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HEWITT REALCOMPACTIFICATIONS OF PRODUCTS 

WILLIAM G. McARTHUR 

1. Introduction. The Hewitt realcompactification vX of a completely 
regular Hausdorff space X has been widely investigated since its introduction 
by Hewitt [17]. An important open question in the theory concerns when the 
equality v(X X F) = vX X vY is valid. Glicksberg [10] settled the analogous 
question in the parallel theory of Stone-Cech compactifications: for infinite 
spaces X and F, $(X X Y) = pX X 13 Y if and only if the product X X F is 
pseudocompact. Work of others, notably Comfort [3; 4] and Hager [13], 
makes it seem likely that Glicksberg's theorem has no equally specific analogue 
for v(X X F) = vX X vY. In the absence of such a general result, particular 
instances may tend to be attacked by ad hoc techniques resulting in much 
duplication of effort. Our goals in this paper are threefold: to present a useful 
technique for dealing with particular instances, to illustrate the unifie nature 
of the technique, and to pose and partially answer some general questions 
which are less ambitious than the quest for a Glicksberg analogue. 

That the question of when v(X X Y) = vX X vY is susceptible to attack 
by both uniform-theoretic and purely topological methods is evidenced in 
[14; 3; 4; 5]. Our technique, introduced here as Proposition 3.3, might best 
be described as "hybrid" since its statement is topological and its flavour 
uniform-theoretic. We indicate in § 4 how our technique may be applied to 
prove the sufficiency of Glicksberg's theorem and the important Comfort-
Negrepontis theorem [5, Theorem 5.3]. In § 5 we consider three classes of 
topological spaces which are defined in terms of the relation v(X X F) = 
vX X vYy feeling that single spaces are more manageable than pairs of spaces. 
Although we fall short of a complete characterization for each of the classes, 
we are able to characterize one of them (barring measurable cardinals). Also, 
through sufficient conditions for membership and examples of members and 
non-members, we are able to give some indication of the scope of each class. 
Full knowledge of the membership of each of the three classes would provide 
much of the general information on the equality v(X X Y) = vX X vY that 
we lack due to the absence of an analogue of Glicksberg's theorem. 

2. Preliminaries. All topological spaces discussed in this work are assumed 
to be completely regular Hausdorff spaces. For a space X, C(X) denotes the 
ring of all continuous real-valued functions on X and C*(X) denotes the sub-
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ring of bounded functions. A subset A of X is said to be C-embedded in X if 
every function in C(A) extends to a function in C(X). C*-embedding is 
denned analogously. For a topological space X, fiX denotes the Stone-Cech 
compactification of Xy which is characterized as a compact space in which X 
is densely C*-embedded. vX denotes the Hewitt realcompactification of X 
and is characterized as a realcompact space in which X is densely C-embedded. 
Both of the spaces fiX and vX are unique up to a homeomorphism which 
extends the identity on X. The equality v(X X Y) = vX X vY is to be 
interpreted to mean that X X Y is C-embedded in vX X vY. For details see 
[9, especially Chapters 6 and 8]. 

3. The rectangle condition. In this section we introduce our technique 
for dealing with Hewitt realcompactifications of products. For economy of 
verbiage in later results, we begin with some definitions. As is usual, for a 
non-void subset A of X and a function/ £ C(X), 

(oscf)(A) = sup{|/(*) -f(y)\:x,y £ A}. 

3.1. Definition. A filter base Ĵ ~ on a topological space X is said to have 
property 12 if for every / in C(X) and e > 0 there is a set F in &~ with 
(osc /K/0 ^ e. 

It is easily seen that a filter base Ĵ ~ has property 12 if and only if it is a 
Cauchy filter base in the uniformity on X generated by C(X). 

3.2. Definition. A pair of spaces (X, Y) is said to have the rectangle con­
dition if whenever jF~ is a filter base on X with property 12 and & is a filter 
base on Y with property 12, then the filter base 

has property 12 on X X Y. 

We now present our fundamental tool for dealing with 

v(X X Y) = vX X vY. 

3.3. PROPOSITION. V(X X Y) = vX X vY if and only if the pair (X, Y) 
satisfies the rectangle condition. 

Proof, (i) Necessity. Let J ^ and S? be filter bases on X and F, respectively, 
each having property 12. Since vX may be viewed (topologically) as the com­
pletion of X with respect to the uniformity generated by C(X), there is a 
point p in vX such that &~ converges to p. Similarly, there is a point q in vY 
such that ^ converges to g. Hence, the filter base #~ X ^ converges to the 
point (p, q) of uX X vY. Let / be in C(X X Y). Then, by hypothesis, / 
extends continuously to / o n vX X vY. Thus, the filter base / ( ^ X &) 
converges to the point f(p, q). Then, / ( & X &) = f(^ X &) must be 
Cauchy with respect to the usual metric on the real line. This implies that for 
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e > 0, there exists F X G in <F X & such that (ose f)(F X G) è e. Hence, 
F X & has property Œ and (X, F) satisfies the rectangle condition. 

(ii) Sufficiency. Let / be in C{X X Y) and (p, q) in vX X vY. Let jV(p) 
a,nd^(q) be the neighbourhood filters of p and q in vX and vF, respectively, 
and let J % be the trace oi^V(p) on X and ^ the trace oi^V(q) on F. Then, 
J % and ^ 2 have property flonl and F, respectively. Thus, by hypothesis, 
the filter base J % X &q has property Q. Then, the filter base/( J % X ^ ) is 
Cauchy with respect to the usual metric on the real line. Thus, there is a 
real number J(p, q) such tha.tf(FP X @q) converges to f(p, q). This defines 
an extension / of / on vX X vY. Let (p, q) be in vX X vY and e > 0. Then, 
there is a set F X G in J % X @q such that 

f(F X G) = / ( F X G) C (/(£, ff) - €,/(£, g) + e). 

Note that 5 = (T7 X G) KJ {(p, q)} is a neighbourhood of (p, q) in the space 
( X X 7) U { fog)}. But, 

/ (S) = / ( F X G) \J {j(p, q)} C (I(P, q) ~ ej(p, q) + e). 

T h u s , / |(XXF)U{(P.«)} *s continuous. Since X X Y is dense in uX X vY, we may 
conclude that / is continuous on vX X v F. 

Proposition 3.3 admits a "local" form. We begin with another definition. 

3.4. Definition. A function / in C{X X Y) is said to be weakly uniformly 
continuous if whenever F and *& are filter bases on X and F, respectively, 
both having property 12, then for every e > 0, there exists F X G £<F X & 
with ( o s c / ) ( F X G) ^ €. 

It is not difficult to see that the following result holds. 

3.5. PROPOSITION. A function f in C(X X F) is extendable over vX X vY if 
and only if f is weakly uniformly continuous. 

For a topological space X, & (X) denotes the uniformity generated by 
C{X). Since vX X vY may be viewed as the completion of X X Y with 
respect to the product uniformity *&(X) X &(Y) generated by &(X) and 
^ ( F ) , it follows that every function in C(X X F) which is uniformly con­
tinuous with respect to fé (X) X ^(F) is weakly uniformly continuous. On 
the other hand, as a result of the theorem in [20], we know that there is a 
function / i n C(R X R) (R the real line) such that / is not uniformly con­
tinuous with respect to fë (R) X *& (R)\ but, every function in C(R X R) is 
weakly uniformly continuous since R X R = v(R X R) — vR X vR. Finally, 
every weakly uniformly continuous function on X X Y is uniformly con­
tinuous with respect t o ^ ( I X F). 

The following result is quoted from [5], 

3.6. THEOREM (Comfort-Negrepontis). If X X Y is C*''-embedded in 
vX X v F, then XX Y is C-embedded in vX X v Y. 
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Thus, from 3.5 and 3.6 we immediately obtain the following result. 

3.7. COROLLARY. V(X X F) = vX X vY if and only if every function f in 
C* (X X Y) is weakly uniformly continuous. 

It is useful for applications to note that a space X is realcompact if and 
only if every filter base on X with property 0 converges to some point of X. 

4. Applications to known results. We now indicate the usefulness of 
our technique for unifying the theory of Hewitt realcompactifications of 
products. 

The projection TTX from X X Y onto X is said to be ^-closed if for every 
zero-set Z on X X F, irx(Z) is a closed subset of X. It is unusual for wx to 
be 3-closed ; in fact, if wx is ^-closed for every space F, then X is discrete and 
if irx is z-closed for all spaces X, then F is compact (see [11, § 2.6 for details]). 

An infinite cardinal m is said to be measurable if a set X of cardinality m 
admits a non-trivial two-valued, countably additive measure defined on all 
subsets of X. The existence of measurable cardinals is an open question of 
set theory; however, the class of non-measurable cardinals in known to be 
closed under the usual cardinal operations and to contain Ko- Our present 
interest in measurable cardinals lies in the fact that a discrete space X is 
realcompact if and only if card X is non-measurable. Also, a metric space of 
non-measurable cardinal is realcompact. 

4.1. Definition. For f in C*(X X F), let 

H,: X -> C*(Y) be defined by (E/(*)) (y) = f(x, y) 
and 

E': Y-+C*(X) be defined by (E'(y))(x) = f(x, y). 

The following result can be found in the literature. 

4.2. THEOREM. The following are equivalent: 
(i) XX Y is C*-embedded in X X $Y; 

(ii) irx is z-closed; 
(iii) S fis continuous for each f in C*(X X F). 

Proof, (i) «=> (ii) is due to Hager and Mrowka and is proved in [14, Proposi­
tion 6.1]. 

(ii) => (iii) is due to Tamano and is proved in [21]. 
(i) <=> (iii) is due to Glicksberg and is proved in [10]. 

Theorem 4.2 has a local formulation which is given in 4.3 and proved in 
[11, § 2.4]. 

4.3. PROPOSITION. For f in C*(X X Y), the following are equivalent: 
(i) /extends to X X $Y; 

(ii) 
E/ is continuous. 
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L e t / be in C* (X X Y) and let &~ be a filter base on X which has property 12. 
It is natural to wonder if there is an x in X such that the behaviour of the 
function E/(x) on a filter base ^ on F determines the behaviour of / on 
Ĵ ~ X @. We are motivated to consider the following situation. 

4.4. LEMMA. Let card X or card Y be non-measurable and letf be in C* ( X X Y). 
If either of the functions E/ or H / is continuous, then f is weakly uniformly 
continuous. 

Proof. Let J^ and & be filter bases on X and F, respectively, both having 
property 12. We assume for definiteness that E/ is continuous. Let e > 0. Let 
M = Sf(X). Since card M ^ min {cardX, 2XocardF}j Card M is non-measur­
able (any cardinal smaller than a non-measurable cardinal is non-measurable 
[9, § 12.5]). Thus, the metric space M is realcompact. Now, the filter base 
S / (^") has property 12 on M since E/ is continuous. Thus, there is a point 
Xo in X such that the filter base E/(^~) converges to the function S/(x0). 
Let 11 • • • 11 denote the usual sup-norm on C* ( Y) and let 

U = {£,(*) G M: ||E,(*) - S/(xo)| |<e/3}. 

Then, there is a set F in Ĵ ~ such that S/(F) C J7. Thus, for x in F, 

sup \f(x,y) -f(x0,y)\ < e/3. 

Choose G in ^ such that (osc E/(ffo))(G) ^ e/3. Then, for points (xi, 3/1) and 
(x2, y2) in F X G, 

Iffruyi) -f(x2,y2)\ è |/(*i,:yi) - / ( « o , y i ) | 

+ l/(^o,^i) - / ( * o , ^2)1 + \f(x0,y2) -f(x2ly2)\ 
g ||E,(*i) - E,(*o)|| + (oscE,(*o))(G) + ||E/(*o) - H/Cxa)!! 

< e / 3 + e / 3 + e/3 = e. 

Thus, (ose/) (F X G) ^ e. Hence, / is weakly uniformly continuous. 

The next result is immediate from 3.7, 4.3, and 4.4. 

4.5. THEOREM (Comfort-Negrepontis). / / card X or card Y is non-measur­
able and XX Y is C*-embedded in X X 0F, then v(X X Y) = vX X vY. 

Theorem 4.5 was announced in [5] in a slightly different form and has been 
the source of many of the known sufficient conditions for the relation 
v(X X Y) = vX X vY to hold (see, for example, [3; 4]). The asymmetry of 
the statement of 4.5 is only apparent. For, suppose that card X or card Y 
is non-measurable and that for each / in C*(X X Y) at least one of the func­
tions E/ or Sf is continuous. Then, by 4.4 and 3.7, v(X X Y) = vX X vY. 
Let A denote the subalgebra of C*(X X Y) consisting of those functions 
which extend to /3X X Y and let B denote the subalgebra of functions extend­
able to X X 0Y. By 4.3, for this particular pair (X, F), C*(X X Y) is equal 
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to the set-theoretic union of A and B. It is well known that an algebra cannot 
be realized as the set-theoretic union of two proper subalgebras. Hence, 
4 = C * ( I X F ) or B = C*(X X F) and we find ourselves back in the 
context of 4.5. 

Part (iii) of the following is known from [5], but the proof presented here 
is new. 

4.6. PROPOSITION. Let D be a discrete space of measurable cardinal. Let Y be 
any of the spaces 

(i) D, 
(ii) vD, 

(hi) PD, 
Then, the relation v(D X Y) = vD X vYfails. 

Proof. Since D has measurable cardinal, there is a filter base # " o n D such 
t h a t # ~ has property 12 and #~ is free (i.e. f| « ^ = 0). Then, #~ has 0 on Y 
since D <Z Y. Let A = {(d, d): d 6 D). Then, A is open and closed in D X Y. 
Define/in C*(D X Y) by /(A) = {1} a n d / ( D X F\A) = {0}. Let F1 and F2 

belong to # " and let F be in & such that F<ZFiC\ F2. Then, FX FCF1XF2. 
Let £ be a point in T7. Since Ĵ ~ is free, there is a point g in F such that q ?* p. 
Then, the points (p, p) and (p, q) both belong to F X F. But, 

I/(*>,£) - / ( £ , 2)1 = 1. 

Thus, !F X ^ does not have property 0. Hence, u(D X F) ^ ufl.X uK 

Thus, we see that the cardinality conditions imposed in 4.4 and 4.5 are 
necessary. 

We continue with a theorem of Comfort which appears in [4]. The proof 
we give here is no shorter than that offered in [4], but is presented here because 
of its consistency with the spirit of our preceding results. 

4.7. THEOREM. Let X be a locally compact realcompact space with the property 
that each point of X admits a neighbourhood with non-measurable cardinal. 
Then, v(X X Y) = vX X vY for every space Y. 

Proof. Let Ĵ ~ and & be filter bases on X and F, respectively, both having 
property 2. Since X is realcompact, there is a point x0 in X such that Ĵ ~ 
converges to XQ. By hypothesis, x0 admits a compact neighbourhood K which 
has non-measurable cardinal. Let tfl = {F£<^~: FCK}. Then, ^ is a 
filter base on K with property 12 (K is C-embedded in X [9, § 3.11]). By 
4.5, ^ X ^ has property ti on K X F, and hence on X X Y. Thus, & X & 
has property 12 on X X Y. Then, v{X X Y) = vX X vY. 

We turn now to the sufficiency of Glicksberg's theorem. We shall need the 
following result of Frolik which appears in [7], to which the reader is referred 
for proof. 
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4.8. LEMMA (Frolik). If X X Y is pseudocompact, then for f Ç C*(X X F), 
the function 

F(x) = sup f(x,y) 
V£Y 

is continuous on X. 

The following result places us in the context of 4.4. 

4.9. LEMMA. If X X F is pseudocompact, then for / Ç C*(X X F), H/ w 

Proo/. Let xo € X and e > 0. Define ^ o n l X F by 

g(*,y) = l/(*»30 -/(*<>, y) I. 

Then g £ C*(X X F). Hence, the function 

G(x) = supg(x,;y) 
VtY 

is continuous on X by 4.8. Thus, there is a neighbourhood U of x0 such that 
x 6 £/ implies that \G(x) — G(x0)\ < e. But, 

\G(x) - G(xo)\ = \supg(x,y) - supg(x0,y)\ 

sup |/(*, y) - f(xQ, y) | - sup |/(x0, y) - /(xo, y) | I 

sup \f(x,y) -f(x0,y)\ 
V£Y 

= ||S/(x) - Sf(xo)\\. 

Thus, S/ is continuous at Xo. 

A study of the proof of 4.4 shows that the critical fact needed to conclude 
that / is weakly uniformly continuous is that the metric space 2f(X) is 
realcompact. It is well known that a pseudocompact metric space is compact 
and hence realcompact. Hence, if X is pseudocompact and H/ is continuous, 
then Sf(X) is realcompact. These remarks together with 4.9 and the fact 
that vX = 0X if X is pseudocompact yield the following result immediately. 

4.10. THEOREM (Glicksberg). If X X Y is pseudocompact, then 

« I X F) = / 3 X X / 3 F . 

5. The classes <^? ,^ , and SP. In this section we consider three classes of 
spaces which are defined in terms of the relation v(X X Y) = vX X vY, 
and we show by example that these classes are distinct. In passing, we mention 
analogous classes defined by the relation f$(X X Y) = fiX X £F . Recall 
from [10] that 0(X X Y) = 0X X pY if and only if X X Y is pseudo-
compact or X or F is finite. 
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5.1. Definition. Let M denote the class of all spaces X such that for every 
space F, v(X X Y) = vX X vY. Let £?* denote the class of all spaces X such 
that for every space F J ( I X Y) = /Mf X j8F. 

An easy application of Glicksberg's theorem shows that the class £%* 
consists precisely of the finite spaces. From 4.7 we have that if X is locally 
compact realcompact of non-measurable cardinal, then X is a member of S%. 
We have not been able to completely characterize the class 8%\ but at least 
we have been able to prove the following. 

5.2. THEOREM. If X is a member of S%, then X is realcompact. 

Proof. Suppose that X is not realcompact. Then, there is a point p in the 
set vX\X. Let <yl/(p) denote the filter base of open (in vX) neighbourhoods 
of p. Let a be an ideal point and set F =JV(p) VJ {q} with topology defined 
by the rules: 

(i) members of ^V{p) are isolated points of F, 
(ii) for a set Urn jV(p), the set {q} \J { V 6 *>V(p): V C U] is a neighbour­

hood of the point q. 
For a set U'm <^Y{p), let/c/: vX —» [0, 1] be continuous and satisfy/c/(£) = 0 

and fu(vX\U) C {1). For (*, j ) i n l X F, let 

n ' y ) \fu(x), iîy= U. 

Then, / is continuous on X X F. Let # " denote the trace of <A\p) on X 
(i.e. #~ = ( [ / H I ; Ue^V(p)}). Then, the filter base ^ has property 0 
on X since X is C-embedded in uX and JV(p) has property 12 on vX. Let ^ 
be the neighbourhood filter of the point q in F. Then, & has property 12 on F. 
Let T7 be a set in #"* and G a set in 3?. Choose [/ in ^V(p) satisfying: 

(i) [ / n i c ^ , 
(ii) {q} VJ{Ve^(p): VCU} CG. 

Choose Fi, F2 in ^ ( £ ) satisfying Fi C dvXVt C V2 C U, cluXFi ^ F2. 
Pick #i in Fi r\ X such t h a t / ^ ( x i ) < 1/2 and pick x2 in (F^cly^Fi) r\ X, 
Then, we have that Xi and x2 are points of F and Vi is a point of G. Then, 
the points (xlf Vi) and (x2, Fi) both lie in the set F X G. But, 

|/(*2, Fi) - / ( * i f 7 i ) | = | / F l (* 2 ) - / F l ( * i ) | > |1 - 1/2| = 1/2. 

Thus, ^ X ^ does not have property 12 on X X F. Thus 

v(X X Y) ^vX XvY 

and X is not a member of ^ . 

A space similar to the space F constructed in the proof of 5.2 is used in [14] 
to show that if X is not compact, then for some space F, the projection TY 

is not 3-closed. 
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We suspect that if card X is non-measurable and X is a member of the 
class 3% then X is necessarily locally compact, but we have not yet been able 
to prove (or disprove) this conjecture. In the following example we see that 
even a countable space (hence Lindelôf and hence realcompact [9, § 8.2]) 
may fail to be a member of 3%. 

5.3. Example. Let N denote the discrete space of positive integers. Let 
T = N \J {p}, with p in &N\N, and 5 - PN\{p}. Now T is countable and 
S is pseudocompact (as is well known). Now l e t / = 1 on A = {(n, n): n Ç N}, 
f = 0 elsewhere on T X S. Since A is open and closed in T X 5, / is continuous 
on T X S. To see that / cannot extend continuously to (p, p) in vT X vS = 
T X PN, notice that (p, p) is in df~l(&) C\ df~l{\). Thus, 

v(T XS) ^vTX vS. 

It is easy to see that the class 3$ is closed under finite products. Note that 
the space N is a member of 3% and the space T of 5.3 is a continuous one-to-one 
image of N; thus, 3? is not closed under continuous mappings. 

5.4. Definition. Let <Jt denote the class of all spaces X such that 
v(X X Y) = vX X vY for every realcompact space Y. L e t ^ * denote the 
class of all spaces X such that $(X X F) = fiX X (3Y for every compact 
space Y. 

Glicksberg's theorem cha rac t e r i ze s^* as precisely the class of pseudo-
compact spaces. It is a trivial observation that 3$ C <^é, but the space T 
of 5.3 provides an example of a space in *JK which is not in 3%. With a restric­
tion on cardinalities, we have been able to characterize ^é. 

5.5. THEOREM. If card X is non-measurable^ then X is in *Jé if and only if 
X is realcompact. 

Proof, (i) If X is realcompact, then clearly X is in <^#. 
(ii) Suppose that X is not realcompact. Let Y be the space constructed 

in 5.2. Since 

card F g 2card vx g 2 c a r d ^ g 2
22Card* (see [9, § 8.16]), 

card F i s non-measurable. Thus, the discrete space JV{p) C F is realcompact. 
Then, F is the union of a realcompact space together with the compact space 
{q}. Hence, by [9, § 8.16], F is realcompact. But, as shown in 5.2, 

v(X X Y) * vX X vY. 

Thus, X is not in ^é. 

5.6. Definition. Let 3P denote the class of all spaces X such that 
v(X X vX) — vX X vX. Let 3P* denote the class of all spaces X such that 
P(X X fiX) = (3X X PX. 
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Glicksberg's theorem tells us that ^ * is precisely the class of pseudo-
compact spaces. Hence, ^ * = ^ * . Obviously, ^ # C &> It is also clear that 
SP contains all of the pseudocompact spaces. Thus, the space 5 of 5.3 is a 
member of & but is not in *Jt. One might be tempted to call the members 
of 0* realpseudocompact spaces. If D is discrete with measurable cardinal, 
then D is not in 0 by 4.6. We now discuss some spaces that are members of 0. 

Following [11], we say that a pair of spaces (X, F) has condition 2 if 

I = U 4 Y = U Yn, 
n€N n^N 

each Xn X Yn is pseudocompact, each Xn is completely separated from 
X\Xn+i, and each Yn is completely separated from Y\Yn+1. Hager [11] has 
shown that if (X, F) has condition 2, then v{X X Y) = vX X vY. If 
X = Un^Xn with each Xn pseudocompact and completely separated from 
X\Xn+i, it is easily seen that (X, vX) has condition 2. Thus, the following 
result holds. 

5.7. PROPOSITION. Suppose that X = \JneNXn with each Xn pseudocompact 
and completely separated from X\Xn+i. Then, X is a member of 0. 

A space X is said to be the sum of its subsets AY, A2, . . . , An, and is 
written 

X = Ax + A*+ . . . + An = £ A< 
i=l 

if X = {Ji^iAt, Ai C\ Aj = 0 for i ?± j , and each At is open in X. If 
X = Yii=iAi and F = S?= i^ i , it is easy to see that 

Equally easy is that 

/ n \ n 

4 H Ai) = S vAt. 
\ i=i / i=i 

Thus, if X = ÏLUiAi and F = L ^ i ^ , then v(X X Y) = vX X vY if and 
only if v(At X B j) = vA{ X vBj for all 1 S i S n and 1 ^ j ^ m. Hence, 
for the spaces S and T of 5.3 it is seen that the space S + T (see 5.8 below for 
the definition of this construction) is not a member of 0. We now give an 
example of a non-pseudocompact, non-realcompact space X which does not 
fall under the hypotheses of 5.7 such that X is in the class 0. 

5.8. Example. Let A be any pseudocompact, non-compact space (the space 
S of 5.3 for example). Then, A is not realcompact [9, 5H]. Let B be any 
locally compact, realcompact space of non-measurable cardinal which is not 
(7-compact (e.g. the discrete space of cardinality 2&>). Let X = A + B (we 
can construct this sum "externally" by taking A and B to be disjoint, letting 
X = A KJ B, and topologizing X by stipulating that a subset D of X is open 
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if and only if the set D P\ A is open in A and the set D C\ B is open in B). 
Then, X is not realcompact since A is a closed subset which is not realcompact 
[9, § 8.10]. Also, X is not pseudocompact since B is not pseudocompact and 
is C-embedded in X. It also follows easily that X does not satisfy the 
hypotheses of 5.7. However, 

v{X X vX) = v((A +B)X v(A + B)) 

= v((A X PA) + (AXB) + (BX PA) + (B X B)) 

= v(A X PA) + v(A X B) + v(B X PA) + v(B X B) 

= (pA X PA) + (PA XB) + (BX PA) + (B X B) 

= vX X vX. 

Thus, X is in the class 2P. 
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