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Let /(z) be an entire function (of several variables). We define the function

Mf{r)= max |/(z)|,
IWI=r

which is increasing. The order of/(z) is the constant (perhaps infinite)

- l o g l o g M / ( r )
logr

If p < + oo, we define a proximate order as a function p(r) such that

(1) p(f)-*p and p'(r)r log r -* 0 asr->oo.

We can also assume the additional condition

(2) p"{r)r2 log r -> 0 asr->oo.

If L(r) = r' ( r )- ' , then we have

L(kr)
(3) l i m - ^ - = l uniformly for 0<a^k^b< +oo.

r-oo Ux)
We define the type of /(z) with respect to p(r) by

and/(z) is said to be of (a) minimal, (b) normal, or (c) maximal type if (a) a = 0, (b) 0<<r< + oo,
or (c) <r = + oo, respectively. For every function/(z) of order p, there exists a proximate order
p(r) such that/(z) has normal type with respect to p(r) [4].

If p > 1, we assume that p(r) > 1 and (cf/rfr)(rp(r)~1) > 0 for all r. Since this holds
eventually, this assumption involves no loss of generality. Then the equation t = rp(r)~x has
a unique solution r for all t ^ 0. We define the rfwa/ proximate order p*(t) by p*(f) =
p(r)l(p(r)—l), where r is this unique solution. It is an easy calculation to check that p*(t)
satisfies (1) and (2) and that p**(r) = p(r).

For a real-valued continuous function q(z), we define the Banach space Bq to be the set
of entire functions such that

| / (z)exp(-4(z)) | -0 as | |z| |-»co,
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where the norm in Bq is the sup norm. If qn{z) is a decreasing (resp. increasing) sequence of
functions, we define the set F = (~) Bqn (resp. E = \J Bqi), which we equip with the projective
limit (resp. inductive limit) topology. We designate the dual space of continuous linear
functionals by F' (resp. E'). F is a Frechet space, and E' can be given the topology of a
Frechet space under the norm topologies

| | v | | n = sup

In particular, let p(z) be a pseudonorm (i.e., p(zt+z2) ^p(z1)+p(z2), p(tz) = tp{z) for
<^0)andlet/>n(z) =/>(z)+||z||//Jwithp;;(u) = sup Re <«, z> be the dual norm. We designate

by f jw (resp. E$r)) the space we get by taking J z ) = (pn(z))'(l Iz 11> (resp. qn(z) = (p'n(z))^'* ID).
It is clear from (3) that we can replace qtt(z) by q'n(z) = (pn(z))"(p"(z)) (resp. (p;(z))"(""'(l») and
still obtain the same topological vector spaces. For ve(ir^(r))' (resp. (£$r))'), we define
/»(«) by

(4) /v(u) = v(exp<u) 2»,

which is an entire function of u, called the Fourier-Borel transform of v.
In [7], A. Martineau showed that, if p > 1 is a constant and p{z) is a complex norm

(i.e., p(kz) = | A \p(z)), then the Fourier-Borel transform establishes an isomorphism between
the spaces (Fp

p)' and £?* (for a suitable constant T). He introduced the notion of a constant
coefficient differential operator of infinite order a, and, using the Fourier-Borel transform,
showed that, for every feF"p, the equation a(x) = / h a s a solution geFp

p. In [1], the author
extended this result to the case of complex pseudonorms and proximate orders (as well as to
the case p < 1).

We shall be primarily interested here in showing that the isomorphism proven by Martineau
is still valid for arbitrary pseudonorms (not necessarily complex), for p > 1, and for all proxi-
mate orders. It is then a simple matter to apply his reasoning to the case of differential
equations of infinite order in order to get a more precise estimate of the growth of solutions.

Before turning to the main theorems, we first collect some results which we shall need
later.

PROPOSITION 1. Let E, F be two Frechet spaces and /? a continuous linear map ofE into F.
The two following statements are equivalent:

(i) P is onto.
(ii) 'ft : F' -> £ ' (the transpose map) is one-to-one and its image 'P(F') is weakly closed in E'.

Proof. See [8].

PROPOSITION 2. Every element of the dual space of Fp^ can be represented by integration
with respect to a measure /i such that
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(5) jX • exp (pn(z))p("2''* is a bounded measure for some n.
Every element of the dual space of EpJ>r) can be represented by integration with respect to

a measure fi such that

(6) fi • exp (pi,(z)y(''z'') is a bounded measure for all n.

(The representations are not unique.)

Proof. The proof can be found in [7].

COROLLARY. If we equip (Epr))' with its Frechet space topology, then ((Epr))')' = Epr\

Proof. The dual space is clearly a family of functions containing Ep
pi

r\ and, by considering .
the Dirac measures associated with every point, it is clear that every function h(z) in the dual
satisfies the condition

sup | h(z) exp ( - qtt{z)) | ^ M < + oo
z

for n sufficiently large. Thus it remains to show that h(z) is holomorphic.
For a given complex line uX through the point z, we let y be a rectifiable closed compact

curve in uX and a represent integration around y. Then a ( / ) = 0 for every/e £p-(p); so a.{h) = 0
for every he((Efir))')'. Thus h is holomorphic in every complex line through z and hence
holomorphic in C .

LEMMA. Let p(r) be a proximate order, with p > 1. Ifr\{r) is a nonnegative function such
that lim f/(r)r~p(r) = 0, there exists a positive function <i;(r) with nonnegative first and second

r-»oo

derivatives such that <!;(r) ̂  n(r) and lim ^(r)r"p(r) = 0.
r-*<x>

Proof. Let {£„} be a decreasing sequence of positive numbers approaching zero and {/•„}
a sequence of numbers such that n(r) :§ £n+1 r

p(r) for r ^ rn. We assume, without loss of
generality, that both drp^r)ldr and d2rpWjdr2 are everywhere positive (by (1) and (2), this
holds eventually).

We construct a function ^j(r) to be piecewise linear. The construction will be carried
out by induction. For n = 1, we choose for ^ ( r ) a constant such that ^ ( r ) = max (r\(r), £t r

p(r)).

Having constructed ^ ( r ) for r ^rn with the property that ^ ( r ) ^ sn^1 rp(r) for rn_t ^,r £ rn,
we construct ^ ( r ) for rn^r :g rn+1. We continue ^ ( r ) linearly unless there exists an Rn, with
rn S Rn ^ ''n+i. s u c n that ^!(i?n) = £„_! .Rp(R"). If this occurs, we continue ^ ( r ) past /?„ by
taking 8 > 0 and taking the tangent to the curve £„_! rp(r) at Rn; at Rn+q5, for <7 an integer,
we extend this continuation as a continuous function by making a linear extension with slope
(d/dr){£n_! rp(r)} |Rn+,a. By choosing 5 sufficiently small, we shall have £t(r) ^ enrp(r) in the
interval rn^r ^rn+i. This establishes the induction. Furthermore, it is clear that t, t(r) ̂  >j(r),
and that, given n, for r sufficiently large, ^ ( r ) ^ £„ r ^ .

Let a(r) be a nonnegative C00 function with compact support depending only on | r |, such
that Joc(r)dr = 1. Then £(/•) = $£1(r')ct(r—r')dr' satisfies the requirements of the lemma.
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THEOREM 1. The Fourier-Borel transform given by (4) establishes an isomorphism
between the spaces

(i) (FJM)' and £#'>,

and between the spaces

(ii) (££<'>)' and F<$'\

where

T =

Proof. Let ve(.F£(r))'. Then, by Proposition 2, there exists an n such that

| v(/) | g C,sup|/(z)exp(-A(z))'<'»M>|,

z

for some constant Cv. Thus

|/V(M) | ^ Cv sup | exp <«, z> -(pn(z))'"'"-w> |
Z

^Cvexp(sup( sup {Re<u, z)}t-f{t)))
gO ( ) l

£ C, exp (sup jtfH)*-«
rao

Now

It follows from (1) that, tor large values of || u ||, this function takes on an absolute maximum.
| ||For arbitrary 5 > 0, it follows from (1) that, for

the maximum occurs at t^tu)~l = p'n(u)l(p + £(u)) for
M || sufficiently large (depending on 5),
(w) I < 8 and equals

1 \1/(P(»U)-1) / 1 \P((U)/(P((U)-1)

which is less than or equal to

where E-» 0 as 8 -»0 and 0 < a ̂  &(w) ̂  6 < oo. So the maximum for large | | « | | is less than
^+i(")p*( p" '+ l ( u ) ) by (3). Thus the mapping v-*fv of (F£(r))' is into E$r). Similarly, one
shows that the mapping v -v/v of (EpJr))' is into Ffp

(r).
To show that the mappings are onto, we use an adaptation of an argument of Hormander

[2, p. 100]. Let AT= {Z : Re<«, z> ^p(u), u<=CN}. We let x, a 2N-tuple, represent the real
coordinates of z. We define

(j>(v) = sup (x i Im vt +...+x2N Im D2N),
xeK
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which is plurisubharmonic in the variable v. Then 0(v) = (</>(!;))p(*('j)) is also plurisubharmonic
for (j>(v) sufficiently large, for, given any complex line (which we assume, without loss of
generality, to be the line A(vu 0 , . . . , 0)), we have

By adjusting p(r) on a bounded set of r, if necessary, we may assume that 0(v) is everywhere
plurisubharmonic.

Let F(u)eF*r\ and let ij(r) = sup (sup(logI F(u) I-p(u)p(p(u», 0)). For e > 0, we let

/>S(M) = sup(p(w), e II M ||). Then, since pe{u) is continuous and

it follows from Hartog's Theorem applied to plurisubharmonic functions (cf. [5, 6, 3, Corollary
to Theorem 5.4.1]) that, for the compact set | | « | | = 1,

1 1 *,*)+.

for r sufficiently large. This implies, by (3), that log|F(z) | ^ e ( z ) p ( p ' ( z ) ) + e | |z | | ' > ( l | z | l ) for
| | z | | sufficiently large, which in turn implies that lim rj(r)r~p(r) — 0. Thus, by the lemma,

r-*tx>

there exists a positive function <!;(/•) with nonnegative first and second derivatives such that
lim £(r)r~p(r) = 0 and £(/•) ^ f/(r). Let <j>*{v) = sup (xllmvi + ... + x2Nlmv2N) and

£(</>*(t>)) = i^*(r), which is plurisubharmonic.
Let £ be the JV-dimensional subspace, v = (iult —uu..., iuN, —uN) and w be the function

(iult -uu ..., iuN, -uN) ^ F(uu ..., uN). Then | w(v) | ^ Co exp(0(») + ^*(»)) on 2. Thus, if
0'(u) = 0(u) + ^*(i;)+log(H-||t;||2)N

> then J r | w(»)|2 fxp(-29'(v))do(v) < co, where rfa indi-
cates the Lebesgue measure.

By a modification of the proof of Theorem 4.4.3 of [2] (due to A. Martineau; cf. [5] or
[3, Theorem 5.3.3]), we have the following result: If \]/ is a plurisubharmonic function in Cm

a n d / i s holomorphic in C* (k <m) such that Jci,|/ |2exp(-t/Od<7 < oo, then there exists g,
holomorphic in Cm, such that # = / o n C* and fC m |# | 2exp(- i /O(l + ||z||2)~3(m-k)d<T < oo,
where $'(z) = sup '/'(z')-
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Applying this to the present case, we can find an entire function W in C2N such that
W = w on S and

"\W(v)\2™p(-29"(v))(\+\\v\\)-6NdG(v) < oo,

where 9"(v) = sup 9'(v). From this we conclude, by Schwarz's Lemma (cf. [5]), that
\\v-tf\\&2N

there exists a constant C'o such that

\W(v)\^C'0(l+\\v\\)3Nexp9"'(v),

where 0" '(v) = sup 0'(y')> and hence, following the same reasoning as in [2, Theorem

4.5.3], there exists a function W'(v) such that W'(v) = w(v) on E and

(7) \W'(v)\^C'(;(l+\\v\\y2N

By the Paley-Wiener Theorem, if

e x P ' <x,v+W> W'(v+iv')dv,(2n) J R

then n(x) is continuous and independent of v', and the Fourier-Laplace transform of n(x),
Jexp {-i(x, vx + ... +x2Nv2N)}Kx)dx = W(v); hence the Fourier-Borel transform of /i(x)
is F(u). In this case, it follows from (7) that

JI(X) ̂  Knexp(infpn(u)p(p"(u))-Re<M, z »

and, by applying the same reasoning as above, we conclude that

for all n, which implies that n(x) satisfies (6). Thus the map (£?p*
(r))' -> f J(p) is onto and, since

(where l/p* + 1/p = 1) and p**(r) = p(r), (£^p))' -»• Ffp'
(r) is onto. Similarly, one shows that

the mapping of (FJ(r))' into E$r) given by (4) is onto.
The map v -»/v is thus a continuous mapping of the Frechet space (E$r))' onto Ffp*

(r),
which implies, by Proposition 1, that the transpose map of (F?p(r))' into Epr) is one-to-one with
closed image. In fact, we know that the map of (F?p(r))' is onto Efir\ which implies in turn
that the map of (£^r))' is one-to-one onto F^(r), which establishes the desired isomorphisms.

COROLLARY. In the space Fp
p^

r\ the subspaces spanned by

(i) exp <M, zyfor ueKwith k
(ii) z" exp <w0, zyfor all multi-indices ofnonnegative integers a,

are dense (in particular, the exponentials and the polynomials are dense).
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Proof. For v e (F£(r))', if v(exp <«, z » = 0 for u e K, then /„ = 0, from which (i) follows.
The function v(z" exp<i/0, z » = ca, where ca is the coefficient of (u-u0)" in the Taylor's series
expansion of/v at u0. Thus, if ca = 0 for all a, then/v = 0, from which (ii) follows.

For veF£(r) such that/v has type zero (with respect to p *(r)), we define the convolution

Then, by Theorem 1, the map \i -* v * n is a map of (F£(r))' into itself. We define a differential
equation of infinite order to be

THEOREM 2. Ifve{Fp
{r))' is such that /„ Acw minimal type with respect to p*(r), then the

equation v(x) =f,forfeFp
p
ir), always has a solution in jF£(r).

Proof. The reader is referred to [7]; the proof that Martineau gives there for complex
norms easily carries over to the present case.
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