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Abstract
Insurance and annuity products covering several lives require the modelling of the joint distribution
of future lifetimes. In the interest of simplifying calculations, it is common in practice to assume
that the future lifetimes among a group of people are independent. However, extensive research
over the past decades suggests otherwise. In this paper, a copula approach is used to model the
dependence between lifetimes within a married couple using data from a large Canadian insurance
company. As a novelty, the age difference and the gender of the elder partner are introduced as an
argument of the dependence parameter. Maximum likelihood techniques are thus implemented for
the parameter estimation. Not only do the results make clear that the correlation decreases with age
difference, but also the dependence between the lifetimes is higher when husband is older than
wife. A goodness-of-fit procedure is applied in order to assess the validity of the model. Finally,
considering several annuity products available on the life insurance market, the paper concludes with
practical illustrations.
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1. Introduction

Insurance and annuity products covering several lives require the modelling of the joint distribution of
future lifetimes. Commonly in actuarial practice, the future lifetimes among a group of people are
assumed to be independent. This simplifying assumption is not supported by real insurance data as
demonstrated by numerous investigations. Joint life annuities issued to married couples offer a very
good illustration of this fact. It is well known that husband and wife tend to be exposed to similar risks
as they are likely to have the same living habits. For example, Parkes et al. (1970) and Ward (1976)
have brought to light the increased mortality of widowers, often called the broken-heart syndrome.
Many contributions have shown that there could be a significant difference between risk-related
quantities, such as risk premiums, evaluated according to dependence or independence assumptions.
Denuit & Cornet (1999) have measured the effect of lifetime dependencies on the present value of a
widow pension benefit. Based on the data collected in cemeteries, not only do their estimation results
confirm that the mortality risk depends on the marital status, but also show that the amounts of
premium are reduced approximately by 10% compared to model which assumes independence.
According to data from a large Canadian insurance company, Frees et al. (1996) have demonstrated
that there is a strong positive dependence between joint lives. Their estimation results indicate that
annuity values are reduced by ~5% compared to the model with independence.

Introduced by Sklar (1959), copulas have been widely used to model the dependence structure of
random vectors. In the particular case of bivariate lifetimes, frailty models can be used to describe
the common risk factors between husband and wife. Oakes (1989) has shown that the bivariate
distributions generated by frailty models are a subclass of Archimedean copulas. This makes this
particular copula family very attractive for modelling bivariate lifetimes. We refer to Nelsen (2006)
for a general introduction to copulas.

The Archimedean copula family has been proved valuable in numerous life insurance applications,
see, e.g., Frees et al. (1996), Brown & Poterba (1999), Carriere (2000). In Luciano et al. (2008), the
marginal distributions and the copula are fitted separately and, the results show that the dependence
increases with age.

It is known that the level of association between variables is characterised by the value of the
dependence parameter. In this paper, a special attention is paid to this dependence parameter. Youn
& Shemyakin (1999) have introduced the age difference between spouses as an argument of the
dependence parameter of the copula. In addition, the sign of the age difference is of great interest in
our model. More precisely, we presume that the gender of the older member of the couple has an
influence on the level of dependence between lifetimes. In order to confirm our hypothesis, four
families of Archimedean copulas are discussed namely, Gumbel, Frank, Clayton and Joe copulas,
all these under a Gompertz distribution assumption for marginals. The parameter estimations are
based on the maximum likelihood approach using data from a large Canadian insurance company,
the same set of data used by Frees et al. (1996). Following Joe & Xu (1996) and Oakes (1989),
a two-step technique, where marginals and copula are estimated separately, is applied. The results
make clear that the dependence is higher when husband is older than wife.

Once the marginal and copula parameters are estimated, one needs to assess the goodness of fit of the
model. For example, the likelihood ratio test is used in Carriere (2000) whereas the model of Youn
& Shemyakin (1999) is based on the Akaike information criterion. In this paper, following Gribkova
& Lopez (2015) and Lawless (2011), we implement a whole goodness-of-fit procedure to validate the
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model. Based on the Cramèr–von Mises statistics, the Gumbel copula, whose dependence parameter
is a function of the age difference and its sign gives the best fit.

The rest of the paper is organised as follows. Section 2 describes the data set and provides some
key facts that motivate our study. Section 3 describes the maximum likelihood procedure used to
estimate the marginal distributions. The dependence models are examined in section 4. First,
we describe the copula models whose parameter are estimated. Second, a bootstrap algorithm is
proposed for assessing the goodness of fit of the model. Considering several annuity products
available on the life insurance market, numerical applications with real data, including best estimate
(BE) of liabilities, risk capital and stop-loss premiums are presented in section 5. Section 6 concludes
the paper.

2. Motivation

As already shown in Maeder (1996), being in a married couple can significantly influence
the mortality. Moreover, the remaining lifetimes of male and female in the couple are dependent,
see, e.g., Carriere (2000), Frees et al. (1996). In this contribution, we aim at modelling the
dependence between the lifetimes of a man and a woman within a married couple. Common
dependence measures, which will be used in our study, are: the Pearson’s correlation coefficient r,
the Kendall’s τ and the Spearman’s ρ. In order to develop these aspects, data1 from a large Canadian
life insurance company are used. The data set contains information from policies that were in
force during the observation period, i.e., from 29 December 1988 to 31 December 1993. Thus,
we have 14,947 contracts among which 14,889 couples (one male and one female) and the
remaining 58 are contracts where annuitants are both male (22 pairs) or both female (36 pairs).
The same data set has been analysed in Frees et al. (1996), Carriere (2000), Youn & Shemyakin
(1999), Gribkova & Lopez (2015) among others, also in the framework of modelling bivariate
lifetime. Since we are interested in the dependence within the couple, we focus our attention on the
male–female contracts.

We refer the readers to Frees et al. (1996) for the data-processing procedure. The data set is left
truncated as the annuitant information is recorded only from the date they enter the study; this
means that insured who have died before the beginning of the observation period were not taken into
account in the study. The data set is also right censored in the sense that most of the insured were
alive at the end of the study. Considering our sample as described above, some couples having
several contracts could appear many times. By considering each couple only once, our data set
consists of 12,856 different couples for which, we can draw the following information:

∙ the age at the beginning of the observation xm and xf for male and female, respectively;

∙ the lifetimes under the observation period tm and tf for male and female, respectively; and

∙ the binary right-censoring indicator δm and δf for male and female, respectively;

∙ the couples benefit in Canadian Dollar (CAD) amount within a last survivor contract.

The entry age is the age at which, the annuitant enters the study. The lifetime at entry age corre-
sponds to the lapse of time during which the individual was alive over the period of study. Therefore,
for a male (resp. female) aged xm (resp. xf) at entry and whose data are not censored, i.e., δm= 0

1 We wish to thank the Society of Actuaries, through the courtesy of Edward (Jed) Frees and Emiliano Valdez,
for allowing the use of the data in this paper.
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(resp. δf= 0), xm + tm (resp. xf + tf) is the age at death. When the data are right censored, i.e., δm=1
(resp. δf= 1), the number xm + tm (resp. xf + tf) is the age at the end of the period of study
(31 December 1993). The lifetime is usually equal to 5.055 years corresponding to the duration of
the study period; but it is sometimes less as some people may entry later or die before the end of
study. Benefit is paid each year until the death of the last survivor. Its value will be used as an input
for the applications of the model to insurance products in section 5.2. Some summary statistics of the
age distribution of our data set are displayed in Table 1.

It can be seen that the average entry age is 66.39 for the entire population, 67.87 for males and
64.91 for female; 90% of annuitants are older than 57.90 at entry and males are older than
females by 3 years on average. Among the 11,457 couples considered there are 193 couples where
both annuitants are died. Based on these 193 couples, the empirical dependence measures are
displayed in the last row of Table 2. The values show that the ages at death of spouses are positively
correlated.

From the existing literature, see, e.g., Denuit & Cornet (1999), Youn & Shemyakin (1999), Denuit
et al. (2001), Ji et al. (2011), Hougaard (2000), the dependence within a couple is often influenced
by three factors:

∙ the common lifestyle that husband and wife follow, e.g., their eating habits, this is referred to as
the long-term dependence;

∙ the short-term dependence or the broken-heart factor where the death of one would precipitate the
death of the partner, often due to the vacuum caused by the passing away of the companion; and

∙ the common disaster that affects simultaneously the husband and his wife, as they are likely to be
in the same area when a catastrophic event occurs, this dependence factor is considered as the
instantaneous dependence.

Table 1. Summary of the univariate distribution statistics.

Males age Females age Whole population

Statistics Entry Death Entry Death Entry Death

Number 11,457 1,269 11,457 454 22,914 1,723
Mean 67.87 74.40 64.91 73.81 66.39 74.11
SD 6.34 7.19 7.16 7.81 6.99 7.37
Median 67.60 74.10 65.10 73.15 66.50 73.83
10th percentile 60.20 64.00 55.70 64.20 57.90 65.71
90th percentile 75.60 83.50 73.50 84.10 74.51 83.48

Table 2. Empirical dependence measures with respect to the gender of the elder partner.

Dependence measures

Samples r ρ τ

xm≥xf 133 0.90 0.89 0.74
xm<xf 60 0.89 0.87 0.71
Total 193 0.82 0.80 0.62
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Based on the common disaster and the broken-heart, Youn & Shemyakin (1999) have introduced the
age difference between spouses. Their results show that a model accounting for this aspect captures
some additional association between lifetime of the spouses that would not be reflected in a model
without age difference. It is also observed that, the higher the age difference is, the lower is the
dependence. Referring to the same data set, Table 3 confirms their results, with |d| the absolute value
of d and d= xm − xf.

Our study follows the same lines of idea as these authors. In addition to the age difference, we believe
that the gender of the elder partner may have an impact on their lifetimes dependencies. Indeed, the
fact that the husband is older than the wife may influence their relationship, and indirectly, the
dependence factors cited above. Despite the smallness of the sizes of the uncensored data does not
allow us to conclude on the dependence structure of the 11,457 couples, it highlights well our
hypothesis which will be verified with the whole data set. In this regard, the results displayed in
Table 2 clearly show that the spouse lifetime dependencies are higher when d is positive, i.e., when
husband is older than wife. The variable gender of the elder member is measured through the sign of
the age difference d. Table 4 displays the empirical Kendall’s τ with respect to the age difference and
to the gender of the elder partner. One can notice that the coefficients can vary for more than 30%
depending on who is the older member of the couple.

In what follows, a bivariate lifetime model will verify our hypothesis. To this end, marginal
distributions for each of the male and female lifetimes are, first, defined and, second, the copula
models are introduced. The estimation methods will be detailed in sections 3 and 4.

3. Marginal Distributions

3.1. Background

The lifetime of a newborn shall be modelled by a positive continuous random variable, say X with
distribution function (df) F and survival function S. The symbol (x) will be used to denote a live aged

Table 3. Empirical dependence measures with respect to the age difference.

Dependence measures

Samples r ρ τ

0≤ |d| <2 59 0.98 0.97 0.93
2≤ |d| <4 53 0.93 0.93 0.78
|d|≥4 81 0.74 0.68 0.53

Table 4. Kendall’s τ correlation coefficients by age and gender of the elder partner.

xm≥xf Samples τ xm<xf Samples τ

0≤ d<2 27 0.89 −2≤d<0 32 0.88
2≤ d<4 38 0.84 −4≤d<−2 15 0.87
d≥ 4 68 0.72 d≥ −4 13 0.61
Total 133 0.74 Total 60 0.71
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x and T(x)= (X − x)|X>x is the remaining lifetime of (x). The actuarial symbols tpx and tqx are,
respectively, the survival function and the df of T(x). Indeed, the probability, for a live (x), to remain
alive t more years is given by

tpx =P X> x + t jX> xð Þ= P X>x + tð Þ
P X> xð Þ =

S x + tð Þ
S xð Þ

When X has a probability density function f, then T(x) has a probability density function given by

fx tð Þ= tpx μ x + tð Þ

where μ(.) is the hazard rate function, also called force of mortality.

Several parametric mortality laws such as De Moivre, constant force of mortality, Gompertz,
Inverse-Gompertz, Makeham, Gamma, Lognormal and Weibull are used in the literature; see
Bowers et al. (1986). The choice of a specific mortality model is determined mainly by the char-
acteristics of the available data and the objective of the study. It is well known that the De Moivre
law and the constant force of mortality assumptions are interesting for theoretical purposes whereas
Gompertz and Weibull are more appropriate for fitting real data, especially for population of age
over 30. The data set exploited in this paper regroups essentially policyholders who are at least
middle-aged. That is why, in our study, the interest is on the Gompertz law whose characteristics are
defined as follows:

μ xð Þ=Bcx and S xð Þ= exp � B
ln c

cx�1ð Þ
� �

with B>0; c> 1; x≥ 0

In addition, Frees et al. (1996) and Carriere (2000) have shown that the Gompertz mortality law fits
our data set very well, see Figure 1. For estimation purposes the Gompertz law has been repar-
ametrised as follows (see Carriere, 1994):

e
�m
σ =

B
lnc

and e
1
σ = c

from which we obtain

μ x + tð Þ= 1
σ
exp

x + t�m
σ

� �
tpx = exp e

x�m
σ 1�e

t
σ

� �� �

Figure 1. Gompertz and Kaplan–Meier (KM)-fitted female distribution functions.
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fxðtÞ= exp e
x�m
σ 1�e

t
σ

� �� � 1
σ
exp

x + t�m
σ

� �
FxðtÞ= 1�exp e

x�m
σ 1�e

t
σ

� �� �
ð3:1Þ

where the mode m>0 and the dispersion parameter σ> 0 are the new parameters of the distribution.

3.2. Maximum likelihood procedure

In what follows, we will use the following notation:

∙ The index j indicates the gender of the individual, i.e., j=m for male and j= f for female.

∙ θj= (mj, σj) denotes the vector of unknown Gompertz parameters for a given gender j.

∙ n is the total number of couples in our data set. Hereafter, a couple means a group of
two persons of opposite gender that have signed an insurance contract and i is the couple index
with 1≤ i≤n.

∙ For a couple i, tij is the remaining lifetime observed in the collected data. Indeed, for an individual
of gender j aged xj, the remaining lifetime Ti

jðxÞ is a random variable such that

Ti
j xj
� �

=min tij ; B
i
j

� �
and δij = 1

tij ≥Bi
j

� 	
where Bi

j is a random censoring point of the individual of gender j in the couple i.

Consider a couple i where the male and female were, respectively, aged xm and xf at contract
initiation date. For each gender j=m, f, the contribution to the likelihood is given by

Li
j θj
� �

= Bi
j
pxj θj

� �h iδij
f ixj tij ; θj
� �h i1�δij

(3.2)

We recall that the data set is left truncated that is why likelihood function in (3.2) has therefore to be
conditional on survival to the entry age xj, see, e.g., Carriere (2000). Therefore, the overall likelihood
function can be written as follows:

Lj θj
� �

=
Yn
i=1

Li
j θj
� �

; j=m; f (3.3)

By maximising the likelihood function in (3.3) using our data set, the maximum likelihood
estimation estimates of the Gompertz df are displayed in Table 5.

Standard errors are relatively low and estimation shows that the modal age at death is larger for
females than for males. This latter can be explained by the fact that women have a longer life
expectancy than men. A good way to analyse how well the model performs is to compare with the
Kaplan–Meier (KM) product-limit estimator of the data set. We recall that the KM technique is an
approach which consists in estimating non-parametrically the survival function from the empirical
data. Figure 1 compares, for the female group, the KM estimator of the survival function to the one
obtained from the Gompertz distribution estimated above. Since almost all the annuitants are older
than 40 at entry, all the distributions are conditional on survival to age 40. The survival functions are
plotted as a function of age x (for x=40 to x= 110). The Gompertz curve is smooth whereas the
KM is jagged. The figures clearly show that the estimated Gompertz model is a valid choice for
approximating the KM curve.
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4. Dependence Models

4.1. Background

The concept of copula was introduced by Sklar (1959) in order to specify the joint df of a random
vector by separating the behaviour of the marginals and the dependence structure. Without loss of
generality, we focus on the bivariate case. We denote by T(xm) and T(xf) the future lifetime,
respectively, for man and woman. Following Carriere (2000), we couple the lives at the time when
they start being observed. Specifically, if T(xm) and T(xf) are positive and continuous, there exists
a unique copula C:[0, 1]2→ [0, 1] which specifies the joint df of the bivariate random vector (T(xm),
T(xf)) as follows:

P TðxmÞ≤ t1; Tðxf Þ≤ t2
� �

=C P TðxmÞ≤ t1ð Þ; P Tðxf Þ≤ t2
� �� �

=Cðt1qxm ; t2 qxf Þ

Similarly, the survival function of (T(xm), T(xf)) is written in terms of copulas and marginal survival
functions. This is given by

P TðxmÞ> t1;Tðxf Þ> t2
� �

= ~Cðt1pxm ; t2 pxf Þ= t1pxm + t2pxf�1 +Cðt1qxm ; t2 qxf Þ (4.1)

A broad range of parametric copulas has been developed in the literature. We refer to Nelsen (2006)
for a review of the existing copula families. The Archimedean copula family is very popular in life
insurance applications, especially due to its flexibility in modelling dependent random lifetimes, see,
e.g., Frees et al. (1996), Youn & Shemyakin (1999). If ϕ is a convex and twice-differentiable strictly
decreasing function, the df of an Archimedean copula is given by

Cϕðu; vÞ=ϕ�1ðϕðuÞ +ϕðvÞÞ

where ϕ: [0, 1]→ [0, ∞] is the generator of the copula satisfying ϕ(1)= 0 with u, v∈ [0, 1]. In this
paper, four well-known copulas are discussed. First, the Gumbel copula generated by

ϕðtÞ= ð�lnðtÞÞ�α; α>1;

which yields the copula

Cαðu; vÞ= exp � ð�lnðuÞÞα + ð�lnðvÞÞα½ �1=α
n o

; α>1 (4.2)

Second, we have the Frank copula

Cαðu; vÞ=� 1
α
ln 1 +

e�αu�1ð Þ e�αv�1ð Þ
e�α�1ð Þ

� �
; α≠0 (4.3)

Table 5. Gompertz parameter estimates.

θ̂ Estimate SE

m̂m 85.47 0.29
m̂f 91.57 0.62
σ̂m 10.45 0.44
σ̂f 8.13 0.42
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with generator

ϕðtÞ=�ln
e�αt�1
e�α�1

� �
; α≠0

Third, the Clayton copula is associated to the generator

ϕðtÞ= t�α�1; α> 0

and is given by

Cαðu; vÞ= u�α + v�α�1ð Þ�1=α; α>0 (4.4)

Finally, the Joe copula

Cαðu; vÞ= 1� ð1�uÞα + ð1�vÞα�ð1�uÞαð1�vÞαð Þ1=α; α>1 (4.5)

has generator ϕ(t)= −ln(1 − (1 − t) −α), α>1.

Clearly, the parameter α in (4.2)–(4.5) determines the dependence level between the two marginal
distributions. In our case, that would be the lifetimes of wife and husband. Youn & Shemyakin
(1999) have utilised a Gumbel copula where the association parameter α depends on d as follows:

αðdÞ= 1 +
β0

1 + β2d2 ; β0; β2 2 R (4.6)

where d=xm −xf, with xm and xf the ages for male and female, respectively.

In our model for α, in addition to this specification, the gender of the elder partner, represented by
the sign of d, is also taken into account. This latter is captured through the second term of the
denominator β1d in equations (10) and (11). Thus, for our model the copula association parameter
for the Frank and the Clayton is expressed by

αðdÞ= β0
1 + β1d + β2 jd j ; β0; β1; β2 2 R (4.7)

Since the copula parameter α in the Gumbel and Joe copulas is restricted to be >1, the corresponding
dependence parameter in (4.8) is allowed to have an intercept of 1 and we write

αðdÞ= 1 +
β0

1 + β1d + β2 jd j ; β0; β1; β2 2 R (4.8)

It can be seen that if β1< 0, the dependence parameter is lower when husband is younger than wife,
i.e. d<0. Also when d tends to infinity, the dependence parameter goes to 0 for Frank and Clayton
and 1 for the Gumbel copula, thus tending towards the independence assumption. Note in passing
that instead of taking d2 as in equation (4.6), we use |d| in both (4.7) and (4.8) for the representation
of the absolute age difference.

4.2. Estimation of parameters

The maximum likelihood procedure has been widely used to fit lifetime data to copula models,
see, e.g., Lawless (2011), Shih & Louis (1995), Carriere (2000). This method consists in estimating
jointly the marginal and copula parameters at once. However, given the huge number of parameters
to be estimated at the same time, this approach is computationally intensive. Therefore, we adopt

François Dufresne et al.

358

https://doi.org/10.1017/S1748499518000076 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000076


a procedure that allows the determination of marginal and copula parameters, separately. In this
respect, Joe & Xu (1996) have proposed a two-step technique which, first, estimates the marginal
parameters θj, j=m, f, and the copula parameter α(d) in the second step. This is referred to as the
inference functions for margins (IFM) method. Specifically, the survival function of each lifetime is
evaluated by maximizing the likelihood function in (3). For each couple i with xim and xif , let
ui := timpxim θ̂m

� �
and vi := ti

f
pxi

f
ðθ̂f Þ be the resulting marginal survival functions for male and female,

respectively. Considering the right-censoring feature of the two lifetimes as indicated by δim and δif ,
the estimates dαðdÞ of the copula parameters are obtained by maximising the likelihood function:

LðαðdÞÞ :=LðαÞ=
Yn
i= 1

∂2 ~Cαðui; viÞ
∂ui∂vi

" # 1�δimð Þð1�δif Þ ∂~Cαðui; viÞ
∂ui

" #ð1�δimÞδif

´
∂~Cαðui; viÞ

∂vi

" #δimð1�δif Þ
½~Cαðui; viÞ�δ

i
mδ

i
f ð4:9Þ

A similar two-step technique, known as the Omnibus semi-parametric procedure or the
pseudo-maximum likelihood, was also introduced by Oakes (1989). In this procedure, the marginal
distributions are considered as nuisance parameters of the copula model. The first step consists in
estimating the two marginals survival functions non-parametrically using the KM method. After
rescaling the resulting estimates by n

n +1, we obtain the pseudo-observations (Ui,n, Vi,n) where

Ui;n =
Ŝm xim + tim

� �
Ŝm xim

� � and Vi;n =
Ŝmðxif + tif Þ
Ŝmðxif Þ

In the second step, the copula estimation is achieved by maximising the following function:

LðαðdÞÞ :=LðαÞ=
Yn
i=1

∂2 ~CαðUi;n;Vi;nÞ
∂Ui;n∂Vi;n

" # 1�δimð Þð1�δif Þ ∂~CαðUi;n;Vi;nÞ
∂Ui;n

" # 1�δimð Þδif

´
∂~CαðUi;n;Vi;nÞ

∂Vi;n

" #δimð1�δif Þ
~CαðUi;n;Vi;nÞ

h iδimδif ð4:10Þ

Genest et al. (1995) and Shih & Louis (1995) have shown that the resulting estimators of the copula
parameters are consistent and asymptotically normally distributed. Due to their computational
advantages, the IFM and the Omnibus approaches are used in our estimations. By comparing the
results stemming from the two techniques, we can analyse to which extent a certain copula is a
reliable model for bivariate lifetimes within a couple. Tables 6 and 7 display the copula estimations
based on our data set. The number in bracket under each estimate represents the standard error of
the estimation. The estimated values from the IFM and the omnibus estimations are quite close for
the Gumbel, the Frank and the Joe copulas. The important difference observed in the Clayton case
indicates that this copula is probably not appropriate for modelling the bivariate lifetimes in our data
set. The negative sign of β̂1 in all cases demonstrates that if husband is older than wife (i.e. d>0),
their lifetimes are more likely to be correlated. The positive sign of β̂2 suggests that the higher the age
difference is, the lesser is the level of dependence between lifetimes. The parameters β̂1 and β̂2 have
opposing effects on α̂ðdÞ. In this regard, since j β̂2j > j β̂1j , the maximum level of dependence is
attained when d= 0, i.e., when wife and husband have exactly the same age.
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Our estimate of α (d) under the Gumbel copula is quite similar to the results in the model of Youn &
Shemyakin (1999), where β̂0 = 1:02; β̂1 =0 and β̂2 = 0:02. Column 8 contains the estimation output
when the dependence parameter α does not depend on d. When d=0, α (0)= β0 (or 1 + β0 for Gumbel
and Joe ) and that is equivalent to the case where the dependence parameter is not in function of the
age difference.

4.3. Goodness of fit

A goodness-of-fit procedure is performed in order to assess the robustness of our model. For this
purpose, the model, including age difference and gender of the elder member within the couple with
α (d), is compared to two other types, namely the one where the copula parameter does not depend
on d and the model of Youn & Shemyakin (1999). Many approaches for testing the goodness of fit
of copula models are proposed in the literature, see, e.g., Genest et al. (2009) (Berg, 2009). We refer
to Genest et al. (2009) for an overview of the existing methods. There are several contributions
highlighting the properties of the empirical copula, especially when the data are right censored, the
contributions of Dabrowska (1988), Prentice et al. (2004), Gribkova & Lopez (2015) are some
examples. In our framework, the goodness-of-fit approach is based on the non-parametric copula
introduced in Gribkova & Lopez (2015) and Lopez (2012) as follows:

Cnðu1; u2Þ= 1
n

Xn
i=1

1�δim
� �ð1�δif ÞWin1fTðximÞ≤ F̂�1

m; nðu1Þ;Tðxif Þ≤ F̂�1
f ; n

ðu2Þg (4.11)

where Win = 1
SBm ðmaxðTi

m ;T
i
f
�ϵiÞ�Þ and SBm is the survival function of the right censored random variable

Bm that is estimated using KM approach; ϵi =Bi
f�Bi

m. The term F̂�1
j;n is the KM estimator of the

quantile function of TðxijÞ; j=m; f . The particularity of equation (4.11) is that, the uncensored
observations are twice weighted (with 1/n and Win) unlike the original empirical copula where the
same weight 1/n is assigned to each observation. The weight Win is devoted to compensate right
censoring. Based on the p-value, the goodness-of-fit test indicates to which extent a certain

Table 7. Omnibus approach: copula parameters estimate α (d) and α.

Copula
α (d) α

parameters β̂0 β̂1 β̂2 α̂ð�2Þ α̂ð0Þ α̂ð2Þ α̂

Gumbel 1.01 (0.03) −0.04 (0.01) 0.05 (0.01) 1.85 2.01 1.99 1.94 (0.02)
Frank 7.00 (0.17) −0.01 (0.01) 0.02 (0.01) 6.61 7.00 6.98 6.83 (0.11)
Clayton 1.90 (0.19) −0.20 (0.09) 0.36 (0.10) 0.94 1.90 1.55 1.12 (0.07)
Joe 1.44 (0.05) −0.06 (0.01) 0.06 (0.01) 2.18 2.44 2.44 2.35 (0.03)

Table 6. Inference functions for margins method: copula parameters estimate α (d) and α.

Copula
α (d) α

parameters β̂0 β̂1 β̂2 α̂ð�2Þ α̂ð0Þ α̂ð2Þ α̂

Gumbel 1.04 (0.03) −0.04 (0.01) 0.05 (0.01) 1.88 2.04 2.02 1.96 (0.02)
Frank 7.26 (0.18) −0.01 (0.01) 0.02 (0.01) 6.83 7.26 7.20 7.03 (0.11)
Clayton 2.25 (0.24) −0.28 (0.11) −0.41 (0.12) 0.95 2.25 1.78 1.21 (0.08)
Joe 1.48 (0.05) −0.05 (0.01) 0.06 (0.01) 2.20 2.48 2.41 2.36 (0.03)
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parametric copula is close to the empirical copula Cn. We adopt the Cramèr–von Mises statistics to
assess the adequacy of the hypothetical copula to the empirical one, namely

Vn =
ð

½0;1�2
KnðvÞdKnðvÞ (4.12)

where KnðvÞ=
ffiffiffi
n

p
CnðvÞ�Cα̂ðdÞðvÞ
� �

is the empirical copula process. Genest et al. (2009) have
proposed an empirical version of equation (4.12) which is given by

bVn =
Xn
i=1

ðCnðu1i; u2iÞ�Cα̂ðdÞðu1i; u2iÞÞ2 (4.13)

The assertion, the bivariate lifetime within the couple is described by the studied copula, is then
tested under the null hypothesis H0. Since the Cramèr–von Mises statistics bvn does not possess
an explicit df, we implement a bootstrap procedure to evaluate the p-value as presented in the
following pseudo-algorithm. For some large integer ξ, the following steps are repeated for every
k= 1,… , ξ:

∙ Step 1: Generate lifetimes from the hypothetical copula, i.e. Ub
i ; V

b
i

� �
; i=1; ¼ ; n is generated

from Cα̂ðdÞ. If the IFM method is used to determine α̂ðdÞ, then the two lifetimes are produced from
the Gompertz distribution:

ðtb; im = F�1
xm ðUb

i ; θ̂mÞ; tb; if =F�1
xf
ðVb

i ; θ̂f ÞÞ

where θ̂j; j=m; f are taken from Table 5, while, for the omnibus, the corresponding lifetimes are
generated with the KM estimators of the quantile functions of T(xj), j=m, f

ðtb; im = F̂�1
m;nðUb

i Þ; tb;if = F̂�1
f ; nðVb

i ÞÞ

∙ Step 2: Generate the censored variables Bb;i
m and Bb;i

f ; i= 1; ¼ ; n from the empirical distribution
of Bm and Bf, respectively.

∙ Step 3: Considering the same data as used for the estimation, replicate the insurance portfolio by
calculating:

TbðximÞ=minðtb;im ; Bb;i
m Þ; δb;im = 1ftb;im ≥Bb;i

m g

Tbðxif Þ=minðtb;if ; Bb;i
f Þ; δb;if = 1ftb;i

f
≥Bb;i

f
g

for each couple i of ages xim and xif .

∙ Step 4: If the IFM approach is chosen in Step 1, the parameters of the marginals and the hypothetical
copula parameters are estimated from the bootstrapped data ðTbðximÞ; Tbðxif Þ; δb;im ; δb;if Þ by
maximising (3.2) and (4.9) whereas under the omnibus approach, the hypothetical copula parameters
are estimated from the bootstrapped data as well by maximising equation (4.10).

∙ Step 5: Compute the Cramèr–von Mises statistics v̂bn; k using (4.13).

∙ Step 6: Evaluate the estimate of the p-value as follows:

p̂=
1

K + 1

Xξ
k=1

1fV̂b
n;k ≥ V̂ng
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Based on 1,000 bootstrap samples, the results of the goodness of fit is summarised in Table 8. It can be
seen that for both IFM and Omnibus, our model have a greater p-value than the model without age
difference, showing that age difference between spouses is an important dependence factor of their joint
lifetime. Under the Gumbel model in Youn & Shemyakin (1999) where β1=0, the p-value is evaluated
at 0.672. For the Gumbel copula in Table 8, the p-value in the model with α (d) is slightly higher,
strengthening the evidence that the sign of d captures some additional association between spouses.

At a critical level of 5%, the three copula families are accepted, even though the Clayton
copula performs inadequately. Actually, as pointed out in Gribkova & Lopez (2015), the important
percentage of censored data in the sample results in a huge loss of any goodness of fit test. Therefore,
these results cannot efficiently assess the lifetime dependence within a couple. Nevertheless,
the calculated p-values may give an idea about which direction to go. In this regard, since the
Gumbel and Frank copulas have the highest p-value, they are good candidates for addressing
the dependence of the future lifetimes of husband and wife in this Canadian life insurer portfolio.

Furthermore, since the copula parameter without age difference is nested by the one with age difference,
likelihood ratio test can be used to verify if the two parameters β1 and β2 in (4.7) and (4.8) are
significant. Specifically, introduced by Neyman& Pearson (1933) the likelihood ratio test compares two
nested hypothesis: the null hypothesis H0 with constrained parameters and the alternative hypothesis H1

with unconstrained parameters. Clearly, the model with constraints β1= β2=0 in (4.7) and (4.8)
corresponds to H0 and the one with age difference corresponds to H1. Let L0, L1 be the maximum
likelihood function values based on H0 and H1, respectively, the test statistic is given by

λ= 2ðlnðL1Þ�lnðL0ÞÞ

The null hypothesis is rejected at a significance level α if λ> χ2r; 1�α, with r the number of restricted
parameters, r= 2 in our case, and χ2r;1�α is the 1− α quantile of a χ2 distribution with r degrees of
freedom. At a significance level of 5%, all the test statistics of the copula families presented in Table 9

Table 8. Goodness-of-fit test: p-value of each copula model.

IFM Omnibus

Copula parameters α α (d) α α (d)

Gumbel 0.64 0.68 0.64 0.67
Frank 0.51 0.53 0.52 0.53
Clayton 0.11 0.15 0.12 0.17
Joe 0.32 0.34 0.31 0.33

Note: IFM, inference functions for margins.

Table 9. Likelihood ratio statistic of each copula model.

λ IFM Omnibus

Gumbel 30.20 30.98
Frank 8.66 8.26
Clayton 56.72 43.94
Joe 41.68 43.62

Note: IFM, inference functions for margins.

François Dufresne et al.

362

https://doi.org/10.1017/S1748499518000076 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000076


are greater than χ22; 0:95 = 5:991, which means that the null hypothesis is rejected. Thus, the models
allowing age difference in the copula parameter give a better fit than the models without age
difference. This justifies the significance of β1 and β2 in (4.7) and (4.8).

4.4. Comparison with recent studies

In this subsection, we compare our results with recent studies. Luciano et al. (2016) have introduced
longevity risk in modelling spouses dependencies. In this respect, similarly to our approach, they
model marginals and the dependence separately where the dependence within couples is governed
mainly by Archimedean copula. By separating the same data set used in our paper into a group of
younger generation and a group of older generation, they conclude that spouses dependences
decreases when passing from older generation to younger generation. Clearly, for the same age
difference lifetime dependence between young couple is weaker than the one for old couple.
In addition, the effect of cohort is also included in our model. Actually, the larger the age difference
between spouses the weaker the dependence which means that the husband (the wife) belongs to the
group of older generation while the wife (the husband) to the younger cohort.

Recently, Lu (2017) has proposed a mixed proportional hazards model to capture the mortality depen-
dence within spouses. First, he concludes that the broken-heart syndrome explains a large proportion of the
correlation of the lifetime of husband and wife and the level of the dependence is asymmetric. This finding
of asymmetric dependence is in line with our results saying that when the husband is older than the wife the
correlation is higher. Second, he introduces a new dependence factor namely the unobserved heterogeneity
of broken-heart syndrome which comes from the fact that the husband wife share the same correlated risk
factors. This new dependence factor is not considered in our model.

5. Insurance Applications

5.1. Life insurance annuity contracts involving couple lives

Multiple life actuarial calculations is common in the insurance practice. Hereafter, (x) stands for the
husband aged x whereas (y) is the wife. Considering a couple (xy), T(xy) describes the remaining time
until the first death between (x) and (y) and, it is known as the joint life status. Conversely, T xyð Þ is the
time until death of the last survivor. The variables T xyð Þ and T(xy) are random and we can write

T xyð Þ=min T xð Þ; T yð Þð Þwhere asT xyð Þ=max T xð Þ; T yð Þð Þ

As in the single-life model, the survival probabilities are given by

tpxy =P T xyð Þ> tð Þ and tpxy =P T xyð Þ> tð Þ (5.1)

Clearly, if T(x) and T(y) are independent, then

tpxy = tpx tpy and tpxy = 1�tqx tqy

The curtate life expectancies, for T(xy) and T xyð Þ, respectively, are given by

exy = E T xyð Þð Þ=
X1
t= 1

tpxy and exy = E T xyð Þð Þ=
X1
t=1

tpxy
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with the following relationship

exy = ex + ey�exy

Figures 2 and 3 compare the evolution of exy as a function of the age difference d=x − y, under the
following models:

∙ model A: T(x) and T(y) are independent;

∙ model B: T(x) and T(y) are dependent with a constant copula parameter α= α0;

∙ model C: T(x) and T(y) are dependent with a copula parameter α (d) as described in (4.7)
and (4.8).

On the left (resp. right), the graphs were constructed under the assumption of x= 65 (resp. y= 65)
for the husband (resp. wife) and the age difference d ranges from −20 to 20 as more than 99% of our
portfolio belongs to this interval. The fixed age is set to 65 because this is the retirement age in many
countries. The analysis was made under the four families of copula described in section 4. In general,

(a) (b)

(c) (d)

Figure 2. Comparison of exy under models A, B and C: Gumbel and Frank copulas.
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it can be seen that the life expectancy of the last survivor exy increases when exy = e65 :65�d whereas it
decreases when exy = e65 +d :65. This result strengthens the evidence that the sign of d has an effect on
annuity values. For example, when |d| = 10 under the Gumbel copula:

e65 :55 = 32:62≥ e55 : 65 = 28:82

When comparing the models A, B and C, it can be seen that the life expectancy exy is clearly overvalued
under the model A of independence assumption, thus confirming the results obtained in Frees et al.
(1996), Youn & Shemyakin (1999), Denuit & Cornet (1999). Now, let us focus our attention on
models B and C considering only Gumbel, Frank and Joe copulas as it has been shown in the previous
section that the Clayton copula might not be appropriate for the Canadian insurer’s data. In all graphs,
the life expectancy is always lower or equal under model B and the rate of decreases may exceed 2%.
The largest decrease is observed when d<0, i.e., when husband is younger than wife.

In order to illustrate the importance of these differences, we consider four types of multiple life
insurance annuity products. First, Product 1 is the joint life annuity which pays benefits until the

(a) (b)

(c) (d)

Figure 3. Comparison of exy under models A, B and C: Clayton and Joe copulas.
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death of the first of the two annuitants. For a husband (x) and his wife (y) who receive continuously a
rate of 1, the present value of future obligations and its expectation are given by

aT xyð Þ j =
1�exp �δT xyð Þð Þ

δ
and axy = E aT xyð Þ j

� �
where δ is the constant instantaneous interest rate (also called force of interest). The variable aT xyð Þ j
can be seen as the insurer liability regarding (xy). Product 2 is the last survivor annuity which pays a
certain amount until the time of the second death T xyð Þ. In that case, the present value of future
annuities and its expectation are given by

aT xyð Þ j =
1�exp �δT xyð Þð Þ

δ
and axy = E aT xyð Þ j

� �
In practice, payments often start at a higher level when both beneficiaries are alive. It drops at a
lower level on the death of either and continues until the death of the survivor. This case is
emphasised by Product 3 where the rate is 1 when both annuitant are alive and reduces to 2

3 after the
first death. Product 3 is actually a combination of the two first annuities. Thus, the insurer liabilities
and its expectation are given by

V xyð Þ= 1
3
aT xyð Þ j +

2
3
aT xyð Þ j and E V xyð Þð Þ=Vxy =

1
3
axy +

2
3
axy

where E aT xyð Þ j
� �

= axy.

Fourth, imagine a family or couple whose income is mainly funded by the husband. The family may
want to guarantee its source of income for the eventual death of the husband. For this purpose, the
couple may buy the so called reversionary annuity for which the payments start right after the death
of (x) until the death of (y). No payment is made if (y) dies before (x). As for Product 3, the
reversionary annuity (Product 4) is also a combination of some specific annuity policies and the total
obligations of the insurer and its expectation are computed as follows:

aT xð Þ jT yð Þ j = aT yð Þ j �aT xyð Þ j and ax j y = E aT xð Þ jT yð Þ j
� �

= ay�axy (5.2)

In what follows, considering each of the insurance Products 1, 2, 3 and 4, comparison of models A, B
and C will be discussed. The analysis will include the valuation of the BE of the aggregate liability of
the insurer as well as the quantification of risk capital and stop-loss premiums.

5.2. Risk capital and stop-loss premium

In the enterprise risk management framework, insurers are required to hold a certain capital.
This amount, known as the risk capital, is used as a buffer against unexpected large losses.
The value of this capital is quantified in a way that the insurer is able to cover its liabilities with a
high probability. For instance, under Solvency II, it is the value-at-risk (VaR) at a tolerance level of
99.5% of the insurer total liability, while for the Swiss Solvency Test (SST), it is the expected
shortfall (ES) at 99%. Let L be the aggregate liability of the insurer. At a confidence level α, the VaR
is given by

VaRLðαÞ= inf l 2 R :P L≤ lð Þ≥ αf g
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whilst the ES is

ESLðαÞ= E LjL>VaRLðαÞð Þ

These risk measures will serve to compare models A, B and C for each type of product. As the
insurance portfolio is made of n policyholders, we define

L=
Xn
i=1

Li

where Li represents the total amount due to a couple i of (xi) and (yi). The data set used in the
calculations is the same as those used for the model estimations and described in section 2.
In principle, the couple i receives the amount bi at the beginning of each year until the death of the
last survivor. However, in our applications, bi will be the continuous benefit rate in CAD for each
type of product. For example, in the particular case of Product 3:

Li = biV xiyið Þ= bi
1
3
aT xi; yið Þ j +

2
3
aT xi; yið Þ j

� �

Since there is no explicit form for the distribution of L, a simulation approach will serve to evaluate
the insurer aggregate liability. The pseudo-algorithm used for simulations is presented in the
following steps:

∙ Step 1: For each couple i, generate (Ui, Vi) from the copula model (models A or B or C).

∙ Step 2: For each couple i with xi and yi, generate the future lifetime T(xi), T(yi) from the Gompertz
distribution as follows:

TðxiÞ=F�1
xi Ui; θ̂m
� �

and TðyiÞ= F�1
yi Vi; θ̂f

� �
(5.3)

where θ̂j; j=m; f are taken from Table 5.

∙ Step 3: Evaluate the liability Li for each couple i=1,… , n.

∙ Step 4: Evaluate the aggregate liability of the insurer L=
Pn

i= 1 Li.

Due to its goodness-of-fit performance, the Gumbel copula will be used in the calculations for
models B and C. Mortality risk is assumed to be the only source of uncertainty and we consider a
constant force of interest of δ= 1%. For each product described in subsection 5.1, Steps 1–4 are
repeated 1,000 times in order to generate the distribution of L. In addition to the risk capital
measured as under the Solvency II and the SST framework, the BE of the aggregate liability of the
insurer (i.e. BE= EðLÞ), the coefficient of variation and the stop-loss premium SL= E ðL�ζÞ +

� �
are

also evaluated, where ζ is the deductible. For the portfolio of Products 1, 2, 3 and 4, the amount
of ζ in millions CAD are, respectively, 4, 4.5, 4.2, 1.7. Results are presented in Tables 10 − 13
according to each product. For the ease of understanding all values have been converted to a per
Model A basis and presented in per cent (the corresponding amounts are presented in Appendix A).
As we could expect, the model A with independent lifetime assumption misjudges the total liability of
the insurer. The highest differences are observable with Product 4 in Table 13. In this respect, the
difference between models A and C reaches 17.49% for the BE, 25.44% for the risk capitals
and 48.01% for the stop-loss premiums. By comparing models B and C, the findings tell minor
differences. The variation noticed in Figure 2 (when d<0) are practically non-existent in the
aggregate values for most of the products under investigation. In other words, while the effects of the
age difference and its sign are noticeable on the individual liability (see subsection 5.1), the effects on
the aggregate liability are merely small. This is due to the law of large numbers and to the high
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proportion of couple with d>0 in our portfolio (70%). Actually, the compensation of the positive
and negative effects of the age difference on the lifetimes dependency in the whole portfolio mitigates
its effects on the aggregate liability. However, it should be noted that the relative difference exceeds
1.41% for the VaRL (0.95) in Table 13.

Table 10. Relative best estimate (BE) and risk capital for the joint life annuity portfolio.

Product 1 BE CoV SL VaRL (99.5%) ESL (99%)

Model A 100.00 74.99 100.00 100.00 100.00
Model B 109.91 72.71 130.32 105.52 105.29
Model C 109.88 72.72 130.24 105.53 105.29

Note: CoV, coefficient of variation; SL, stop-loss premium; VaR, value-at-risk; ES= expected
shortfall.

Table 11. Relative best estimate (BE) and risk capital for the last survivor annuity (Product 2)
portfolio.

Product 2 BE CoV SL VaRL (99.5%) ESL (99%)

Model A 100.00 56.21 100.00 100.00 100.00
Model B 94.18 61.11 91.52 99.69 99.71
Model C 94.19 61.09 91.49 99.70 99.72

Note: CoV, coefficient of variation; SL, stop-loss premium; VaR, value-at-risk; ES= expected
shortfall.

Table 12. Relative best estimate (BE) and risk capital for the last survivor annuity (Product 3)
portfolio.

Product 3 BE CoV SL VaRL (99.5%) ESL (99%)

Model A 100.00 57.28 100.00 100.00 100.00
Model B 97.75 62.55 104.15 103.30 103.14
Model C 97.74 62.55 104.14 103.31 103.16

Note: CoV, coefficient of variation; SL, stop-loss premium; VaR, value-at-risk; ES= expected
shortfall.

Table 13. Relative best estimate (BE) and risk capital for the contingent annuity portfolio.

Product 4 BE CoV SL VaRL (99.5%) ESL (99%)

Model A 100.00 118.77 100.00 100.00 100.00
Model B 82.48 102.60 52.50 73.65 74.68
Model C 82.51 102.00 51.99 73.45 74.56

Note: CoV, coefficient of variation; SL, stop-loss premium; VaR, value-at-risk; ES= expected
shortfall.
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6. Conclusion

In this paper, we propose both parametric and semi-parametric techniques to model bivariate
lifetimes commonly seen in the joint life insurance practice. The dependence factors between lifetimes
are examined namely the age difference between spouses and the gender of the elder partner in the
couple. Using real insurance data, we develop an appropriate estimator of the joint distribution of
the lifetimes of spouses with copula models in which the association parameters have been allowed to
incorporate the aforementioned dependence factors. A goodness-of-fit procedure clearly shows that
the introduced models outperform the models without age factors. The results of our illustrations,
focussing on valuation of joint life insurance annuity products, suggest that lifetimes dependence
factors should be taken into account when evaluating the BE of the annuity products involving
spouses.
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Appendices

Appendix A: Risk measures for the aggregate liability of the insurer.

Table A1. Risk capital for the joint life annuity portfolio in Canadian Dollar.

Product 1 Mean CoV (%) SL VaRL (99.5%) ESL (99%)

Model A 2,506,318 74.99 306,254 8,867,772 9,137,217
Model B 2,754,587 72.71 399,114 9,357,382 9,620,839
Model C 2,753,894 72.72 398,871 9,358,352 9,620,876

Note: CoV, coefficient of variation; SL, stop-loss premium; VaR, value-at-risk; ES= expected shortfall.
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Table A2. Risk capital for the last survivor annuity (Product 2) portfolio in Canadian Dollar.

Product 2 Mean CoV (%) SL VaRL (99.5%) ESL (99%)

Model A 4,275,139 56.21 877,391 11,456,016 11,757,270
Model B 4,026,500 61.11 803,022 11,421,070 11,723,580
Model C 4,026,615 61.09 802,752 11,422,159 11,724,355

Note: CoV, coefficient of variation; SL, stop-loss premium; VaR, value-at-risk; ES= expected shortfall.

Table A3. Risk capital for the last survivor annuity (Product 3) portfolio in Canadian Dollar.

Product 3 Mean CoV (%) SL VaRL (99.5%) ESL (99%)

Model A 3,685,532 57.28 649,259 10,146,042 10,420,385
Model B 3,602,529 62.55 676,185 10,481,095 10,748,088
Model C 3,602,375 62.55 676,123 10,481,720 10,749,342

Note: CoV, coefficient of variation; SL, stop-loss premium; VaR, value-at-risk; ES= expected shortfall.

Table A4. Risk capital for the life contingent annuity portfolio in Canadian Dollar.

Product 4 Mean CoV (%) SL VaRL (99.5%) ESL (99%)

Model A 1,415,591 118.77 545,202 8,005,644 8,292,725
Model B 1,167,629 102.60 286,231 5,896,485 6,193,339
Model C 1,167,949 102.00 283,466 5,880,191 6,182,959

Note: CoV, coefficient of variation; SL, stop-loss premium; VaR, value-at-risk; ES= expected shortfall.
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