8 € Xx Y'l/(x) = 8(0), B(1) =y}, for X-1>¥e—p,
EY={Res Y'|R(1) =y}, for Y—LYe—yo,

We have furthermore that Ker (f : g) = AN B for inclusions A—fﬁ Y, B—g>Y
and, when g is a fibering, Ker (f : g) is the fibering induced by f from g.

ProrosiTioN 1.3. (a, b, 8) ~ (b, a, B7") yields a homeomorphism Ey,g— Eg, 1.

THEOREM 1.4. If g is a fibering then Ef g is homotopically equivalent to the
induced fibre space Ker (f : g).

Proof. Let A: Zg— B"(X : Zg— B) be, respectively, a (path) lifting function
for g (see [12], p. 113). Define @ : Ker (f : g)-» Efr,gand ¥ : Ef ¢—>Ker (f: g)

as follows:
(1.5) O(a, b) =(a, b, ey), y =1(a) =g(b),
(1.6) ¥(a, b, B) = (a, A(b, B)),

where ey is the constant path at y. Since there exists a homotopy between
13 : B~ B and the map b- A(b, ey) which moves points along fibres, it follows

that #0=>~1. @¥=1 is shown by considering a homotopy given by
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(a, b, B)~ (a, 4(d, B)(t), Bo,1), 0=#=1.

TuEorREM 1.7. The sequence

z(V, 2A) z(V, A)
e N (26« Py N Fx
v N . J N
n(V, Y)—n(V, Ef, ) (V, Y)
AN / /!
/(Qg)* Pz*\ /g*
z(V, 2B) =(V, B)

is exact for any space V in the following sense (cf. Olum [13]):

(i) a=a(V, A) and b= n(V, B) have the same image in =(V, Y) if, and
only if, there exists c= n(V, Ef,g) such that a = Py (c) and b= Ppc);

(ii) Ker P NKer Py =Im I.;

(iii) di, de€ n(V, QY) satisfy I.(d)) =I.(d;) if, and only if, there exist
acsn(V, 2A) and b= n(V, 2B) such that (2f)«(a)ds= dy*(2g)(b), where the
dots denote the group operation in n(V, 2Y) determined by the loop-multipli-

cation.

Proof. (i) Let hi, h. represent a, b respectively. If foh=geh, we can
find a homotopy H:, 0<¢<1, such that Hy=foh,, H=gch,: then it suffices
to define a representative k: V- Ey o for ¢ as follows:

k(0) = (m(v), k(v), B(v)), vEV,
where B(v) is the path in Y given by B(2) (#) = H:(v), 0=t=1.

(ii) Let 2: V- Ey,o be expressed as k(v) = (h(v), h(v), v(v)), ve V, and
let 7,~0, h.=~0. We denote by a(v) and f(v) the elements of EA and EB
determined by the contractions of %;(v) and h.(v). Then it is easy to see that
E(v) = Kfa(v)-r(v)-gB(v) 7'}

(iii) Let d1, d2° V- QY represent di, d» respectively, and let H; : V- Ey g
be such that Hy=1Id; and Hi=1Id,. Then we have only to take for a. b the
elements represented by P H; and PH;, 0=¢<1.

TureoreMm 1.8. If g is a fibering, then (1.1) induces an exact diagram:

a(V, 4)
751*/ A
x(V, ,QY)—]im( V, Ker (f: &) oV, Y),
AN v
TN\ g%
x(V, B)
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where J=Wol, ¥: Ef .- Ker (f : g) being an equivalence in the proof of
Theorem 1.4.

Proof. This follows from Theorems 1.4 and 1.7, since P;=m¥ and P> m,¥.

ProrosiTion 1.9. P: Efg— A, P.: Efg—> B and PPxXP,: Efg—>AXDB are
fiberings with fibres Eg, Er and R2Y respectively.

Proof. A path lifting function 4 for P; is defined by setting
Ala, b, B, a)(s) = (als), b, Bs),

for 0<s=<1, ac A, a(1) = @, in which 8 is a path in Y given by

fa2t+s), Oétg.l;,{,
Bs(t) = oi . .
s — —_
B( 1"+s~")’ Sy stsL

Similarly for P, and P, X P.

§ 2. Transformation between triads
Let the following diagram be given:
alsv&op

(2.1) (/ul ﬁpl lgllz
AI__) YI(_.._BI
F g

If (2.1) is homotopy-commutative, then we say that (2.1) is a transformation
from a triad (f : g) to a triad (f’ : g'). We call it a map if it is strictly
commutative.

Let now G¢, Hty, 0=t <1, be fixed homotopies such that G, = f'¢:, G; = ¢f,
Hy=g'¢», Hi=¢g. We define 7 =E(¢1, ¢, ¢»; G, H): Ef g— Es, g by setting

(2.2) 1(a, b, B) = (¢1(a), ¢(b), B)

where #' is the path in Y’ given by

erss(a), (EFERS
|

f(s)=l¢pBs—1,  +=ss2.
| 3 3
{Ha—as(b), %g s=1
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For a map (2.1) we shall set 8'=¢8 in (2.2), and denote simply by E(¢;, ¢,
¢s).
Further let
Al l.)Y/ <_g___ B’

gl o] 4
AN—>Y"<—pR"
f/l g’/

be another transformation with homotopies Gi, H; such that Gj; = f"¢l,
Gi=¢'f!, H=g"¢;, H =¢'g". Consider the homotopies (G'>G), (H'>H) which
are given by

Ghigi(a), ogtg%,
(G'°G)e(a) =

¢'Gsi-1(a), % <t<1,

H;:a(b), Ogtg%,
(H'-H): (d) =

O'Hy¢-1(b), —}g t<1,

for a€ A, b= B. Then it is immediate to verify

ProrosiTioN 2.3. E(¢i¢s, ¢'¢, ¢ige; G'°G, H'<H) is homotopic to E(¢!, ¢',
¢i; G, H)oE(¢1, @, ¢2; G, H).

ProrosiTION 2.4. Let (2.1) be given and let ¢=¢, 1 = @1, ¢2=¢s. Then
there exist homotopies G : ' =0f and H : g'¢.~=Pg such that E(J1, ¢, §»;
6’ ﬁ):E(¢1» 90’ ‘/'2; G; H)-

Proof. Let ¢ 1 ¢=~¢, ¢7 : ¢1=¢1, ¢; ¢ =¢>. Define Gi : A-Y' by

lff'ogb?““, 0=t
!

Gi = {IG(st—:)(a—z )1, %— =ts1- %»,
]L¢3t+':—3of’ 1—13:§t§1,

and define H; similarly. Then E(¢1, ¢7, ¢1; Gi, Hf) gives the desired homotopy.
ProposiTioN 2.5. E(14, 1y, 15; G, H) is a homotopy equivalence.

Proof. Let G, H™ be defined by Gi =Gi-t, Hi =Hi—t, 0=t<1. By
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Proposition 2.3 we have E(l4, 1y, 1p; G, H ) e E(14, 1y, 1s; G, H) = E(1,,
1y, 1g; G oG, H oH). If Gi, Hf, 0 =t <1, are defined by

Gi-2t, Oétéé’
Gi = L
Gi-2t1-1), é"été 1,

and similarly for H;, then we have
E(1,1,1; G°G H H=xEQ1,11; f, 8

by the homotopy E(1, 1, 1; G;, H;). Since E(1, 1, 1; f, g is homotopic to
the identity map of Eyg it follows that E(1, 1, 1; G~, H™) is a left homotopy
inverse of E(1, 1, 1; G, H). We see similarly that E(1,1,1; G*, H™) is a
right homotopy inverse, and this completes the proof.

As an immediate consequence of the above three propositions we have

TrEOREM 2.6. Let a transformation (2.1) be given, and suppose that vertical
maps are homotopy equivalences. Then E(¢1, ¢, ¢»; G, H) is also an equivalence,

that is, Ey, g is an tnvariant object under homotopy equivalences.

Now we see that a transformation (2.1) gives rise to a new map:

%1 X2
E@1_>II:?<_~E‘!‘2
2.7) Pu| Pel | Pn
A—Y<—B
f g

where X1 = E(f', f; G) and X.=E(g', g; H). From (2.1) and (2.7) we obtain

a sequence

E(P¢r, Py, Pér) E(d, ¢, ¢23 G, H)
(2.8) Ey wy— = —>Ef g ’***¢”'/*—> FrL e

We shall prove

ProrosiTioN 2.9. (2.8) induces, for any space V, an exact sequence

X
1(V, Exp ) ——>1(V, Ef, )—>n(V, Efr g).

Proof. First we shows that ¥oE(P¢,, Pe, P¢g,) is nullhomotopic. Take
any point of Ex, x, that is (@, a', b, §',7,7) =€ AX EA'XBXEB'x Y' x (EY")’
such that
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¢i(@) = a'(1), ¢2(8) = B'(1), ¢r(s) =7(1,5), 0=s=1,
f(a) =7(0), g®) =r(1), 7(0, ) =,

flal(2s),  0=s< .
7(s, 0) =

Gis-i(a),  $Es=1,

g8(2s), 0ss<-l,
7(s, 1) =

H,s-1(b), %ésé 1

Therefore

Yo E(Py, Pp, Pp)(a, o', b, B, 7, ) = (a'(1), A'(1), &),

where 0 is the path in Y’ given by

rGat(a), 0ost §—18—
_ _ 1 2
6(t)—i€0r(3t 1), FSts 5
| Hys(5) 211
L 3= ’ 3 = =

Let o : IXI->IXI be a homeomorphlsm such that p(0x1I) =

[0, Z]Xz,z—O or 1, p(lX[O,%]) —, 1]><0 p(lx[

0x1, p(Ix i) =

x1, p(l x[_%, %]) =1x1T and p is linear on the indicated segments.

it is clear that (x, ) -
(a'(1), p'(1), ¢) into the constant map.
Conversely, let £ ¢ V- Eyr ¢ be expressed by

k(v) = (a(v), b(v), r(v)), veV
and let (A:(v), B:(v), Ci(v)) : 0=2Xok(v).

(a'(z), B'(z), Folr x I) is a homotopy deforming x -

We denote by a'(v) and p'(v) the

paths determined by A:(v), B:(v) respectively, and we define 7(v) :

by 7(©) (¢, s) = Cu(v) ("), where (¢, s') =p7'(¢, s)
given by

n(w) = (alv), a'(v), b(v), B'(v), rlv), F(v)),

satisfies k = E(P¢;, P¢, Pp:)oh. Thus the proof is complete.
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Applying the above proposition and Theorem 2.6, and noting that Egf, og

is homeomorphic to Q2Ey, ¢, we reach the final result.
TueoreM 2.10. Every transformation (2.1) induces, for any space V, an
exact sequence

(2%) z
235V, QEfg)——7(V, Eqpny)—>7(V, Ef.g)—>n(V, Ef1g).

CororLary 2.11. Let Ai>Y<—g~B be a triad and suppose there exists a
map h : A— B such that geh= f. Then the sequence
c >V, QEg) »n(V, Ey) »n(V, Ef) »z(V, Eg)
is exact.

Proof. Apply Theorem 2.10 to the map

Yo YGJ:—A

| |
Y . N
y—>Y<—B

Finally, we prove

f
LemMma 2.12. For an arbitrary triad A—> Y«g-—B, there exists a homotopically

I 7 . . . .
equivalent triad A—>M<—B such that j, and j» are both inclusions and cofi-

berings.

Proof. 1t suffices to take for M the mapping cylinder of fVg: AVB-Y,

71 and j. being natural inclusions.

§ 3. Some exact sequences

In this section we extend exact sequences established by Massey [9] and

Hu [5]. Given a triad A-L>Y<*B, let

Trg={(a, B, 7) € EAx EBXEEY|7(s, 1) = fals), (1, ) = g8(£)},
Sr.e={(a, B € EAXEB|fa(l) = g8(1)}.

We observe that Sy, ¢ is just £; for the natural inclusion i=m X7 : Ker (f:g)
-+ AxB. Corresponding to these constructions we consider the following

maps :
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Dt Tr,¢-> St g defined by pla, B, 7¥) = (a, B),

m: Sy ¢— Y defined by m(«a, B) = (fa)+(gB)7%,
n: QY- Ty g defined by n(7) = (eq, es, 7),

71 Sf,¢— E,, defined by 7(a, B) = (a(1), B(1), a),
7:: Sf,g- Ex, defined by 7(a, p) = (a(1), B(1), B).

These maps are obviously imbedded into the following sequences

Qm b B P m
(3.1) c YTy, e—>Sr, 27,
2
(3.2) o Bor, o s, SHE.,

(972} q1 u1 72
>R, ——>RA—Sf,g—>Ex,,
in which u : 2B Sy,¢ and ¢» : 2E.,— 2B are defined by

u:(B) = (eaqy, B),
@(a, B, @) =B7" for e € 2A, B 9B, @ < REA
such that fa =gB, &(1, t) = a(t),

and #; and q; are similarly defined.

It is easily seen that Ej, is homeomorphic to Ty, Thus we have

ProrposiTiON 3.3. The sequence (3.1) induces an exact sequence

BV, Ty ) DRV, 5,0 (Y, 21
Now we consider /; : 2B—E,, and I, : 2A- E,, defined by
L(B) = (ea, B; e€ay €b, ), bla) = (a, eb,; €a €by €)
where & : IxI- A (or B) is the constant map. Then we prove
LemMa 3.4. [, and I, are homotopy equivalencs.

Proof. Every point of E, is of the form (a, 8; a!, B, 7) € EA X
EBx EA x EB x EEA, where fa(l)=gB(1), a'(1) = a(1), p'(1) =p(1), 7(s, 1)
=als), 7(1, t) =a'(t). We define h; : E,,» 2B by

hia; B; &, B, ¥)=R+(B)"
Clearly hiely=1. Lok is also deformed into the identity map by the following
homotopy :

(a,ﬁ; a,y B” :)‘;)'—)(“T, BT; 068,1, Bé;‘h ?’:)) ngél)
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where
(X?(S) 277(5, T), :f‘:(t, S) =7:(t, TS),

(85 osesly

B’:(s) =
Bc+2-2s),  =ET

b

<s=1

By Lemma 3.4 we have

ProrosiTioN 3.5. (3.2) induce exact sequences

w(V, OF.)E52(V, @BY50(V, Sp. o) 5n(V, En,)

and
2(V, 8E.) 252V, 04)50(V, Sp, o) ~5a(V, Ea,)

The above Propositions 3.3 and 3.5 may be regarded as an extension of

the exact sequences established by Massey [9].

We now observe that (1.1) yields maps 1= E(f, =) : E. ~ E; and
Lo =E(g, m) ! Ex,—Ey, and that Ey, and Ey, can be identified with Tr . Thus

we conclude
ProrosiTion 2.6. The sequences

X1y
nlV, QE) >V, Ts.g) >V, Ex)—>a(V, Eg)

and
SV, 2Ep) 2V, Tr.0) >V, Ex) 52V, Ey)
are exact.
This is a generalization of exact sequences of a usual triad [1].
Finally we prove

Provosion 3.7. Let A->Y<.B be a triad in which g is a fibering.
Then

(i) Y1 * Ex,— Eg is @ homotopy equivalence:

(ii) Ty, g is contractible;

(ili) Y% : Ex,~> Ey has a right inverse.

Proof. 7: is given by Zi(a, b, «) = (b, fa) for (a, b, «) € AXBXEA with
f(a) =g(b), a(1) =a. Let A : Zg— B denote a lifting function for g. We define
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Il ¢ Eg— E-, by setting T'i(d, v) = (a0, A(b, 1), e,) for r€ EY, g(®) =7v(1). Tt
follows at once that I is a homotopy inverse of 7;, which prove (i). (ii) is
an immediate consequence of (i) and Proposition 3.6. To prove (iii), consider
I Ef—E., which is defined by Ii(a, 7) = (a, A(b, r™"), 4(by, ¥™)7"), where
A 1 Zg—B' is the path lifting function with which 2 is associated. Clearly

220l =1, as we wish to prove.

§ 4. Cotriad

In order to dualize the preceding results, we shall call Ai—X—g»B a
cotriad and denote by <f : g>. Then the argument is quite automatic, but
briefly indicated.

With a given cotriad A<—f—X—g—>B, we associate the following spaces:

Cy ¢ = the space obtained from AU XxIU B by the identifications

(x, O) :f(x), (x, 1) =g(x), (xOy S) = (x(b t)y ZEX, S, tE]’
Coker <f : g> =the space obtained from A U B by the identifications
f(x)=gx), € X.

In case f and g are inclusions Coker {f : g is the union of A and B, and in
case g is a cofibering it is the cofiber space induced by f. Further, Cy,g,
which may be called the mapping cylinder of a co-triad <f : &>, has already
appeared in the book of Eilenberg-Steenrod [4], p. 51, G, 4 for inclusions f and

g
We have now the (homotopy-) commutative diagrams
A
VAN
/ N
(4.1) X Coker <f : @&
N 7
INL
B
A SA
VAN S/ \Sh
SN e S N
(4.2) X Cr,g—>SX SCy, g—>
AN a N e
gNy I SNy Sk
B SB
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where 4, %, I and L are appropriate injections, and @ is the map which

pinches AU B to a point.

(4.3) (4.2) induces, for any space V, an exact diagram:

=(A, V)
1+ NI
v N o
(X, V) 7(Cys, g, V)<—n(SX, V)
N /
CEAN I
n(B, V)

Let us now suppose that g is a cofibering with an extension function A’':
B->M,. Let ® : Cyg—>Coker <f : g> and ¥’ : Coker {f : g2 Cyr,¢ be the
maps defined by

0'(a)=a, 0'(b) =b, 0'(x, s)=f(x)=g),
foras A, beB, xX, 0<s<1,

v'(a)=a, P'(b) =1'(b) for a€ A, b€ B,

’

- A
where 1’ denotes the composition B—>Mz—>Cy, g.
(4.4) The above @' and ¥’ are mutually inverse homotopy equivalences.

(4.5) The following diagram is exact:

m(A, V)
1=/ NEA
s N (Qo¥')*
(X, V) n(Coker {f : g, V)«—n(SX, V)
N /
£\ i
m(B, V)

We note that this may be considered as a generalization of the Mayer-
Vietoris cohomology sequence of a proper triad [4], p. 43.
Let
alx%p
ol ol L
Alé€— X'—B'

be homotopy-commutative, and let G: : f'¢>~¢,f and H: : g'¢ = ¢»g be homo-
topies. We define 7' =C(¢1, ¢, ¢» : G, H): Cr,g—>Cys,g by
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7(a) = ¢i(a@), 1'(b) = ¢u(b), acs A, be B,
Gi-as(x), 0=3s=1,

7(x,s) = y(o(x), 3s—1), 1852,
Hss (%), 2<3s<3,

(4.6) If ¢1, ¢ and ¢, are homotopy equivalences, then so is 7’

Let A<—f—X—g—>B be a cotriad, and let us consider
T}, ¢ = the space obtained from CAU CCXU CB by the identifications:

(%, 5, D) =(f(x),s), (x,1, 1) =(glx), 1), x€ X, 0<s, t=1,
Sf, ¢ = the space obtained from CA U CB by the identifications:
(f(%), 1)=(g(x), 1), x X.
Then the following sequences are obviously defined :
(4.7) sxﬁ»s'f,gLT;,g—"'»szx—»- ..

(4.8)  Ci—>S:y—>SB—>SCi—>+ - » and Ci~—>S}, ,—>SA—>SCi—> - - -
(4.9) Cf——>C,'2—‘>T},g——>SCf~—>' -+ and Cg_“'?cil_éT},g—')SCg_'?' °

It is easy to verify
(4.10) The above sequences (4.7)-(4.9) induces exact sequences.
(4.11) Let A<—x-%>B be a cotriad in which g is a cofibering. Then
(i) C(f, %) : Cg—>Cy, is a homotopy equivalence;
(ii) T%,g is contractible;
(iii) C(g, 4;) : Cs—>Ci, has a left inverse.

This proposition shows that =(7Tf g, K(x, n)) is an analogue of cohomology
groups of a triad (cf. [4], p. 204, Theorem 11.3)

§ 5. Cohomology of induced fibrations
Let A-j;Yeéi—B be a triad in which all spaces are assumed to be path-
connected. We now define
u, I 2 (Ef X Eg, QY X Eg) > (Ef. g, Eg)
by setting

wa, 1,5, 8)=(a, b, v+0),
II(a, 1, b, ) =(a, by, 1)
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for (a, 1, b, ) € AXE"YxBXEY with f(a)=17(0), g(b) =a(1).

Turorem 5.1. (p*—=ITF)e Py : HUA, a) > HYE; x Eg, QY x Eg) is trivial
Jor all q=0.

Proof. This is clear, since we have Peula, 7, b, 6) =a= P,°Il|(a, 7, b, ).
The goal of this section is to prove

THEOREM 5.2. Let A be a r-connected space (r=2) with non-degenerate
base-point a, and let 'Y be a t-connected space (t=2) with non-degenerate base-

point yo. Suppose further that Eg is s-connected, s=1. Then the sequence

P} pE =Tk
Hq(A, ao)—'").Hq(Ef,g, Eg)”——ﬁHq(Ef XEg, .QYX Eg)
is exact for g=r+s+it+2.

Proof. Given a transformation (2.1), we have po(Z; X Z2) =X op, IIio (L1 X 72)
=71l and ¢1° P = Pro), where 1 =E(¢i, ¢, ¢25 G, H), 11=E(¢s, ¢, 05 G, 0),
Z2=E0, ¢, ¢,; 0, H). Therefore we can assume, by Lemma 2.12, that f and
g are inclusions.

Let now (Y; A, B) be a usual triad with base-point y,. For subspaces
K and L of Y, let Ex, i denote the space of paths ry in Y such that y(0) € K
and (1) L. We shall write x for multiplication of paths in Y, II; for the
projection on the first factor and P;, P, for the maps taking, respectively, the
initial and final point of paths. Let W= {rEEA,ylr<'%) =yo}- We need the

following two lemmas:

LemMma 5.3. (a) There exists a neighborhood Vi of Ey,z in Es s such that
Ey, 5 is a strong deformation retract of V.

(b) There exists a neighborhood V. of QY in E,4 y, such that Y is a strong
deformation retract of V..

(¢) There exists a neighborhood Vs of W in E4y such that (W, WN (E4»
UEY)) is a strong deformation retract of (Vi, VN (E4zUEY)).

LemMma 5.4. (Esy, E,sUEYUW) is (r+ s+ t-+3)-connected.

The first lemma is easily checked in a manner similar to those in [17]
(cf. [151), and the proof of the second will be postponed later.

Consider now the following commutative diagram
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Pk ,u*——H*
H(A, @) —>H"(Ea,5, Eyp5)~—>H(Ess,X Eyp 5, 2Y X Ey,p)
* | A 4

HYEay, EY)~>HYE1p U EY, EY)——>H"(E. 3, % Eyy s U QY x EY, Y X EY)
|
) . 5
HE4y, Es, s UEY)——>H"" (E4, 3, X EY, E4,9,X Ey, 3 URY X EY)
| e
HYYE,y; Es s UEY, W) »H* E.y, Ea 35U EY)~1—>H"“( W, WN (E4sUEY)),

in which ¢ are coboundary homomorphisms, 4, 7, ki, k. are appropriate inclusions
and u at the right lower corner is a homeomorphism. Since the vertical P; is
a homotopy equivalence, P; is an isomorphism onto. By Lemma 5.3 and
Theorem 11.3 of Eilenberg-Steenrod [4], % and % are exision isomorphisms,

and moreover we see from Lemma 5.4 that
HYYE,v; E,sUEY, W) SHYY(E,y, EssUEYUW) =0

for gsr+s+t+2.

We next remark that the bottom line is a triadic cohomology sequence of
a triad (E4,y; E4pUEY, W) and hence exact. Take any element x € H/(E4 s,
E,, ») such that (u*—IF) (%) =0 for g<r+s+t+2; then j 0k '(x)=0.
Since 7* is a momomorphism, there exists a y € HYA, a) such that & '(x) =
i*PF(»), noting that Ker 6 =1Im ¢*. Thus x= P{(y) which completes the proof
of Theorem 5.2.

Suppose now that there is given a triad A—f—>Y<~g—B such that g is a
fibering with fibre .  We denote by 1 : Zz-> B a lifting function for g (see
[12], p. 113). We define

I, I 1 (Ef XF, QY xF)> (Ker(f : g), F)

by ila, 1, b) = (a, (b, 1)), II{a, 7, b) = (a, (b, 1)) for ac A, r€ E"Y,bEB
with f(a) =¢(0), g(b) =y,. In view of Theorem 1.4 we see that these maps

correspond to gz, Il in Theorem 5.2. Thus we conclude

TueoreM 5.5. Let (f : g) be as above. Suppose further that A, F, Y are
respectively r-, s-, t-connected, r=2, s=1, t =2, and that A and Y have non-

degenerate base-points. Then the sequence
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t e
HY(A, a))—>H" Ker(f : g), F)——>HYE;f xXF, 2Y x F)
is exact for q=r—+s+t+2.
In case s=1f—1, it seems likely that the above theorem gives a geometric

version to a part of an exact sequence obtained by E. H. Brown ([2], p. 240).

Finally, we shall give a proof of Lemma 5.4.

Proof of Lemma 5.4. Since P; X P, are both fibre maps in the diagram

2k
c ool W, W (B 5UEY))2>m By, B sUEY) > - -
(P]XPz)*\\ ‘/ (P1x P2)y
mi(AXY, AXBUyxY)

exactness of the horizontal line implies #i(Esv; EszUEY, W) =0 for i=2.
Hence, by considering the homotopy sequence of a tetrad (E4,v; EseUEY U W,
E.3UEY, W), we have

misi(Eay, Es,sUEYU W)= nis:(Eay; Es s UEYUW, E4,5UEY, W)
=n(Es s UEYUW; EspUEY, W)
for i=2. But it follows from the Kiinneth theorem that
milW, WN(E4 sUEY))=m(AX Y, AXBUyXY)=0

for i<r+s+2, since (A, y) is r-connected and E,, = Eg is s-connected.
On the other hand #;/(E4 s UEY, WN (E4gUEY))xm(Es vy, W) and, moreover,
we see that r—7y-ey, y=7(1), yields a homotopy equivalence ((E4,y, Ea,y,) >
(Eiy, W). Therefore it follows from (P, : mi(E4y, Ea ) <mi(Y, ») that
(B4, g UEY, WN(E4s3UEY)) is t-connected. Applying the Blakers-Massey
theorem [1], we have that (E,,sUEYUW,; E.zUEY, W) is (r+s+t+2)-
connected and hence

(5.6) mi(Esy, E4, sUEYU W) =0 for 3siZr+s+1t43.
Consider now the exact sequence

th(EA,y)—)n'z(EA,y, EA,BUEYU W)%ﬂl(EA,BUEYU W)—>Tl'1(EA,Y)
—>7[1(EA,Y1 EA,BUEYU W)->0,

where #i(Esy) = ni(E4sy, EY) T mi(A) =0 for i<2. Upon noticing that
mi(W) ?-'7!1(EA,yo) (Y, A) =0 and 71'1(EA, ) = Ea g, Eyo,B) =~ 7(A)=0, it
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follows from van Kampen’s theorem [13] that =;(Es.zUEYU W) =0. Hence
ni(E4y, E4, 3 UEYUW) =0 for i = 1, 2. Combining this with (5.6), we obtain
the desired conclusion.

§ 6. Realizability of Whitehead products

In this section we shall state a result which is dual to a theorem of I. M.
James [8] as an application of Theorem 5.2. See also [6, 7, 11, 18].

Let f ¢ X-Y be a map in which Y possesses a non-degenerate base-point.
¥ : Zs—> X denote the homotopy equivalence given by ¥(x, B) =%, x< X,
BeY’, f(x)=p(1). Weset Pf=¥|Ey. Let!l: (E"Y, 2Y)-(Zs, Ef) be the
inclusion, I(B) = (x, B), and let P : (Zs, Ef)— (X, y,) denote the map defined
by P(x, B)=R(0)

There is defined the path-multiplication x : E"Y x EY > ¥’ in an obvious
manner. This induces maps E"Y X Ef—>Zr and 2Y X Er— Ef which are denoted
by the same letter . In what follows, we use =n;, 72 to denote projections on
the first and the second factors respectively.

We have then the following commutative diagram

HT(Ey)
Tir N
5 i =N
HYE"Y x Ef, QY X Ef)«—H" QY x Ef)«—H" (E"Y X E¥)
[k I+
i* ¥ P
HUEf)«—HUZy)<—HYZs, Ef)<———HY ' (Ey)

(Pf)*\\ Wl T
20 B (y)

where 7 = p* — 0¥, v=py*—a’ — 2 (If)*, ¢ are coboundary homomorphisms,

and 14, j, 73, %, 43 are appropriate injections.

TuEOREM 6.1. (a) poP*=0.
(B) If Y and Eys are respectively r-and s-connected, r =2, s=1, then P*:

HUY)->HYZys, Ef) is a monomorphism for q=r+s+2 and the sequence

p* v
HYY)—>H(Zs, Ef)—HYE"Y X Ef, 2Y X E¥)

is exact for q=2r+s+2.
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(c) & is monomorphic on Ker iy and Im v Ker ;.

The first half of (&) follows from Serre’s theorem since P is a fibre map
with fibre Ef. (a) and (b) are obtained by applying Theorems 5.1 and 5.2
to a triad Y—1>Y<—f—X. (¢) is an immediate consequence of the fact that z;
is an isomorphism.

In the sequel assume that all spaces considered have the same homotopy
type of a CW-complex. To simplify the notation we do not distinguish between
a map and the homotopy class or the cohomology class it represents.

Now we shall take 6 : K(m, n) - K(z', w' +1) instead of ¥ : X—> Y in the
foregoing consideration, where 2=<n<n', and consider ¢ : Ey— K(G, n+n').
Let W denote the Whitehead product pairing n'®n—~G in E;,. We call E; a
space of type (W, 6). Let ce H"(z, n; n), /€ H" ™ (a!, n'+1; n') be basic

classes respectively. In these situations it is proven that

Lemma 6.2. (Meyer [10] and Peterson-Stein [14]) »(¢) = = (%) U 7" (P9) X2,
where ' denotes the suspension of ¢! and the cup-product is with respect to W.

The proof of our result stated in the introduction is based on the following

theorem.

TuEOREM 6.3. 8(¢) = P*(¢') U #*(¢) + P*(p) for unmique o H™ "' (),
n +1; G), where the cup-product is relative to W.

Proof. For convenience we consider the projection p. : E"Y x Ey— Ey and
the injection 2 : QY XEy->E Y XE,, and let p : (E"Y, 2Y)- (Y, ) be the
fibre map given by p(8) =8(0). I : E”Y-Z, denotes the map determined by
1. Since I;¥*(;) =0, we have = I*[P*(/) U?*(()]1=0. Further,

50(¢) = 6v(¢) = olm"("e") U s (PO)*(0)] by Lemma 6.2,
=0l (") U E* D (PO)*(0)]
=or; (1) U pi (POY*(0) by [16], (3.2),
=7 0(e) U nf#* (o), since i°p, = 13,
=7 p* () U TH(e)
=mi T P* () U nf T *(0)
= P*() U 2T (o) by Theorem 6.1 (a),
= [P*() UT*()].
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This calculation leads to 5[8(¢) — P*(¢/) U#*(¢)]1=0. Hence, by Theorem 6.1
(b), we see that there exists a unique p= H™""*(a/, '+ 1; G) with the desired

property.

THEOREM 6.4. Let 6 : K(m, n) > K(z', n'+ 1), where 2= n<n', and let W:
o’ @n—>G be a given homomorphism. Let 6 U denote the cup-product of 6 and
the basic class of K(m, n) relative to W. Then there exists a space of type
W, 6) if, and only if, 8 U is contained in the image of the homomorphism

0* . Hn+n’+1(n,/’ n'+1, G)__)Hn+n'+1(n_’ n; G)

Proof. Applying (F*)7** to the formula in Theorem 6.3, we obtain
0=0"")Uc+06%p), ie., 6 Uc= —0%(p), which proves the “only if” part.
Conversely, suppose there exists p H*""*'(a!, ' +1; G) such that —6%(p)
=fUcrel W. Here “rel W” indicates that the cup-product is to be taken
relative to IW. This shows that P*(¢/) U#*(¢) rel W+ P*(p) lies in the kernel
of 7* so that, by exactness of the cohomology sequence of the pair (Zs, Eb),
there is ¢ € H"""(Ey) such that §(¢) = P*(/) UZ*(¢) rel W+ P*(p). We shall
show that the space E; is of type (W, 8). Let W denote the Whitehead

product pairng in E;. Now

olm (') U nf (P8)*(¢) rel W]
=3[ P*(!) U¥*(¢) rel W] from the proof of Th. 6.3,
=720(¢) = op(e) by Theorem 6.1, (a),
= o[nf (") Un¥(PO)*(¢) rel W] by Lemma 6.2.

Therefore, Theorem 6.1, (c¢), implies = (/) U =5 (P8)*(¢) rel W=n(*)U
75 (P8)*(¢) rel W. This means that W= W.

COROLLARY 6.5. There always exists a space of type (W, 0).
COROLLARY 6.6. Under the same notation as in Theorem 6.3, we have
(18)*(¢) ="p.

This is deduced by applying 6~* to the formula in Theorem 6.3, where

o H" (', n; GYRH"" ™ NE K@, n'+1), 2Kz, ' +1); G).
CoroLLARY 6.7. Let 0 : K(7, n)>K(n', 2 n), n=2, and let Wi, W: be,
respectively, given pairings nQ@n->n', i’ Qn—>G. Then there exists a space

whose first invariant is § and whose Whitehead product pairings are just W,
and We, if, and only if, (p*—nf —n7)(0) = 2f () Unf(¢) rel Wy and 6U:
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rel Wo = 0*H*" (2", 2 n; G), where p : Kz, n)x K(r, n)—» Kz, n) is the H-structure

map.
This follows from a result proved by Copeland [3].

CoroLLARY 6.8. If cat K(m, n) <2, then there always exists a space of type
(W, 9).
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