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1. Introduction. The decreasing rearrangement of a finite sequence 
&i, a2, . . • , an of real numbers is a second sequence a^i), ar(2), . • • , #*•(«), where 
7r(l), 7r(2), . . . , ir(n) is a permutation of 1, 2, . . . , n and 

#7r(i) > ^TT(2) > . . . > aX(W> 

(1, p. 260). The Mh term of the rearranged sequence will be denoted by ak*. 
Thus the terms of the rearranged sequence ak* correspond to and are equal 
to those of the given sequence ak, but are arranged in descending (non-increas­
ing) order. 

The equimeasurable decreasing rearrangement of a real-valued measurable 
function / with domain [0, b] is a second function f* with domain [0, b] and 
the same range as / . However /* is monotonie decreasing (non-increasing) 
and the measures 

m(f > c), m(f* > c) 

are equal for every real c (1, p. 276). 
In this paper we establish and study an inequality related to the operation 

of rearrangement in decreasing order, namely, that the total variation of the 
sequence or function is in general diminished by such rearrangement. We show 
that the LP norm of the difference sequence (or the derivative function) is 
diminished by this rearrangement operation unless the given sequence or 
function is already monotonie (or almost everywhere equal to a monotonie 
function). 

We first study finite sequences {ai, a2, . . . , an}, and, with Aak = ak+i — ak 

(k = 1, . . . , n — 1), establish the basic inequality 

(1) Z|Aa*T<Z|Aa*r, p > 1. 

For infinite sequences, a more general definition of the rearranged sum is 
required as the rearranged sequence may have a different order type such 
that some terms have no next neighbour. All such terms belong to the set of 
limit points of the sequence, and in § 3 the rearranged sum is defined and it 
is shown that these terms do not contribute to the sum. The basic inequality 
is then established for infinite sequences. 
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The basic inequality for functions is 

(2) ( \f*'(x)\'dx< ( \f'(x)\'dx, p>\. 
*>a *>a 

This is established for finite intervals (a, b) in § 4. For infinite domains, a 
generalization is again found to be necessary for the usual definition of the 
equimeasurable decreasing rearrangement of a function. Such a generaliza­
tion, involving many-valued functions, together with a notion of asymptotic 
density, is given in § 5. In § 6 the basic inequality is extended to functions 
with infinite domain. The analogue for functions of the set of limit points of 
the sequence is the set of values at which / is asymptotically dense. The 
contribution of the closed set of asymptotically dense range points to the 
rearranged sum is shown to be zero. 

Finally, in § 7 some results for second and higher order derivatives are 
presented. 

2. Finite sequences. Let {ai, a2, • • • , a>n} be a sequence of n real num­
bers, where n is a fixed positive integer. Let 

Aak = ak+1 — ak, k = 1, . . . , n — 1. 

With the decreasing rearranged sequence denoted by {ffi*, a2*, • . • , #n*} let 

Aak* = ak+1* - ak*. 

We shall now establish the basic inequality (1) for such sequences. For 
the proof, we employ the two following lemmas. A term ak will be called a 
local maximum if 

#£_! < ak and ak+1 < ak 

and a local minimum if 
a*_i > ak and ak+1 > ak. 

LEMMA 2.1. Removal of a local maximum or local minimum term from 
{ai, a2, . . . , an) decreases the sum *^l\Aak\

v, unless the term is equal to its pre­
decessor in which case the sum is unchanged. 

Proof. Consider the case of a local maximum term ak. Thus 

Aajb_i = ak — ak-i > 0 

while 
Aak = ak+1 — ak < 0. 

If ak-i > ak+1, then 
|0*;-i — ak+i\ •< \ak — ak+i\; 

therefore 
|afe_i — ak+1\

p < la* - ak-i\
p < \ak-! — ak\

p + \ak - ak+1\
p 

with equality only for ak-i = ak. On the other hand, if ff^-i < #AH-I> then 

|ffjfc-i ~ ak+i\ < \ak-i — ak\; 
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therefore 
K - ! - ak+1\

p < |a*_i - ak\
p + \ak - ak+1\

p. 

In either case, the contribution to the sum I ^ A a ^ after removal of ak is 
dominated by the terms present earlier. This proves the lemma for a local 
maximum term, and a similar proof holds for a local minimum. 

LEMMA 2.2. If akl ak+i are consecutive terms (ak ?£ ak+i) and c is intermediate 
to ak, ak+i, then insertion of c in the sequence diminishes the sum ^\kak\

p. 

Proof. Consider, for definiteness, the case 

ak < c < ak+i. 
Set 

ak+i — c c — ak 
A = , jLt = . 

&k+l &k &k+l # £ 

Then 0 < X < 1, 0 < M < 1, and X + n = 1. For p > 1, it follows that 
\p + \JP < 1, unless X = 1 or n = 1. 

Returning to the definitions of X, /x, we find that 

\c - ak\
v + \ak+x - c\v < \ak+i - ak\

v. 

This proves the lemma for the case considered. The opposite case is similar, 
while the case where the term inserted is equal to a term ak is trivial. 

THEOREM 2.1. The inequality 

£ |Aa**r < £ |Aa*rf P>1, 
k=l k=l 

is valid, equality holding if and only if the sequence {a^ a2, . . . , an} is monotonie. 

Proof. Let aT denote an absolute maximum term and aB an absolute mini­
mum term of the sequence. Thus aB < ak < aT, 1 < k < n. For definiteness, 
suppose 1 < T < B < n, other possibilities can be discussed similarly. 

Examine in succession 
ar+ii aT+2j • • • > ak, . . . 

and remove the first local maximum term ak. 
By Lemma 2.1, the sum £|Aaw |p is not increased. Then insert any such 

term again in the position such that aT, aT+i, . . . , ah, ak, ah+i is monotonie 
decreasing. This is possible, since aT is maximal and ak a local maximum. By 
Lemma 2.2, the sum X)|Aaw|p is again not increased. 

Continuing with ak1 aB-i, aB, aB+i, . . . , am, remove and reinsert any other 
local maximum terms. Then treat the initial segment #i, . . . , aT-\ of the 
sequence similarly. The sum decreases if any proper local maximum is en­
countered. 

Again, consider the revised segment a5_i, a5_2, . . . , ah . . . , and remove 
the first local minimum term encountered. Reinsert in the position such that 
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the sequence preceding aB is monotonie. Continue removal and reinsertion 
of terms in reverse order to the initial term ah and then treat the segment 
(an, aw_i, . . . , aB+i) similarly. As before, the sum ^\Aak\

p is decreased when­
ever a proper minimum term is encountered. 

After this process, the only local maximum is aT and the only local minimum 
is aB. The sequence is now composed of three monotonie segments, (ai, aT), 
(aT, aB), (aB, an)y respectively increasing, decreasing, and increasing. 

Now remove ai, thus decreasing the sum. Reinsert a± in the segment (aT, aB) 
in such a position that the segment is still monotonie. Since aB < a,\ < aT, 
this is possible. By Lemma 2.2, the sum again decreases. Similarly remove 
and reinsert in succession a2, a3, . . . , aT-i, and likewise am, am-u • • • , CLB+I- At 
each step the sum decreases, and finally the sequence becomes rearranged in 
monotonically decreasing order with CL T — Œ\ , CLB — djYi . This concludes the 
proof of Theorem 2.1 in the case discussed. The remaining cases are similar. 

The following counterexample shows that this basic inequality does not 
hold for second differences. Let 

{ak\ = {0, 3, 6, . . . , 3w, Sn - 1, Sn - 4, . . . , 5, 2}. 

Then Z | A 2 a ^ = 4? + 2P while ElA 2 ^*^ = 2« - 3. By choice of n the 
rearranged sum can be made the larger. 

3. Infinite sequences. For infinite sequences {ai, a2, . . .} or {. . . , a_i, 
a0, ai, . . .} we shall again show that the general inequality 

holds, provided that certain conventions are adopted regarding the rearranged 
sequence and the sum associated with it. 

First, let us remark that the sum S|Aafc|
p may be bounded, for unbounded 

sequences \ak}. 

Example 3.1. Let ak = log k (& = 1, 2, . . .). Then 

Aak = log(l + 1/k) < 1/k 

and 

Z|Aa,|p«X)l/^ < ra, P>1. 
The sequence {ai, a2, . . .} may be unbounded above and below or even 

everywhere dense, while the difference sequence still has finite Lv norm, as 
the following example shows. 

Example 3.2. Consider the sequence 

0, 1, 1/2, 0, - 1 / 2 , - 1 , - 3 / 2 , - 2 , - 7 / 4 , - 3 / 2 , - 5 / 4 , - 1 , . . . 

containing two terms with unit difference, six terms in arithmetic sequence 
with common difference, — | , 20 terms in arithmetic progression with common 
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difference — | , and so on. The sequence oscillates from 0 to 1 to —2 to 3 
to —4 and so on with increasing amplitude. The sequence is unbounded above 
and below and is in fact everywhere dense. Between n and — n — 1, for 
instance, there are (2n + 1 ) . 22n terms ak each of magnitude l/22w. Their 
contribution to the LP norm is 

(2n + l)-22" _ 2n+ 1 
c^2np c^2n(p— 1) • 

Since this is a term of an absolutely and geometrically convergent series, the 
sum 

Z |Aa, 
is finite for p > 1. 

v 
_ 'A I 

Example 3.2 also illustrates another situation that may arise for infinite 
sequences. Each term is repeated an infinite number of times. If any finite 
subsequence is rearranged, the coincident terms will not contribute to the 
sum 2Z|Aa;*|2?. We shall thus avoid the difficulty of rearranging sequences 
with infinite repetitions by counting only distinct terms in the rearranged 
sequence. 

Returning to Example 3.2, let us construct the rearranged sequence, which 
is the ordered set of terminating binary decimals, and which has the order 
type r) of the unbordered rationals (2, p. 71). A typical "leg" (segment) of 
the given sequence consists of equally spaced terms ranging from 2n — 1 to 
— 2n, or from — 2n to 2n + 1. Taking the first case for definiteness, we note 
that all terms in every previous "leg" appear also in this leg and so can be 
discarded. Thus the rearranged partial sequence consists of the given "leg" 
only. These terms are spaced at intervals Aam* = l/22n+1 , and consequently 
there are 1 + (4w - l)-22 w + 1 < 4rc-22w+1 such terms. For p > 1, we then 
have 

X^ I A *i* / 4 r c - 2 w _ 4rc 
2-J \&ak I ^ 0(2n+l)p — 0(2n+l)(p-l) 
leg ^ ^ 

—» 0 as n —> oo. 

For Example 3.2, therefore, if the sum for the rearranged sequence is defined 
as the limit of the sums for the rearranged partial sequences, we have 

£|Aa/|* = 0. 

As the set of limit points of a general infinite sequence may have a more 
complicated structure than that of Example 3.1, we shall need to use a more 
elaborate definition in the general case. 

We begin by giving the definition of the contribution S*(K,L) arising from 
the interval ami = K < a < L = am2 of the range. 
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Definition. 

S*(K,L) = Hminf XI |Aa**|* 

where the lim inf is taken over all finite sequences of terms {ai, a2, . . . , an] such 
that K < ak* < L for 1 < k < n while a± = L and a*w+i = K. 

Note that S*(K,D is defined only for values of K, L that belong to the 
range of the given sequence. When we later write L —» oo, it will be under­
stood that for a bounded sequence a limit is taken as the least upper bound 
is approached. Similarly for lower bounds when we let K —> — °o. 

Alternatively, we may consider S*(K)L) as a function of (K, L) for real 
K, L, that is, constant in the intervals between terms of {ak}, and continuous 
from the left in K and from the right in L at points ak of the sequence. The 
following lemma will show that it is also possible to define 5*(*:,z,) by con­
tinuity from the right or left at a limit point of the sequence. 

A rearranged sequence containing convergent infinite subsequences yields 
a finite contribution to the rearranged sum from every finite interval of the 
range, and a small contribution from every small interval. This is shown by 

LEMMA 3.1. S*(K,L) < (L - K)*. 

Proof. If the sequence is finite, the result follows at once from Lemma 2.2. 
I t is sufficient to show in general that a single sequence of partial sequences 
{ak} yields a limit less than the right-hand side. We may assume that this 
sequence has a single limit point within the interval (K, L). The assertion 
of the lemma then follows from a limiting form of the inequality, 

E |A«*T < 

For the main proof, we require the following additional lemma for finite 
sequences. 

LEMMA 3.2. For any finite sequence {ah a2, . . . , an}, the sum J^\Aak\
p 

(k = 1, . . . , n — 1) is decreased {not increased) by removing from the sequence 
all terms exceeding any given real number a. 

Proof. Let ah, ah+1, . . . , ak be any maximal consecutive set of terms ex­
ceeding a. By Lemma 2.1, these terms can be dropped from the sum in the 
order of their magnitude, the largest first, without increase in the sum. Simi­
larly every other consecutive set of terms exceeding a can be dropped. This 
proves the lemma. 

Similarly, all terms less than any given number c can be dropped, without 
increasing the given sum. 

Lemma 3.2 shows that sums of the form 

S |Aa/|P 

—K<ak*<L 

increase monotonically with the interval determined by K, L. 
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Definition. Let E denote the set of limit points of {ak}. 

LEMMA 3.3. If the interval (K, L) is contained in E, then S*(K,L) = 0 (p > 1). 

Proof. Given e > 0, we must find a sequence of rearranged partial sums with 
members ultimately less than e. Given rj > 0, we can select a finite sequence 
of terms ak of the given sequence, which span (K, L) with maximal difference 
less than rj. Since | Aa^*| < rj, the corresponding sum satisfies 

2>a**|* < ̂ Z l A a / l < rTHL - K). 

We now choose r\ < (e/(L — K))l,^p~l) so that the right-hand side is less than 
e. This completes the proof. 

We now give a different definition of S*(K,L) as a limit, rather than as a 
limit inferior. I t is necessary for this purpose to use partial sequences which 
do not omit too many terms from any part of the range (K, L). By the box 
size of a subsequence {ak*} we shall denote the least upper bound of the 
intervals Aâ^* which contain at least one element ak omitted from the sub­
sequence. 

LEMMA 3.4. If {â*i(n)> â*2(w)» • • .} is a subsequence with partial sequences 
{â*i(W), â*2(n)i • • • y â*n(n)} whose box sizes tend to zero (as n —» <»), then 

n 

S*(KtL) = lim]T) \M*k(n)\
p. 

n->œ k=l 

Proof. Since, by definition, 

n 

k(n) | > 
n-^oo A;=l 

it is sufficient to show that for n sufficiently large, the part sum on the right 
side exceeds S*KtL by less than a given positive e. Let the box size of the 
sequence {â*(iw), â*2(«), . • . , â*n(n)} be 77, and choose n so large that 

r, < (h/{L - X)) 1/0-1). 

Suppose now that any other finite subsequence {â̂ *} is given, and denote 
by {a'k*} the two sequences combined into one rearranged sequence. Let 
S*(K,L)J S*(K,L)J and S'*(KtL) denote the values of the corresponding sums, as 
originally defined. Since {âk*} is arbitrary, we can choose it so that 

S*(K,L) < S*(K,L) + è c-

By Lemma 2.2, the insertion of further terms diminishes the sum and thus 

S'*(K,L) < S*(K,L)' 

We next show that the difference S*(KtL) — S'*(KsL) does not exceed \t. For 
every additional term falls into a box of width at most rj. The contribution 
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from a typical box interval is diminished at most by the amount 77/, where 
the box width 77 j < r). The sum total of such diminutions is at most 

in view of the choice of rj and the non-overlapping of the box intervals. Finally, 

S*(K,U < Sf
 (K,D + e« < 5*(^,i) + ^e, 

by Lemma 2.2, so that 

S*(K,D < ^*ur,z,) + Je + | e = S*(KtL) + e. 
Hence, 

and this completes the proof of the lemma. 

Now we define the sum 5* for the entire sequence. 

Definition. S* = limj8:_>_00tZ/^+00 S*(K,L). For simplicity we write K—* — 00, 
L —> +00, where K —> gib a*, L —» lub â  if the sequence is bounded above 
or below. By monotone convergence (4, p. 29) the sum is independent of the 
order in which the two limits are taken. The resulting sum may be finite or 
it may diverge to plus infinity. 

THEOREM 3.1. If Aak = ak+i — ak1 and 

S = ]C \&ak\
p < » , 

k=l 

then 5* exists and S* < S. 

Proof. Rearrange the first n consecutive terms of {ak\ as {a*i(w), a*2(w), . . . , 

a*n(n)}, and denote the rearranged sum by 5*(ri). By Theorem 2.1, we have 

where S(n) denotes a partial sum of S. Next choose an interval (K, L) where 
K — ami < L = am2. Since the partial sum for (K, L) contains only a part 
of the contributions to 5*(W), we have 

S**)*.» ^ E \àa*k(n)\
p < 5*(n) < S. 

K<ak(n)<L 

By definition, the limit inferior S*(KtL) satisfies 

S*{K,& < limw-̂ co »S*(w)(ir,i) < S. 

Finally, we let K —> — 00 , L —» 00 , and we obtain 

5* = lim S*&,L) < S. 
K->-oo 

Z/->oo 

This concludes the proof of Theorem 3.1. 

https://doi.org/10.4153/CJM-1967-105-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-105-0


DECREASING REARRANGEMENTS 1161 

THEOREM 3.2. If \ak) is everywhere dense, then S* — 0. 

Proof. By Lemma 3.3, S*(KtL) = 0 for every finite (K, L) so the result 
follows at once (cf. Example 3.2). 

THEOREM 3.3. If {ak*} has one of the order types, corresponding to the positive 
integers ( / + ) , the negative integers (I—), or the integers (/), then 5* is respec­
tively equal to the corresponding infinite sum 

OO OO OO 

E |Aa**r, E |Aa,T, or E |Aat*|'. 
# = 1 #=—oo fc=—oo 

The proofs are immediate and will be omitted. 

We extend the result of Theorem 3.3 to the most general case as follows. 
The set E of limit points of {ai, a2, . . .} is closed, so that the complement CE 
is a sum of open intervals Oj. In each open interval Oj there will in general 
fall terms ak in one of four possible ways: 

(1) A finite number of distinct terms ak lie in Oj. 
(2) The upper end point bj of Oj is the only limit point of the terms ak 

in Oj. 
(3) The lower end point of dj is the only limit point of the terms aj in Oj. 
(4) Both a,j and bj are limit points of terms ak in Oj. 
In these four cases the rearranged sum 5*(ay,&i) arising from Oj has one of 

the forms 
0 oo oo 

E, E, E. EM* 
finite ft=—co k=l /c=—oo 

respectively. In these cases the value of S*(ajtbj) is defined at limit points 
by continuity from within the interval. 

We shall write 

Sj* = S*(aj,bj) — Z-< \^ak*\V 

Aak*COj 

where the summation ranges over all intervals lying in Ojy in any of the four 
cases listed above. 

THEOREM 3.4. Let E be the limit set and Oj the complementary open intervals. 
Then 

j j àak*COj 

Proof. The proof is immediate, from the definition of S*(KjL). I t is necessary 
only to note that the sum over j yields a result independent of the order of 
summation, since all summands are non-negative. 

In all results of this section, the strict inequality holds unless the given 
sequence {ak} is monotonie. In particular, the strict inequality holds if there 
is more than one limit point. 
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Up to this stage we have tacitly assumed that the given sequence {ak} 
has the order type co of the natural numbers (2, p. 57). Together with the 
assumption S < <» this implies that there are at most two open sets Oj in 
the complement of the limit set E. For we have the following property of E. 

LEMMA 3.5. If {ak} has the order type œ or *co and if 

S=E |Aa* |* < oo, 

then the limit set E is connected. 

Proof. If E is not connected, there are at least two components of E, 
separated by an interval of positive length that contains no limit points. 
Hence there is at least one gap, or interval of positive length containing no 
points ak of the sequence, in this interval. If the gap width is g, then since 
there are limit points on both sides of the gap, the series S = ]£ \àak\

p con­
tains indefinitely many terms each at least gv. This contradicts the hypothesis 
5 < oo, and completes the proof. 

From this lemma we can now deduce 

COROLLARY 3.5. If {ak} has the order type co or *co and S is finite, the sum­
mation over j on the left in the formula of Theorem 3.4 involves at most two terms. 

Note that the three possible cases of zero, one, and two terms can all arise: 
no terms if \ak\ is everywhere dense on the real axis, one term if the limit 
set E is empty (limit points only at infinity), and two terms if £ is a single 
point or a closed interval. 

Remark. I t will be shown below that, in particular, a sequence of order 
type *co + co involves at most three terms. 

Consider now enumerable ordered sequences {ak} of a more general type, 
namely ordered sums represented by series whose terms are co or *co or n. Such 
sequences have cuts or gaps (2, p. 74) as well as the jumps from one element 
to its neighbour on which the differences A a* are based. (A decomposition of 
the sequence into two non-empty subsequences is called a cut if exactly one 
of the subsequences has a border element and a gap if neither subsequence 
has a border element.) 

The following example of order type co + *co shows that the sum 5 must 
be augmented by difference terms arising from the limit sets of the subse­
quences of type co or *co. 

Example 3.3. Consider the sequence with one gap, 

{ak} = {11, 10i, 101, . . . , 10 + 2-w, . . . , - 10 - 2~n, . . . , —10|, - 1 1 } . 

For this monotonie sequence our definitions yield 

s* = ~=1 + 2°p-
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In forming the sums S = ^ \^ak\p for sequences that include cuts or gaps 
we therefore adjoin a term which is the pth power of the distance between 
the corresponding limit sets (or border elements). If the limit set is empty 
(sequence tends to infinity), then no term need be added. If a limit set Ek 

of an co-sequence is an interval, the distance is reckoned as the shortest dis­
tance. 

We may summarize this convention as follows: at every cut or gap, the 
limit sets on either side should be adjoined, if necessary, to form border 
elements. The sum S so formed will be denoted by the symbol 

£'|Aa*r. 

The result of Theorem 3.1 can now be extended to such sums. 

THEOREM 3.6. Let the sequence {ak} have the order type 

. . . + M(D + M(0) + M(i) + . . . + H(m) + • • • 
where each order type fi t is either null, finite, co, or *co; and let the total number 
of entries co or *co be denoted by N. Let the augmented sum 

S = E ' | A a * r = . . . + E \*ak\* + do*+ T, \Aak\
p + df + . . . 

A' ( -1 ) (0) 

be finite. Then 
(a) 5* exists and 5* < S. 
(b) E has at most N connected components. 
(c) S* has the form 

S * = S V = E E |Aa**|* 
3 3 Aak*COj 

where the summation over j contains at most N + 1 terms. 

Proof. We use Theorem 3.1 for each of the subsequences of type co or *co. 
By the span of a subsequence, we shall mean the least closed interval of the 
real axis containing every term of the subsequence. Clearly the limit set of 
the subsequence is contained in the span. 

For a typical subsequence of order type, say ju(m), we find a connected 
limit set E(m) = [em,fm] and sums S*(W)y (j = 1, 2) associated with open sets 
0(m)j. By Theorem 3.1, 

Now sum over m, observing the overlap of any of the limit sets E(m). The 
combined limit set E = U ( w ) E(m) clearly has at most N components; let 
Oj (j = 1, . . . , / < N + 1) be the complementary open sets. Let 5*(w)0) 
denote the sum of the contributions to S*(m)i + S*(m)2 arising from Oj\ in 
this reckoning proportionate parts of any term \Aak\

p overlapping the end 
points of Oj are to be included in S*(m)(j)- Thus 

S*(.m)U) —Aj(m)OL \Aak*\p 
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where a = 0 if {Aafc*) C\ Où = 0, a = 1 if {Aa**} C Ojy and a denotes the 
fraction of {Aak*} contained in Oj otherwise. 

Consider first the case of an interval Oj that is bounded. Three cases can 
now arise. In the first case, there is an h such that Oj lies within the span 
of {o>k}(nh)- Then we have S* < «S^ooo), which can be shown as follows. The 
terms of other sections of the entire sequence falling in Oj subdivide further 
so that by repeated applications of Lemma 2.2 we see that the contributions 
to S* from any such interval are dominated by those of KS*U)(;). For the end 
point or "bordering" intervals which may be subdivided by the limit sets, 
say into part intervals of lengths h and /2, we have a contribution to S* of 
the form l-f. Since p > 1, and 

with /i = a{h + Z2), we again find that the contribution to S* is dominated 
by the corresponding term in S*(m)(j)> This shows that in the first case 

S* < S*(ft)o) <2-/(w) S*(m)U)-

In the second case, there is no spanning interval intersecting Oj. Since Oj 
is bounded above and below by limit sets, there must be at least one limit 
term, or border term dh

p, referring to an interval enclosing Oj. Clearly, in this 
case 

S* = \0j\v < dh*. 

The third case is a combination of the first two, with Oj being partially 
covered by spanning intervals. Each of the two (or three) subintervals of 0 ; 

so determined contributes a rearranged sum which may again be denoted 
by S* (with suppression of the two (or three) new labels) and which is again 
subject to one of the two foregoing types of estimate. 

Any unbounded intervals Oj remain to be considered. For these, however, 
only the first case will arise, since the range of the entire sequence is bounded 
by the full set of spanning intervals. 

We can now carry out the summation over m and j , and we find that 

3 (m) (j) (m) 
2 

(jri) j=l (m) 

(m) (m) 

= s. 
This completes the proof of part (a) of the theorem. Parts (b) and (c) 

are immediate consequences of the proof. 

Note that if the given enumerable sequence has c cuts and g gaps, then 
N = c + 2g+ (l-f) + (1 - / ) , 

where / (or /) = 1 if there is a first (or last) element and zero otherwise. 
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4. Rearrangements of functions. Let / b e a function measurable on 
the interval a < x < b. The equimeasurable decreasing rearrangement /* 
is conventionally defined as follows (1, p. 276). Let M(y) be the measure 
of the set upon which f(x) > y. Then f* is the translated inverse function 
of M; f*(a + x) = M~l(x). Note t h a t / * is monotonie decreasing, and that 
the measure of the set upon which /*(x) > y is also M(y). In particular, if 
fp is integrable, then 

r \f*(x)\pdx = r i/(x)i^x. 
J a Ja 

We shall prove in this section that the inequality 

f \f'(x)\pdx< f \f'(x)\pdx, p>l, 

holds for functions / satisfying the fundamental formula of calculus. The 
inequality is to be interpreted in the following sense: 

(1) If / ' e L\ then /*' G LP and the inequality holds. 
(2) If/*' Ç IP, then the integral of/'* is at least equal to that of /*'*, and 

may be infinite. 
The proof will be given by means of certain piecewise linear approximating 

functions pn(x), which are defined by subdividing the range of/. Our first 
lemma is a proof of the inequality for functions of this special type. 

We assume that the number of subdivision points is finite. 

LEMMA 4.1. Let p(x) be a piecewise linear function on (a, 6), and let p*(x) 
be its decreasing rearrangement. Then p*(x) is also piecewise linear, and 

f \p*'(x)\pdx< f \p'(x)\pdx, P>1, 
*J a »a 

with equality only if p (x) is monotonie. 

Note that the derivatives of p(x) and p*(x) exist almost everywhere. 

Proof. Let x±, . . . , xm be the subdivision points of p (x) and let y±, . . . , ym 

be the values of p{x) at these subdivision points, ranged in decreasing order: 

yi > yi • . • > ym-

Consider the range yk > p(x) > yk+i- If the graph of p(x) traverses this 
range once only, then the portion of the graph p* (x) in this range is a straight 
line with negative slope having the same absolute value. Thus 

\p*'(x)\ < \p'(x)\ 
in this set. 

If the graph of p(x) traverses this range two or more times, then the portion 
of the graph of p*(x) for this range is again a straight-line segment with 
negative slope, but the length of the corresponding domain (x-interval) is 
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the sum of the lengths of the various x-intervals for the graph of p(x). Since 

run = rise/slope, 

and since the rise yk — yk+i is the same for all the x-intervals involved, we 
find that 

1 q 1 

!FwT = SFfe)T' 
where q is the number of x-intervals for the graph of p(x), and xk is a typical 
point of the Mh interval. Also x* denotes a point of the interval for p*{x). 

Thus 
\p*'(**)\<mm\p'(xk)\ 

l<Jc<q 

with equality only for the case of a single interval. The result now follows 
immediately. 

A piecewise linear function p(x) will be called a PL approximation to a 
function/(x) if the corners (subdivision points) of the graph of p(x) lie on the 
graph of f(x). That is, the graph of p(x) is formed by joining a finite number 
of points of the graph of f(x) by straight-line segments. 

LEMMA 4.2. If pix) is a PL approximation to f(x) on [a, b], then 

f \p'(x)\vdx< f \f'(x)\pdx, 

with equality only if f(x) = p (x) almost everywhere. 

Proof. Let xk, xk+i be consecutive subdivision points of p(x), and note that 

f(xk) = p(xk), f(xk+1) = p(xk+1)} 

P'{x) = / f e + l ) ~ / f e ) , xk < x < x,+1. 
Xk+i — Xk 

Considering now only the interval [xk, xk+i], we have 

r+i\p'(x)\pdX=i/fe+i)-/fe)ii, 
J xk \Xk+i Xk\ 

By hypothesis the fundamental formula of calculus holds for / . Thus 

J *Zk+l I 

l.f'(s)ds\ 
Xk I 

„ irwr*) (J„ '•*) . 
by Holder's inequality, where p > 1, and 

P a 
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Thus 

irwdsixM-xti*-1 
Zk 

and hence 

\p'(x)\pdx< \f'(x)\pdx. 
xk J xk 

Note that equality holds for Holder's relation only if f(s) is proportional to 
1, that is, constant. 

The conclusion of the lemma is now obtained by summation over the sub-
intervals. 

Consider the rearranged function f*(x), which is monotonie and so has a 
derivative almost everywhere (4, p. 358). 

LEMMA 4.3. Let xi, x2l . . . denote a sequence dense in [a, b], and let pn*(x) 
be the PL approximation to f*(x) with subdivision points xi, . . . , xn. Then the 
sequence of derivatives pn*'(x) tends to f*'(x) almost everywhere in [a, b]. 

Proof. Let E denote the set 

E = {x\ a < x < b, f*'(x) exists, x ^ xk), 

which clearly has measure (b — a). We shall show that the result holds in E. 
For x G E, 

^o h 

exists. Given e > 0, there is a 3(e) > 0 such that 

f*(x + h) -f(x) =h\f*'(x)+v], 

where \rj\ < e whenever \h\ < 3(e). 
Let %n denote the least member of the sequence X\, . . . , xn that exceeds x, 

and suppose n is so large that %n — x < 5(e). Also let %n denote the greatest 
member of Xi, . . . , xn that does not exceed x, and suppose n so large that 
x — %n < 5(e). Since 

Pn*(Sn) =/*(f»)» P»*(Zn) = /*(*»)> 

therefore £„*(£») - / * ( * ) = fe ~ %)U*'(x) + Vi], where |^i| < e. Also 

/>»*(r») - r w = (* - r»)[/*'(*) + ^ ] , 
where \rj2\ < e. Therefore, by subtraction, 

Pn*(£n) - Pn*(ïn) = & " f») [/*'(*) + ^ ] , 

where 

_ fe - X)rii + (X — tn)V2 
s w In 
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It follows that 
|rç3| < max(|iji|, \rj2\) < e. 

Dividing by £n — fn in the previous formula, we obtain 

Pn*'(x) = *>•*&> -ft»*fr»> = f*'(X) + „,. 
Çn Çn 

Since e is arbitrary, it follows that 

lim*^, £„*'(*) = /* ' (*) , x ê £ . 

This completes the proof of Lemma 4.3. 

THEOREM 4.1. If f(x) has domain [a, &], and the equimeasurable decreasing 
rearrangement of f(x) is denoted by f*{x), then 

V\f'(x)\vdx< f\f'(x)\*dx, p>l, 

with equality only when f(x) is monotonie. 

Proof. As in the proof of Lemma 4.3, we choose a dense sequence xk* in 
[a, b], and a sequence of PL approximations pn*(x) to f*(x) in [a, b]. Let 

yk =j*(xk) = pn*(Xk), k, n = 1, 2, . . . . 

Now let zki, zk2, . . . be the points of [a, b] such that 

fteki) = J*-

We define a corresponding PL approximation pn{x) to f(x), based upon the 
set of all the subdivision points zkh where k < n. 

Consider the equimeasurable decreasing rearrangement of pn(x), which is 
the decreasing piecewise linear function taking the value yk at the subdivision 
point x = M(yk) where M(yk) is the measure of the set 

{x\f(x) > yk}. 

Since f*(x) is the equimeasurable decreasing rearrangement of / (x) , we have 

*n[x\f*(x) > yk) = M(yk) = xk*. 

The piecewise linear decreasing function with range subdivided at yi, . . . , yn 

and domain subdivided at X\ , . . . , Xfi n a s already been denoted by pn*(x)-
Thus the * notation is justified by the fact that the PL approximation of the 
rearrangement is the rearrangement of the PL approximation. This is a 
general property valid provided that the subdivisions are taken with respect 
to the range of the functions involved. 

From Lemma 4.3 we now conclude that 

Pn*'(x) ->f'(x), n-+cof 
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almost everywhere in [a, b]. Since \pn*(x)\p > 0, we may conclude by Fatou's 
lemma (4, p. 346) that 

f \f*'(x)\pdx < lim f \pn*'(x)\*dx. 
*J a n-^co v a 

By Lemma 4.1 we see that the integral on the right is dominated by the 
corresponding integral for \pn'(x)\p, and hence that the right-hand side is not 
greater than 

lim I \pn
f(x)\pdx. 

TI-HD *J a 

Since pn(x) is a PL approximation to f(x) on [a, b], we now find from 
Lemma 4.2 that this latter expression does not exceed 

\h\f(x)\*dx, 

which integral is independent of n. This completes the general proof of Theorem 
4.1. Whenever/(x) is not monotonie, it is easy to find a sequence pn(x) having 
the same property, uniformly, and thus, by Lemma 4.1, to establish the strict 
inequality. 

Our hypothesis that / satisfies the fundamental formula of calculus is satis­
fied, for example, if/ is absolutely continuous in a < x < b, or if (4, p. 368) 
fix) exists everywhere and is finite and integrable. I t would be interesting 
to have a proof for functions of bounded variation, which are not covered by 
our present hypothesis. 

5. Decreasing rearrangements of functions on an infinite interval. 
Whereas the decreasing equimeasurable rearrangement of a function defined 
over a finite interval (a, b) is well determined, there are functions defined 
over the infinite interval (0, <» ) for which the usual definition of the decreasing 
rearrangement yields a trivial result. In this section we shall generalize the 
construction of such decreasing rearrangements of functions, obtaining in 
general a many-valued decreasing function that happens to be single valued 
in all cases where the usual definition applies non-trivially. In the following 
section we shall show that the fundamental inequality of this paper holds for 
such generalized decreasing rearrangements, where integration is taken over 
all branches of the many-valued function. 

The portion of the range of / covered by these branches corresponds in the 
case of sequences (§3) to the portion of the range wherein the sequence is 
not dense. To the dense portion of the range of the sequence corresponds 
the remaining portion of the range of the function which has a property now 
called "asymptotic dense." 

Given a measurable function / with domain an infinite interval such as 
(0, oo ) or ( —oo, co), we shall say t h a t / is asymptotically dense at the value 
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b of its range if the measure of the set 

{x\ \f(x) -b\<e\ 

is infinite for every e > 0. 
I t is easily shown that the set of points b of the range at which/ is asymp­

totically dense is closed. 
If/ is asymptotically dense for some b > 0, then m{x\f(x) > 0} = <*> and 

it follows that according to the usual definition the equimeasurable decreasing 
rearrangement of / is constant on an infinite interval. Thus the behaviour 
of / in any other portion of the range is obscured. To preserve the behaviour 
of / in all such intervals where the decreasing rearrangement is not trivially 
constant, we consider the open set of range points wherein / is not asymptotic­
ally dense. 

Being open, this set consists of open intervals Oj. Select any such open 
interval OJ; if it is bounded, choose its mid-point and if unbounded choose 
any one fixed interior point, and call this point bj. 

In effect, we now apply a conventional and suitable rearrangement process 
t o / — bj, and then translate the rearranged graph upward by bj. An equiva­
lent description of the rearrangement process for this interval, or branch, is as 
follows. Given any b £ Oj, b > bj, let a = — m(x\ b > f(x) > bj); and then 
let the point (a, b) be adjoined to the graph of/*. Similarly, for b £ Oj, b < bj, 
let a = m(x\ bj > f(x) > b), and adjoin (a, b) to the graph of /*. If / is 
constant on a set of finite measure, the graph of /* should also include a 
segment of corresponding length parallel to the x-axis. 

For b £ Oj, the graph so obtained defines a single-valued function / / with 
range Oj and domain D y a connected subset of the real numbers that includes 
the origin. The domain Dj may have finite or infinite length, and in general 
depends on the interval index j . 

The function //* is non-increasing and equimeasurable with / in the range 
interval Oj. 

We now define the generalized equimeasurable decreasing rearranged 
function f* as the (in general many-valued) function with graph the (count­
able) union of the graphs o f / / for a l l / . The domain of/* is the union of the 
domains of all f* while the range of /* is the open subset of the range of / in 
which / i s not asymptotically dense. 

If / is nowhere asymptotically dense, then the graph of /* consists of one 
branch, so that /* is single valued. 

Observe that a periodic function is everywhere asymptotically dense in 
its own range. By inserting periodic components at periodic positions in a 
given infinite domain, it is possible to construct a function that is asymptotically 
dense in any given countable set of closed intervals. 

6, Unbounded domains. The preceding results can be extended to func­
t ions / defined on infinite intervals such as (0, °° ) or ( — 00,00). However, we 
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encounter certain complications analogous to those of infinite sequences in 
§ 3. I t will therefore be advantageous to define the rearrangement of an 
unbounded function in the more general sense just described in § 5. The result 
is, as before, the integral I* associated with the rearranged function existing 
in all cases and satisfying the inequality 7* < / . 

For our first lemma, we show that as long as the range of a function / is 
not increased, then the integral J \f*'(x)\p dx is a non-increasing set functional 
of the domain of/. 

LEMMA 6.1. Let fi have range R\ and domain D\. Let f2 be the restriction of 
/ i to a domain D2 C Di, such that the range of f2 is also R±. Let fi* and /2* de­
note the equimeasurable decreasing rearrangements of fi and f2. Then for p > 1 

f i/i*'(*)i*d*< f \fr(x)\vdx. 

Proof. As in § 4, Lemma 4.3, let [xi, x2, . . .] be a sequence of subdivision 
points dense in Di, and let pn*(x), qn*(x) respectively be the PL approxima­
tions to fi*(x)y /2*(x) with subdivision points [xi, . . . , xn]. (For qn* we may 
omit the subdivision points not in D2.) 

Observe that/2*(x) < / i*(#) and consequently qn*(x) < Pn*(x), for x G D2. 
Thus the graphs of / i* and of pn* are more "stretched out" parallel to the 
x-axis than those of f2* and qn*. Given any Ay, the corresponding Ai x for 
/ i* is not less than the À2 x for /2*. Consider any sufficiently small interval 
of the range Ri containing in its interior no vertices of pn* or qn*. The con­
tribution from qn* may be written as 

\qn*'(x)\*A2x = \Ay/A2x\pA2x = \Ay\*/\A2 x\p~\ 

while the contribution for pn* is 

\pn*'(x)\pA1x = I A ^ / A I X ^ A I X = \Ay\p/\A1x\p~\ 

where A2 x < Ai x. Since p > 1, the latter does not exceed the former. 
Summing over the range, we find that 

f \pn*'(x)\*dx< f \qn*'(?c)\*dx. 

Now let n —> «>. As in Lemma 4.3 we find that pn*'(x) tends to f±*'(x) almost 
everywhere in Z>i, while qn*' (x) tends to /2*' (x) almost everywhere in D2. By 
the general convergence theorem of Lebesgue (4, p. 345) we therefore find 
the inequality stated in Lemma 6.1. 

Observe that whereas J\f*'(x)\p dx is a non-increasing functional of the 
domain (the range being fixed), the integral f\f'(x)\p dx is a non-decreasing 
functional under the same conditions. In the particular case f(x) ~ f*(x) 
the integral must then be constant. But in this case f(x) is monotonie and if 
the range is held fixed / must be constant in the additional intervals of the 
domain. 
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The next lemma shows that the integral considered is a monotonie increasing 
set functional of the range of the function. 

LEMMA 6.2. Letfi have domain D\ and range R% C Ri- Let f^ be the restriction 
of fi to the domain D2 determined by the requirement that the range R2 of f2 be 
a given subset of Ri. Then 

f \ft*'(x)\'dx< f |/i*'(x)|pdx. 
*) Z>2 +> D\ 

The proof of this lemma is immediate since the extension of the range 
introduces new elements into the domain while leaving unchanged those 
already present. 

Given the function/: x—*f(x) with (infinite) domain D> and range R, let 
the restriction of/ to the interval a < x < b be denoted by/a ,& , and let the 
further restriction of/a,& to the range K < / < L be denoted by fatb;KtL. 

Note that fa,b;K,L is a proper restriction of fa,b only if the range of /Œ|& is 
not included in the interval K < / < L. 

The equimeasurable decreasing rearrangements of these restricted functions, 
each on their own domain, will be denoted as before by asterisks, thus/*a>&; 
/ * a,b;K,L-

We now define 

i£->—00 6->oo 
a->—co 

iminf I/Î.W,. 
(a,&) *> a 

/ * = lim liminf I/*'»;*.*(*)!*<& 

We shall show that I* is in general less than or equal to 

1= (\f'(x)\*dx. 

THEOREM 6.1. If I < °o, then I* exists and I* < / , with equality if and only 
if f is almost everywhere equal to a monotonie function. 

Proof. For each fa,b;K,L we have from § 4, Theorem 4.1 the inequality 

f \ft:>.K.L(x)\'dx < f \JUK,L{X)\Vdx. 

Since fa,b,-K,L is a restriction of / , the integral on the right does not exceed 
the corresponding integral / for the function / . Thus 

X \f*a:>;K.L(x)\P dx < I. 

Take any closed interval [K, L] properly contained within R. For (a, b) 
sufficiently large the domain of /a,& will include the domain specified by 
[K, L] as a subset. Thus for any larger values of (a, b) we find by Lemma 6.1 
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that the integral on the left above is a non-increasing set function of the 
domain (a, b). Thus, as (a, b) tends to the full domain D, the limit 

I*K,L = lim inf r\j*:t;K.L(x)\'dx 
(a, &)-»!> «^a 

exists. 
By the preceding inequality we also have I*K,L < ^-
By Lemma 6.2 it is easily shown that I*K,L is a non-decreasing set function 

of the range interval specified by (K, L). Since I*K,L is bounded above by 7, 
we see that as (K, L) tends to the full range R the limit 

7* = lim JP^K.Z, 
GK:,£)-»/> 

exists and is less than or equal to 7. This proves the main statement of the 
theorem. 

Il f is almost everywhere equal to a monotonie function, then the equality 
sign will clearly hold. If/does not have this property, then the strict inequality 
can be established for a suitable finite restriction of / , by the methods of 
§ 4. Considering separately the other portions of the domain and range for 
the given function / , the overall result with the strict inequality can then 
be verified. 

For sequences we found that the limit sets make no contribution to the 
rearranged sum. Likewise, for functions, we shall now show that the asymp­
totically dense portions of the range make no contribution to 7*. 

THEOREM 6.2. If the interval (K, L) is contained in that portion of the range 
wherein f is asymptotically dense, then 

lim fb\f*i;KtL(x)\vdx = 09 p>l. 

Proof. The function /* is monotonie and hence of bounded variation on 
(a, b). By (3, p. 15)/* can be expressed as the sum 0* + s* of a continuous 
non-increasing function </>* and a non-increasing saltus function 5* both of 
bounded variation. Since 5* (a) — s*(b) > 0, 

0 < </>*(» - 0*(6) < 0*(a) + 5* (a) - 0*(6) - s*(b) 

= f*(a) - / * ( £ ) , 
we have 

\<t>*(b) -4>*(a)Klf (6) -f*(a)\. 
Also 

almost everywhere on (a, b). 
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Therefore (3, 11.54, p. 361), 

f |/*'(*) | dx = - f /* ' (*) <& = - f </>*'(x) rfx 
• ' a J a "a 

< 0 * ( a ) - <£*(&) = | * * ( & ) - **(a)|. 

(Note that we are applying Titchmarsh's result to a non-increasing function 
and so must observe a change of sign.) 

Collecting these results, we have 
LEMMA 6.3. 

fb\f'(x)\dx< \f*(b)-f*(a)\. 

Returning to the proof of Theorem 6.2, we note that 

f \f'(x)\vdx< max \f (x)]^1 f \f*'(x)\dx 
aKxKb 

< max |/*,(x)|2?-1|/*(&) - / * ( a ) | . 

The second factor on the right is bounded by the range interval \L — K\. 
We shall show also that by choosing a and b large enough, the first factor 
on the right can be made arbitrarily small. 

Suppose, on the contrary, that for each (a, 6) and for any given e > 0, 
there is an x such that 

\f'(x)\ > e. 

Then there must exist an interval (xi, x2) (containing x, in general) such 
that the chord of the curve y = f* (x) meeting the curve at Xi and x2 has 
the slope of magnitude exceeding |e . Thus there is a closed interval (f*(xi), 
/*(x2)) of the range to which corresponds an x-interval of measure at most 

2e - i | / * (* i ) - / * ( x 2 ) | . 

As the interval (a, b) tends to infinity, say through a sequence of values 
(am bn), the magnitudes of the derivatives of the functions /*a>& at any place 
in the range will decrease or at least not increase. Thus let En be the closed 
set of range points such that 

\fZ,-K,L(x)\ > *. 

Then the sequence En is decreasing and, by hypothesis, each En is non-empty. 
Hence the intersection E of all En exists and is non-empty. Let the value/(xo) 
be any element of E. 
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Consider the branch of f*(x) formed by commencing a t / ( x 0 ) . The slope 
at (0,/(zo)) of this branch is a negative and increasing set function of (a, b) 
that is less than — Je for every (a, b) of the given sequence tending to D. 
Thus in the limit this slope exists and is less than — Je:/*'(()) < — Je. There­
fore there is an 77-interval, where rj > 0, about/*(0) = f(x0) such that t he /* 
chord of this interval has slope less than — Je. Finally, there exists an interval 
about /*(0) such that the corresponding x-measure is finite. Therefore f(x) 
was not asymptotically dense a t / ( x 0 ) . But this contradicts our hypothesis 
and completes the proof of the theorem. 

To derive the explicit form of our integral inequality, we return to the 
definition of I* and observe that the contributions of the asymptotically 
dense subsets of the range have been shown to vanish. Consider now the 
intervals Oj determined as in § 5 by the generalized decreasing rearrangement 
/*. If Oj is K < / < L, then we shall show that 

liminf f*\ft:»;K.L(x)\vdx= f \f?'(?c)\pdx. 
a, 6-̂ 00 ** a **Dj 

This result follows at once from the fact that f*a,b;K,L is equimeasurable 
to a "finite" non-increasing function f*j;a,b that is an approximation to / / 
in the range interval Oj. As (a, b) —> co y f*j;atb(x) —>fj(x) for every x 6 Dj 
while f*'j;a,b(%) tends monotonically to f*r{x). This completes the proof of 
the relation above. 

Taking the limit as (K, L) —-> 00, we obtain a summation over the range 
intervals 0}, and so find that 

00 / » 

i* = Y. \ !//'(*)I'd*. 

This yields the final form of the integral inequality, which we state as 

THEOREM 6.3. If f has generalized equimeasurable decreasing rearrangement 
f* with branches f* and domains DJ} then 

Ê f i//'(*)i*<fe< ri/'(«)I'd*, 
j=l *> Dj v-00 

equality holding only if f is almost everywhere monotonie, in which case f* is 
single valued. 

As in § 3 we have restrictions on the number of terms in the summation 
over j on the left side. 

LEMMA 6.4. If the domain of f is [0, 00), and if 

lPdx < oo, 

then the set E of asymptotic density of f is connected. 

J»oo 

l/'(*)l 
0 
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Proof. If £ is not connected, there exists a closed interval of positive length 
I separating points of E, and a sequence of intervals (cn, dn) (n = 1, 2, . . .) 
such that in each the graph of / crosses this same interval. By Lemma 4.2, 
we have 

TT~Z—F* < I \f'(x)\Pdx> « = 1 , 2 , 3 , 

Summing over n, we find that 

* * £ , , r P - i < I \f'{*)\'dx< ». 
n=i \an — cn\ *Jo 

If £ = 1, this is already a contradiction since XrT=i 1 is not finite. If p > 1, 
then |dn — cre|

_1 must tend to zero as n —> °°. But then the lengths dv — cn 

of the intervals tend to infinity with n. This contradicts our hypothesis that 
the separating range interval contains no points of asymptotic density, thus 
implying that the measure of the corresponding domain is finite. 

COROLLARY 6.4. If the domain of f is semi-infinite ([0, °°)), then there are 
at most two domains Dj in Theorem 6.3. 

This result corresponds to Corollary 3.5 for sequences and its proof is now 
immediate from Lemma 6.4. Likewise, we have a result for the doubly infinite 
range ( —°°, °°), for which the set E of asymptotic density has at most two 
connected components. 

COROLLARY 6.5. If the domain of f is doubly infinite ( —°°, °o), then there 
are at most three domains Dj in Theorem 6.3. 

Example 6.1. Let 

f(x) = 10 tanh x + sin log(l + x ) , — oo < x < oo . 

Then the asymptotically dense set consists of the intervals [ — 11, —9] and 
[9, 11], and there are three intervals Dj. 

Analogues for functions of the generalized order types considered in § 3 
would involve many-valued functions / . As these seem less natural than in 
the case of sequences, we omit further consideration of them. 

7. Inequalities for higher derivatives. Although rearrangement in­
equalities do not hold for second differences of sequences, as shown in § 2, 
there are inequalities for second and higher order derivatives of functions. 
We conclude by discussing these under hypotheses of ample differentiability. 

The basic relation giving the slope value for a rearranged functions is, as 
foreshadowed in §4, the uharmonic sum" relation 

(7.1) VI/*'WI=^i/!/'fe)l. 
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where the summation runs over all roots xk of the equation f(xk) = f*(x). From 
this relation follows 

(7.2) | / * ' ( x ) | < m i n „ | / ' ( x , ) | , 

which could be used to prove the basic integral inequality under less general 
conditions than those of § 4. The equality of measures in the original and 
the rearranged graphs can be heuristically represented by the relation 

(7.3) dx = Ylk dxk, 

where the summation is again taken over the roots xk of f(xk) = /* (x ) . Our 
results will be derived formally from (7.1) and (7.3), and their signed ana­
logues, namely 

(7.4) l/f*'(x) = £ * ± l / f ( * * ) 

(7.5) dx =^2 ±dxk, 

where a negative sign appears in all terms for which / ' (xk) > 0. 
Differentiating (7.4) with respect to x, we find that 

(7.6) f'(x) 
~ k Lf'fe)]2 dx ' 

From the relation 

(7.7) 
,dxk _ dy/dx f*'(x) 

we can then obtain the pointwise equation 

(7.8) /*"(*)/[/*'(*)i3 = Z * r (*,)/[/'(**)?. 
The strongest integral relation obtainable from (7.6) has the form 

(7-9) llf*'(x)fdx- Ja[f'(x')]idX-

From (7.2) and (7.6) we have 

\f"(x)\\dx\<j:k\f"(xk)\\dxk\, 
and since \dx\ = ^2k \dxk\, it follows from (1, p. 26, Theorem 16) that 

(7.10) \f*"(*)\v \dA < £ I /"Ml* \d**\> P>1-

Integration over the domain yields 

THEOREM 7.1. The basic inequality for second derivatives 

(7.11) f \f*"(x)\pdx < f \f"(x)\pdx, p > 1 
J a J a 

holds for f € C2[a,b]. 
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By successive differentiations a sequence of inequalities involving higher-
order derivatives can be established. For order higher than two, however, 
lower-order terms will also be present. Let 

(7.i2) Q^^r^imê^m-
Then 

(7.13) | \Qn(f,x)\pdx< f |Q»(f,*)|*d*, p>l 

n = 1, 2, 3, . . . . 

8. Conclusion. Extension of these inequalities to cover functions of 
bounded variation would be desirable. The basic property of the norms used 
is convexity and hence extensions to more general norms can be undertaken. 
In several dimensions a variety of analogous inequalities can be established. 
I am indebted to Professors P. G. Rooney and P. Scherk for their helpful 
suggestions in connection with this topic. 
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