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Abstract

We extend some results known for FC-groups to the class FC∗ of generalized FC-groups introduced
in de Giovanni et al. [‘Groups with restricted conjugacy classes’, Serdica Math. J. 28(3) (2002),
241–254]. The main theorems pertain to the join of pronormal subgroups. The relevant role that the
Wielandt subgroup plays in an FC∗-group is pointed out.
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1. Introduction

Recall that an FC-group is a group with finite conjugacy classes. The theory of FC-
groups has been much studied, originally by Baer and Neumann, and it is clearly
described in [17]. An important class of generalized FC-groups, which we denote
by FC∗, was recently introduced in [2]. The class FCn is defined recursively as
follows: FC0 is the class of finite groups and a group G belongs to the class FCn+1 if
G/CG(〈x〉G) ∈ FCn for all x in G. Finally,

FC∗ =
⋃
n≥0

FCn.

Clearly FC1-groups are just the FC-groups. It is easy to check that if the nth term
of the upper central series of a group G has finite index in G then G is an FCn-group,
in particular every finite-by-nilpotent group is an FC∗-group. It is shown in [15] that
several theorems concerning the strong form of residual finiteness for FC-groups can
be extended to FC∗-groups.

Our object is to extend to the class of FC∗-groups the theory of pronormality
developed for FC-groups in [4] and in [5].

Let G be a group and let H be a subgroup of G. Following the notation introduced
in [4], we will say that an element x of G pronormalizes H if the subgroups H and H x

are conjugate in 〈H, H x
〉. Moreover, H is said to be a pronormal subgroup of G
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if each element of G pronormalizes H . Obvious examples of pronormal subgroups
are normal subgroups and maximal subgroups of arbitrary groups; moreover, Sylow
subgroups of finite groups and Hall subgroups of finite soluble groups are always
pronormal. The concept of ‘pronormal subgroup’ was introduced by Hall, and the
first results on pronormality appeared in a paper by Rose [16]. The study of the
property of pronormality has been the object of many investigations by several authors
(see, for instance, [1, 5–8, 10, 13, 18]). In particular, the problem of the join
of pronormal subgroups has been considered. Here we will show that the product
of two pronormal permuting subgroups of a locally soluble FC∗-group is likewise
pronormal (see Theorem 2.1), and that the join of any chain of pronormal subgroups
of a finite-by-nilpotent group is pronormal (see Theorem 3.7). In order to investigate
the pronormality of subgroup H of a group G, the notion of the pronormalizer of
H in G, that is, the set PG(H) of the elements of G pronormalizing H , has been
introduced (see [5]). Thus a subgroup H of a group G is pronormal in G if and only
if PG(H)= G. Also we recall that the intersection P(G) of the pronormalizers of all
subgroups of a group G is called the pronorm of G. We remark that the pronorm of the
alternating group A5 has order 40 so it is not a subgroup; moreover; in this example
the pronormalizer of any subgroup of order 2 is not a subgroup. In Section 2 we will
show that the pronorm of a locally soluble FC∗-group is a subgroup of G.

It is easy to check that a subgroup H of a group G is normal if and only if it is both
pronormal and subnormal. In particular, every group whose subgroups are pronormal
is a T -group (that is a group in which normality is a transitive relation). On the other
hand, using some basic properties of T -groups (see [12]), it is shown in [4] that a
group whose cyclic subgroups are pronormal is a T -group (that is, a group whose
subgroups are T -groups). It is well known that for a finite group G the property T is
equivalent to saying that G has all pronormal subgroups (see [11] and [3, Lemma 9]),
but this fails to be true for infinite periodic soluble groups (see [9]). More recently
the same characterization has been extended to FC-groups (see [4, Theorem 3.9]),
and furthermore to FC∗-groups (see [2, Theorem 4.6]). Clearly G is a T -group
precisely when ω(G)= G. Here ω(G) denotes the Wielandt subgroup of G, that is,
the intersection of all the normalizers of subnormal subgroups of G. In Section 3 we
will show that every FC∗-group either is an FC-group or has a Wielandt subgroup
much smaller than G (see Theorem 3.3). In the same section we highlight some
other relevant properties of the Wielandt subgroup of an FC∗-group (see Theorems 3.6
and 3.9). Among other results, some interesting properties pertaining to FC∗-groups
are obtained.

Most of our notation is standard and can, for instance, be found in [14].

2. Pronormality in FC∗-groups

Recall that two subgroups H and K of a group G are said to permute if HK = KH ,
and this is precisely the condition for HK to be a subgroup. In particular, H and K
permute if H K

= H .
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A result of Rose [16] shows that the product of two pronormal subgroups H and K
of G such that H K

= H is still pronormal in G. More generally, Legovini proved
in [10] that in a finite soluble group the product of two pronormal subgroups that
permute is also pronormal. Recently, de Giovanni and Vincenzi proved in [5] that in a
locally soluble FC-group the product of two pronormal subgroups that permute is also
pronormal. The proof of this property makes use of the fact that if G is an FC-group,
the factor G/Z(G) is periodic. Even if this property is no longer true for FCn-groups
(examples can be found in [15]), we will extend the above result as follows.

THEOREM 2.1. Let G be a locally soluble FC∗-group. Let X and Y be pronormal
subgroups of G that permute. Then the product XY is a pronormal subgroup of G.

PROOF. Assume G to be an FCn-group, where n is a positive integer. Put H = XY ,
and let g be an element of G. In order to prove that H and H g are conjugate in
〈H, H g

〉, it can obviously be assumed that G = H 〈g〉〈g〉. Since g pronormalizes X ,
there exists u ∈ [g, X ] such that X g

= Xu . The element u pronormalizes X , then
there exists v ∈ [u, X ] ≤ [[g, X ], X ] such that Xu

= Xv . Iterating this process, we
find an element a in γn+1(G) such that X g

= Xa , and similarly X g−1
= Xb with b in

γn+1(G). With the same argument for Y , we have that Y g
= Y c and Y g−1

= Y d , where
c and d are elements of γn+1(G). All the elements a, b, c and d are periodic and lie in
the FC-center of G by [2, Theorem 3.2 and Corollary 3.3], so that N = 〈a, b, c, d〉G

is finite by Dietzmann’s lemma. Remark that for each z ∈ Z, X gz
= Xa1 where a1 ∈ N ,

and Y gz
= Y b1 where b1 ∈ N , thus H 〈g〉 ≤ N H . This means that H has finite index

in H 〈g〉. If there exists a positive power of g lying in H 〈g〉, then |H 〈g〉〈g〉 : H 〈g〉|
is finite and H has finite index in G = H 〈g〉〈g〉. Arguing in the finite soluble factor
G/HG , we have that H/HG = (X HG/HG)(Y HG/HG) is pronormal in G/HG by the
quoted result of Legovini. Therefore we may assume that g has infinite order and
G = 〈g〉n H 〈g〉. As N is finite, there exist two distinct integers i and j such that
X gi
= X g j

and so gs lies in NG(X) for some s ∈ N. Similarly, there exists t ∈ N such
that gt lies in NG(Y ). Put m = st ; it follows that gm normalizes H . If x is an element
of G = 〈g〉n H 〈g〉, then x = gi gmj yh, where i = 0, . . . , m − 1, j ∈ Z, y ∈ N and
h ∈ H . It follows that x = gi y′gmj h, where y′ is a suitable element of the finite normal
subgroup N . It turns out that the finite set T = {gi y : i = 0, . . . , m − 1 and y ∈ N }
is a left transversal of 〈gm

〉H in G, and for each t ∈ N we may claim that 〈gmt
〉H

has finite index in G. Put Jt = (〈gmt
〉H)G and consider the finite factor G/Jt . By

hypothesis, X Jt/Jt and Y Jt/Jt are pronormal subgroups of G/Jt and so H Jt/Jt =

(X Jt/Jt )(Y Jt/Jt ) is pronormal in G/Jt so that H Jt is a pronormal subgroup of G,
again by Legovini’s result. It follows that (H Jt )

g
= (H Jt )

y , where y = j z with j ∈ Jt
and z ∈ 〈H, H g

〉. Since 〈H, H g
〉 is a subgroup of H N , then z ∈ H N ∩ 〈H, H g

〉 =

H(N ∩ 〈H, H g
〉). Put N ∩ 〈H, H g

〉 = {u1, . . . us} so that (H Jt )
g
= (H Jt )

ui for
some ui . For each r ≤ s, let�r be the subset of N consisting of all integers n such that
(H Jn)

g
= (H Jn)

ur . Clearly, there exists i ≤ s such that �i is infinite. The relation

H ⊆
⋂

n∈�i

H Jn ⊆
⋂

n∈�i

〈gmn
〉n H ⊆ H
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holds and hence all these terms coincide. Then

H g
=

(⋂
n∈�i

H Jn

)g

=

⋂
n∈�i

(H Jn)
g
=

⋂
n∈�i

(H Jn)
ui

=

(⋂
n∈�i

〈gmn
〉n H

)ui

= Hui ,

and hence H is a pronormal subgroup of G. 2

Following [4], we will also consider the cyclic pronorm of G, that is, the subset
PC(G) consisting of the elements of G that pronormalize every cyclic subgroup of G.
It is proved that the pronorm and the cyclic pronorm of a group G are subgroups
when G is a polycyclic group or a locally soluble FC-group (see [4, Corollary 4.7
and Theorem 4.9]). In the following we will show that also in the universe of
locally soluble FC∗-groups both the pronorm and the cyclic pronorm of a group G
are subgroups.

THEOREM 2.2. Let G be a locally soluble FC∗-group. Then the cyclic pronorm
PC(G) of G is a subgroup of G.

PROOF. Assume G to be an FCn-group, where n is a positive integer. Let X be a finite
subset of PC(G) and let a be an element of G. Since 〈X, a〉G/Zn(〈X, a〉G) is finite
(see [2, Lemma 3.7]), it follows that γn+1(〈X, a〉G) is finite. Therefore γn+1(〈X, a〉)
is a finite soluble group and so is polycyclic. On the other hand, the nilpotent factor
〈X, a〉/γn+1(〈X, a〉) is also polycyclic so that 〈X, a〉 is polycyclic and PC(〈X, a〉) is
a subgroup of 〈X, a〉 (see [4, Corollary 4.7]). Clearly X is contained in PC(〈X, a〉),
thus every element of 〈X〉 pronormalizes the subgroup 〈a〉. The arbitrary choice of the
element a in G shows that PC(G) is a subgroup of G. 2

LEMMA 2.3. Let G be a group, and let K be a subgroup of G. Let � be a chain of
normal subgroups of K such that K =

⋃
H∈� H. Let x be an element of G such that

x = ky, where k ∈ K and y ∈ G pronormalizes every element of �. If the subgroup
[K , x] is finite, then both x and y pronormalize K .

PROOF. Let H be an element of �; then H y
= H z where z ∈ [H, y]. Put [K , x] =

{y1, . . . , yt } and observe that [H, y] is a subgroup of K [K , x], so z = kH yi with
kH ∈ K and yi ∈ [K , x]. For each i ≤ t , let �i be the subset of � consisting of all
subgroups H ∈� such that H y

= H kH yi where kH is a suitable element of K , and so

�=�1 ∪ · · · ∪�t .

For each i ≤ t , put
Ki =

⋃
H∈�i

H

so that K y
i = K kH yi

i . If h, j are indices such that Kh is not contained in K j , there exists
an element H of �h which is not contained in K j . By hypothesis � is a chain, so that
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every element of � j is contained in H , and hence also in Kh . Thus K j is contained
in Kh , and the finite set {K1, . . . , Kt } is a chain. On the other hand,

K =
⋃

H∈�

H = 〈K1, . . . , Kt 〉,

so that K = Kn for some n ≤ t . Since every element of � is a normal subgroup of K ,
we have that

K x
= K y

=

⋃
H∈�n

H kH yn =

⋃
H∈�n

H yn = K yn ,

where yn is an element of [K , x] and so x pronormalizes K . On the other hand,
yn ∈ 〈K , K x

〉 = 〈K , K y
〉 and so also y pronormalizes K . 2

LEMMA 2.4. Let G be a locally soluble FCn-group. Then every subgroup K of G is
a pronormal subgroup of Kγn+1(KPC(G)).

PROOF. Let K be a subgroup of G. Let

{1} = K0 ≤ K1 ≤ · · · ≤ Kn ≤ Kn+1 ≤ · · · ≤ Kγ = K

be an ascending characteristic series with abelian factors of the locally soluble FCn-
group K (see [2, Theorem 3.9]). Assume that the lemma is false, so that some Kα is
not a pronormal subgroup of Kγn+1(KPC(G)), and α can be chosen to be smallest with
respect to this condition. Let x = ky, where k ∈ K and y ∈ PC(G), be an element of
γn+1(KPC(G))which does not pronormalize Kα . As G is an FCn-group, the subgroup
[K , x] is finite (see [2, Theorem 3.2 and Corollary 3.3]). If α = 1, then Kα is abelian
and so there exists an ascending normal series of Kα , say

{1} = H0 ≤ H1 ≤ · · · ≤ Hµ = Kα,

whose factors are cyclic. Since Kα is a normal subgroup of K , if x does not
pronormalize Kα , then y does not even pronormalize Kα . Let δ be the first ordinal
such that y does not pronormalize Kδ . It is obvious that δ > 1. If δ were a limit ordinal,
then Hδ =

⋃
β<δ Hβ and Hβ is pronormalized by y for each β < δ. As the subgroup

[Hδ, x] is finite, it follows by Lemma 2.3 that y pronormalizes Hδ , a contradiction.
Hence δ cannot be a limit ordinal and y pronormalizes Hδ−1. Since the factor Hδ/Hδ−1
is cyclic, there exists an element hδ of Hδ such that Hδ = Hδ−1〈hδ〉. We can observe
that Hδ−1 and 〈hδ〉 are subgroups of G such that H 〈hδ〉δ−1 = Hδ−1; moreover, PC(G) is a
normal subgroup of G such that 〈hδ〉 is pronormal in 〈hδ〉PC(G) and the element y of
PC(G) pronormalizes Hδ−1, so that y pronormalizes Hδ (see [4, Lemma 2.2]). This
contradiction shows that α > 1. If α is not a limit ordinal, we can assume that x
pronormalizes Kα−1. Since the factor Kα/Kα−1 is abelian, there exists a chain of
ascending normal subgroups of Kα whose factors are cyclic, that is,

H0 = Kα−1 ≤ H1 ≤ · · · ≤ Hγ = Kα.

Let λ be the smallest ordinal such that y does not pronormalize Hλ. By assumption,
λ > 0. Hereafter, we can argue as above to get a contradiction both in the case that λ
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is a limit and not. Finally, assume that α is a limit; then Kα =
⋃
δ<α Kδ and Kδ is

pronormalized by x for each δ < α. Because of Kδ is a normal subgroup of K for
every δ < α, it follows that Kδ is pronormalized by y for each δ < α. The subgroup
[Kα, x] is finite, and a new application of Lemma 2.3 yields that x pronormalizes Kα .
This contradiction proves the lemma. 2

THEOREM 2.5. Let G be a locally soluble FC∗-group. Then the pronorm P(G) of G
is a subgroup of G.

PROOF. Assume G to be an FCn-group, where n is a positive integer. Let K be
a subgroup of G. By Lemma 2.4, Kγn+1(KPC(G)) is contained in PKPC(G)(K ).
Moreover, Kγn+1(KPC(G)) is a subnormal subgroup of KPC(G); it follows that
PKPC(G)(K ) is a subgroup of KPC(G) (see [5, Theorem 2.2]). We can observe that
PKPC(G)(K )= PG(K ) ∩ KPC(G).

On the other hand,

P(G)=
⋂

K≤G

PG(K )=

( ⋂
K≤G

PG(K )

)
∩ PC(G)=

⋂
K≤G

(PG(K ) ∩ PC(G))

and

PG(K ) ∩ PC(G)= PG(K ) ∩ KPC(G) ∩ PC(G)= PKPC(G)(K ) ∩ PC(G).

It follows that P(G) is a subgroup of G because it is an intersection of subgroups. 2

3. The Wielandt subgroup of an FC∗-group

It has already been noted (see [2, Theorem 4.6]) that any FC∗-group with the
property T is an FC-group. Here we will show that if G is an FC∗-group that is
not an FC-group, then the index |G : ω(G)| is infinite.

The first results of this section are two basic properties of FCn-groups pertaining to
the terms of the successive normal closures series.

Recall that, if H is an arbitrary subset of G, the series of successive normal closures
of H in G is the descending series {H G,α

} between H and G defined inductively by

H G,0
= G, H G,α+1

= H H G,α
and H G,λ

=

⋂
β<λ

H G,β

where α is an ordinal and λ a limit ordinal. It is well known that this is the fastest
descending series whose terms all contain H , and it is easy to show by induction for
every positive integer n that H G,n

= H [G,n H ]. For the convenience of the reader we
remark that the class of FCn-groups satisfies Max locally and also that every periodic
and finitely generated FCn-group is finite (see [2, Theorem 3.6]).

LEMMA 3.1. Let G be an FCn-group. Then 〈x〉G,n is finitely generated for every
x ∈ G.

PROOF. Let x be an element of G. Since the factor group 〈x〉G/Zn−1(〈x〉G) is finitely
generated (see [2, Lemma 3.7]), then 〈x〉G ≤ Y Zn−1(〈x〉G), where Y is a finitely
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generated subgroup of G containing x . We will show that 〈x〉G,m ≤ Y Zn−m(〈x〉G)
for each m ∈ {1, . . . , n}.

By contradiction let r be the minimum positive integer less then n such that 〈x〉G,r

is not contained in Zn−r (〈x〉G). Clearly r > 1, so that

〈x〉G,r ≤ 〈x〉〈x〉
G,r−1
≤ 〈x〉Y Zn−(r−1)(〈x〉G ) ≤ (〈x〉Y )Zn−(r−1)(〈x〉G )

≤ 〈x〉Y [〈x〉Y , Zn−(r−1)(〈x〉
G)] ≤ 〈x〉Y [〈x〉G, Zn−(r−1)(〈x〉

G)]

≤ 〈x〉Y Zn−r (〈x〉
G)≤ Y Zn−r (〈x〉

G).

From this contradiction, it follows that 〈x〉G,n is a subgroup of Y . As Y satisfies Max,
it follows that 〈x〉G,n is finitely generated. 2

A result of Polovickiı̆ [14] states that a group G is an FC-group if and only if 〈x〉G

is finite-by-cyclic for every x ∈ G. For FCn-groups we have the following result.

COROLLARY 3.2. Let G be an FCn-group. Then 〈x〉G,n is finite-by-cyclic and
Aut〈x〉G,n is finite for every x ∈ G.

PROOF. Since 〈x〉G,n = 〈x〉[G,n 〈x〉], we have to show that [G,n 〈x〉] is finite. By
definition, [G,n 〈x〉] is contained in the periodic subgroup γn+1(G) of G (see [2,
Corollary 3.3]). On the other hand, 〈x〉G,n is finitely generated by Lemma 3.1, so
that it satisfies Max. It follows that the subgroup [G,n 〈x〉] is periodic and finitely
generated, so that it is finite. In addition, it is easy to show that if H is a finite-by-
cyclic group, then Aut H is finite. 2

THEOREM 3.3. Let G be an FC∗-group in which the Wielandt subgroup ω(G) has
finite index. Then G is an FC-group.

PROOF. Let G be an FCn-group, where n is a positive integer. Let x be an element
of G. Since 〈x〉G,n is a subnormal subgroup of G, it follows that

ω(G)〈x〉G,n ≤ NG(〈x〉
G,n)

and so |G : NG(〈x〉G,n)|<∞. By Corollary 3.2, NG(〈x〉G,n)/CG(〈x〉G,n) is finite and
so |G : CG(〈x〉G,n)| is also finite. This proves that x is an FC-element. 2

We remark that there are easy examples of infinite FC-groups with trivial center in
which normality is a transitive relation. Thus an FC∗-group whose Wielandt subgroup
has finite index may be not center-by-finite. A well-known theorem of Neumann states
that a group G is center-by-finite if and only if every subgroup has finitely many
conjugates. It follows that if G is nilpotent, then Z(G) has finite index in G if and only
if ω(G) has finite index in G. This characterization can easily be extended to finite-
by-nilpotent groups. We will show this equivalence as an application of Theorem 3.3.

COROLLARY 3.4. Let G be a finite-by-nilpotent group. If |G : ω(G)| is finite, then
G/Z(G) is finite.
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[8] Pronormality in generalized FC-groups 227

PROOF. By hypothesis, G/Zn(G) is finite for some positive integer n, in particular G
is an FC∗-group, and hence it is an FC-group by Theorem 3.3. On the other hand,
Zn(G) ∩ ω(G) is a Dedekind group, so that G is abelian-by-finite and hence G/Z(G)
is finite. 2

Recall that a subgroup H of a group G is said to be ascendant if there is an
ascending series between H and G. Following the notation introduced in [5], we
will denote by τ(G) the intersection of all the normalizers of ascendant subgroups
of G. Clearly every subnormal subgroup is also ascendant, so that for any group G the
subgroup τ(G) is contained in ω(G). Moreover, if G is a polycyclic-by-finite group,
ascendant and subnormal subgroups of G coincide, and hence τ(G)= ω(G). It was
proved by de Giovanni and Vincenzi in [5] that τ(G) and ω(G) also coincide in an
FC-group. This property also holds for FC∗-groups.

LEMMA 3.5. Let G be an FC∗-group. Then ω(G)= τ(G).

PROOF. Let G be an FCn-group, where n is a positive integer. Let x be an element
of ω(G), and let H be any ascendant subgroup of G. For every element h ∈ H ,
put N = 〈h, x〉G . By [2, Lemma 3.7] the factor group N/Zn(G) is finite, thus
(H ∩ N )Zn(G) is subnormal in N and H ∩ N is subnormal in G. It follows that x
normalizes H ∩ N , and hence hx belongs to H . The arbitrary choice of h in H yields
x ∈ NG(H). The lemma is proved. 2

In order to study the properties of a special subclass of FC∗-groups, the class of
finite-by-nilpotent groups, we introduce for any group G two descending normal series
related to the subgroups ω(G) and τ(G).

Let G be a group. The lower Wielandt series of G is the descending normal series
whose terms ωα(G) are defined inductively by positions

ω0(G)= G, ωα+1 =
⋂

K∈�α(G)

ω(K ),

where �α(G) is the set of all subgroups of G containing ωα(G), and

ωλ(G)=
⋂
β<λ

ωβ(K )

if λ is a limit ordinal. The last term of the lower Wielandt series of G will be denoted
by ω̄(G). The lower τ -series of G is the descending normal series obtained by
replacing in the above definition the Wielandt subgroup ω(X) by the subgroup τ(X)
for each group X . The last term of the lower τ -series of G will be denoted by τ̄ (G).
Clearly ω1(G)= ω(G) and τ1(G)= τ(G). The last term of the lower τ -series of G
is a characteristic subgroup of G. It has been proved (see [4, Theorem 4.6]) that for
hyperabelian periodic groups, PC(G)= τ(G). Application of Lemma 3.5 yields that
for FC∗-groups τ̄ (G)= ω̄(G).

THEOREM 3.6. Let G be a periodic FC∗-group. If G contains a locally nilpotent
normal subgroup N such that the factor G/N is locally nilpotent, then τ(G)= τ̄ (G)=
ω(G).
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PROOF. Let K be a subgroup of G. In order to prove that the theorem is true, we show
that K ∩ τ(G) is contained in τ(K ).

Put L = K ∩ τ(G), and let X be any ascendant subgroup of K . Since N is a locally
nilpotent FC∗-group, it is hypercentral (see [2, Theorem 3.9]), so that Y = X ∩ N is an
ascendant subgroup of G and L is contained in the normalizer of Y . The factor group
X/Y is isomorphic with a subgroup of G/N , so that it is hypercentral and has a unique
Sylow p-subgroup X p/Y , for every prime p. In particular, X p is ascendant in K . In
order to prove that L normalizes X , it is enough to show that L is contained in NG(X p)

for all p, so we may assume that X/Y is a p-group for some prime p. Let N =U × V ,
where U is a p-group and V has no elements of order p, and write Ḡ = G/V . Since N̄
is a p-subgroup of Ḡ such that Ḡ/N̄ is locally nilpotent, it follows that Ḡ has a unique
Sylow p-subgroup P̄ . Moreover, X̄ is a p-subgroup of Ḡ, so that X̄ ≤ P̄ and so X̄
is ascendant in Ḡ. It follows that X̄ is normalized by L̄ , and hence L ≤ NG(X V ).
Therefore LY/Y lies in the normalizer of (X V ∩ K )/Y = X (V ∩ K )/Y . On the other
hand, the ascendant subgroup X/Y is a Sylow p-subgroup of X (V ∩ K )/Y , so that
X/Y is characteristic in X (V ∩ K )/Y and L is contained in NG(X). This proves that
K ∩ τ(G) is contained in τ(K ), for all subgroups K of G. Now, let K be any subgroup
of G containing τ(G); then τ(G) is contained in τ(K ), so that τ2(G)= τ(G), and
hence τ̄ (G)= τ(G). 2

The last part of this section is devoted to the study of the behavior of the Wielandt
subgroup of a finite-by-nilpotent group. We shall prove that for this special subclass
of FC∗-groups the join of a chain of pronormal subgroups is likewise pronormal;
moreover, if G is also metanilpotent, then the pronorm and the Wielandt subgroup
of G coincide.

THEOREM 3.7. Let G be a finite-by-nilpotent group, and let � be a chain of
pronormal subgroups of G. Then

⋃
H∈� H is a pronormal subgroup of G.

PROOF. Since G is a finite-by-nilpotent group, there exists a finite normal subgroup N
of G such that the factor G/N is nilpotent of class n (n positive integer). In particular,
γn+1(G)= {z1, . . . , zt } is finite. Let x be an element of G and let H be an element
of �. Since x pronormalizes H , there exists y ∈ [x, H ] such that H x

= H y . The
element y also pronormalizes H , so there exists z ∈ [y, H ] ≤ [[x, H ], H ] such that
H x
= H z . Iterating this process, it follows that H x

= H zi where zi is a suitable
element of γn+1(G) ∩ 〈H, H x

〉. For each i = 1, . . . , t , let �i be the subset of �
consisting of all subgroups H ∈� such that H x

= H zi and so �=�1 ∪ · · · ∪�t .
Put K =

⋃
H∈� H and for each i = 1, . . . , t put Ki =

⋃
H∈�i

H , so that K x
i = K zi

i .
If i, j are indices such that Ki is not contained in K j , there exists an element H of �i
which is not contained in K j , so that every element of� j is contained in H , and hence
also in Ki . Thus K j is contained in Ki , and the finite set {K1, . . . , Kt } is a chain. On
the other hand, K =

⋃
H∈� H = 〈K1, . . . , Kt 〉, so that K = Ki for some i ≤ t , and

K x
= K zi . 2

LEMMA 3.8. Let G be a finite-by-nilpotent group, and let K be a locally soluble
subgroup of G. If N is a normal subgroup of G such that X is pronormal in X N for
every cyclic subgroup X of K , then K is a pronormal subgroup of K N.
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PROOF. Let G be an FCn-group, where n is a positive integer. Let

{1} = K0 ≤ K1 ≤ · · · ≤ Kω+(n+1) = K

be an ascending characteristic series with abelian factors of K of length at most
ω + (n − 1) (see [2, Theorem 3.9]). Assume that the lemma is false, so that it follows
that Kδ is not pronormal in KδN for some ordinal δ, and δ can be chosen to be the
smallest with respect to this condition. Let x be an element of N which does not
pronormalize Kδ . If δ = 1, then Kδ is abelian. The ordered set L consisting of all
subgroups of Kδ pronormalized by x is inductive by Theorem 3.7, thus by Zorn’s
lemma L contains a maximal element M . If Kδ 6= M , we may consider y ∈ Kδ\M ,
and the subgroup 〈y〉 is pronormal in 〈y〉N by hypothesis, so that x also pronormalizes
〈y〉M by [4, Lemma 2.2]. This contradiction shows that δ > 1. If δ were a limit
ordinal, then Kδ =

⋃
β<δ Kβ and Kβ is pronormalized by x for each β < δ, and a new

application of Theorem 3.7 yields that x pronormalizes Kδ . Hence δ cannot be a limit
ordinal and x pronormalizes Kδ−1. We can again use Theorem 3.7 to show that the
ordered set L, consisting of all subgroups of Kδ containing Kδ−1 and pronormalized
by x , is inductive. Let M be a maximal element of L. Clearly M is a normal subgroup
of Kδ , and for every element y of Kδ we have that 〈y〉M is pronormalized by x from
[4, Lemma 2.2]. Therefore M = Kδ , a contradiction. 2

It has already been remarked in [2] that the Wielandt subgroup and the pronorm
coincide for polycyclic groups with nilpotent commutator subgroup and for periodic
groups with nilpotent and finite commutator subgroup. We can extend these results as
follows.

THEOREM 3.9. Let G be a soluble finite-by-nilpotent group. Then P(G)= PC(G).
Moreover, if G is periodic and metanilpotent, then P(G)= ω(G).

PROOF. Let G be an FCn-group where n is a positive integer. By Theorem 2.2, the
cyclic pronorm PC(G) is a normal subgroup of G. Let K be any subgroup of G.
Then X is pronormal in XPC(G) for every cyclic subgroup X of K , and K is pronormal
in K PC(G) by Lemma 3.8. Therefore P(G)= PC(G). Suppose now that G is periodic
so that PC(G)= τ̄ (G) (see [4, Theorem 4.6]), and moreover if G is metanilpotent then
τ̄ (G)= ω(G) by Theorem 3.6. The proof is complete. 2

Acknowledgement

We wish to thank Professor Francesco de Giovanni for his comments on the final
version of the paper.

References

[1] A. Ballester-Bolinches, M. C. Pedraza-Aguilera and M. D. Pérez-Ramos, ‘On 5-normally
embedded subgroups of finite soluble groups’, Rend. Semin. Mat. Univ. Padova 96 (1996),
115–120.

https://doi.org/10.1017/S0004972710001668 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710001668


230 E. Romano and G. Vincenzi [11]

[2] F. de Giovanni, A. Russo and G. Vincenzi, ‘Groups with restricted conjugacy classes’, Serdica
Math. J. 28(3) (2002), 241–254.

[3] F. de Giovanni and G. Vincenzi, ‘Groups satisfying the minimal condition on non-pronormal
subgroups’, Boll. Unione Mat. Ital. (7) 9A (1995), 185–194.

[4] F. de Giovanni and G. Vincenzi, ‘Pronormality in infinite groups’, Proc. Roy. Irish Acad. 100A
(2000), 189–203.

[5] F. de Giovanni and G. Vincenzi, ‘Some topics in the theory of pronormal subgroups of groups’,
Quad. Mat. 8 (2001), 175–202.

[6] W. Gaschütz, ‘Gruppen, in denen das Normalteilersein transitiv ist’, J. reine angew. Math. 198
(1957), 87–92.

[7] U. C. Herzfeld, ‘On generalized covering subgroups and a characterisation of pronormal’, Arch.
Math. (Basel) 41 (1983), 404–409.

[8] L. A. Kurdachenko, J. Otal and I. Y. Subbotin, ‘On properties of abnormal and pronormal
subgroups in some infinite groups’, Groups St. Andrews 2005 2 (2007), 597–604.

[9] N. F. Kuzennyi and I. Y. Subbotin, ‘Groups with pronormal primary subgroups’, Ukrainian
Math. J. 41 (1989), 286–289.

[10] P. Legovini, ‘Catene pronormali nei gruppi finiti supersolubili’, Rend. Sem. Mat. Univ. Padova 66
(1981), 181–191.

[11] T. A. Peng, ‘Finite groups with pro-normal subgroups’, Proc. Amer. Math. Soc. 20 (1969),
232–234.

[12] D. J. S. Robinson, ‘Group in which normality is a transitive relation’, Proc. Cambridge Philos.
Soc. 60 (1964), 21–38.

[13] D. J. S. Robinson, ‘A note on finite groups in which normality is transitive’, Proc. Amer. Math.
Soc. 19 (1968), 933–937.

[14] D. J. S. Robinson, Finiteness Condition and Generalized Soluble Groups (Springer, Berlin, 1972).
[15] D. J. S. Robinson, A. Russo and G. Vincenzi, ‘On the theory of generalized FC-groups’, J. Algebra

(2009), doi:10.1016/j.jalgebra.2009.04.002.
[16] J. S. Rose, ‘Finite soluble groups with pronormal system normalizers’, Proc. London Math. Soc.

(3) 17 (1967), 447–469.
[17] M. J. Tomkinson, FC-groups (Pitman, Boston, 1984).
[18] G. J. Wood, ‘On pronormal subgroups of finite soluble groups’, Arch. Math. 25 (1974), 578–588.

E. ROMANO, Dipartimento di Matematica e Informatica,
Università di Salerno, Salerno, Italy
e-mail: eromano@unisa.it

G. VINCENZI, Dipartimento di Matematica e Informatica,
Università di Salerno, Salerno, Italy
e-mail: gvincenzi@unisa.it

https://doi.org/10.1017/S0004972710001668 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710001668

