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On Kloosterman Sums with Oscillating
Coefficients

Peiming Deng

Abstract. In this paper we prove: for any positive integers a and g with (a, q) = 1, we have uniformly

an lo %N 5logs N
S e () s {8 £l
n<N q q2 N5

(n,q)=1, ni=1(mod q)

This improves the previous bound obtained by D. Hajela, A. Pollington and B. Smith [5].

1 Introduction

For any positive integers a and g with (a, q) = 1, we write

an
(1) SINa,q) = > p(m)dy(n)e (—) ,
n<N 1
nii=1(mod q)
where p(n) is the Mobius function, §,(n) = 1 when (n,q) = 1 and 0 otherwise, and

e(x) = €2 for the real x.
In [5], Hajela, Pollington and Smith considered Kloosterman sums with the above type
of oscillating coefficients. They showed that

5 3 11
log N gii(logN)*
) S(N,a,q) <<Ez\nf{°gl + 4 (ii ) }
qz 5

which is valid for any positive integers a and g with (a,q) = 1,and 1 < g < N3 <. Interest
in estimating Kloosterman sums of this and similar types stem from applications to additive
problems with smooth coefficients; we refer to [3] for some examples. The purpose of this
paper is to sharpen (2) by proving the following theorem.

Theorem For any positive integers a and q with (a,q) = 1, and 1 < q < N/ log% N, we
have uniformly

1

log> N gilogs N
(3) SN, a,q) < Nd<q){ %8 = LT ;g }
qZ 5

where d(q) is the number of positive divisors of q.
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Under the generalized Riemann hypothesis, we show that
) S(N,a,q) <: 4:N*",

in the range 1 < q < N'~¢, which can be compared to our theorem.
From (1) we have

q
SIN,a,q) = Y 1(m)é,(n)e (%)

m=1 n<N
nm=1(mod q)

_ @(Lq) ZXI{Z X(mpu(n)} {; x(me (%) }

n<N

1
= —= Gla,) ) x(mu(n),
pla) <

n<N

where G(a, x) is the Gauss sum defined by

q
Gla, ) = Y x(m)e (%) .
m=1

It is known that ]
SN, a,q) < g* max| Y x(mpu(n)|

n<N

We conclude that (4) is true for any € > 0 under the generalized Riemann hypothesis.

2 Proof of the Theorem

The technique that we use to prove our theorem is an application of Vaughan’s identity [2],
[7] along with an estimate for incomplete Kloosterman sums [4], [6] which follows from
Weil’s estimate for Kloosterman sums. We first establish a suitable version of Vaughan’s
inequality.

Lemma 1 Let N, U,V be real numbers with 1 < U, 1 <V and UV < N, let f(n) be an
arithmetic function such that | f(n)| < 1 for all integers n. Then we have

> un) f)) KLU+V+ Y d(m)‘ > f(mr)’

n<N m<UV r<N/m

+ max Yélog%N{ Z ‘ Z ,u(t)f(ts)‘z}%

U<Y<N/V
<N/ Y<s<2Y V<t<N/s

(5)

Proof By Vaughan’s identity (see [2, p. 138]), we have

(6) D uln) fm) =S+ S, — S5 — Su,

n<N
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where

Si=Y um) f(n),  S5=> un) f(n),

n<U n<V

S = > weu) flr,  si= 3 w03 u@} fe).

str<N str<N d|s
s<U s>U d<U
t<V t>V

The trivial estimate yields |S;| < U, |S;| <V, and

= > A wouw} 3 fomn),

m<UV st<m r<N/m
<V
so that
@) S/ 3 dom| S fomn)|.
m<UV r<N/m

To estimate Sy, we use Cauchy’s inequality,

o= > (Cu@) Y owumsen

U<s<N/V d|s V<t<N/s
d<U
< Y de| Y u fen)
U<s<N/V V<t<N/s
< logN max 3 d(s)’ () f(st)’
Y<s<2Y V<t<N/s

< oo,y (2 #0) { X | 3 wos])

Y <s<2Y Y<s<2Y V<t<N/s

< logzN max Y%{ Z ‘ Z ,u(t)f(st)’z}%.

U<YLZN/V
/ Y<s<2Y V<t<N/s

The lemma follows from (6).
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The estimate for incomplete Kloosterman sums that we shall need is the following (see

(4, p. 36]):

Lemma 2 For any positive number N, we have

(8) > dy(me ( > < [%] (b,9) +q2d(q)(b, 9)* log q.
n<N
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Now, we can prove the theorem by using the above lemmas. Taking f(n) = §,(n)e( “")

in Lemma 1, if U, V are two parameters such that 1 < U,1 < V,UV < N, then

SN a, ) <U+V+ Y dom)| 3 6q(mr)e(%ﬁ1f>

m<UV r<N/m ’

) |

=\ |2\ 2
T

+logZ N max %< E E ()6 (st)e<£)‘ > .
¢ U<y<N/Vy V<t<N/sM ! 1

y<s<2y

It is known that

Z dn) < log* x.
n

n<x

By Lemma 2,

> d(m)

m<UV

Z 0 (mr)e( >‘ < Z d(m){% +q2d(q)logq}

(10) r<N/m m<UV

N 1
< 1 log’ N + UVq:d(q)log* N.

To estimate the last term of right hand side of (9), we have

= 2
D M(t)aq(st)e<%5t> ’

y<s<2y'V<t<N/s
as(t; — )
IRACEDY M(tl)u(tz)5q(t1)5q(tz)e<#>
y<s<2y V<t;<N/s 1
V<t,<N/s
S(f) — .
< Z Z %(s)e(u)‘
V<t;<N/y 'y<s<2y q
V<,<N/y
t b, 1 - - 1
< ¥ { UL IS —tz,q)zlogq}
V<t;<N/y 1
V<t,<N/y
y N
< = Z Z {—+1}+q2d(q long:d2 Z {ﬁ+1}
dlq V<t;<N/y dlq V<t;<N/y
N2 N2gid*(g)1 Ngd*(g)1
< qdy(q) + Nd() q (Zq) ogq  Ng (;1) 0gq
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By (9), we have

S(N,a,q) < U+V + N logzN + UVq]?d(q) log2 N+ log% NNdl(q)
(an T "

+ Nd(qx)lllogi N + Nq?d(q)llog3 N + N%q%d(q) log’ N.

Let
(12) U=N3g"¢V~3log® N,
then
(13) UVq:d(q)log® N + W < N3g3Vid(g)log® N.
Let
(14) V:N%q_%log_%N7
then
(15) N3g3Vid(g)log® N + M < N3gid(q)log® N.
It follows that
(16) S(N,a,q) < W + Ngq%d(q) log? N+ N%q%d(q) log3 N.

q

Sinceg < N/ log% N, we have N2g2 log’ N < Nigs log% N, moreover, 1 < V,1 < U,
and UV < N by (14) and (12). Thus (16) becomes

log% N N qé log? N
q2 N% ’

which completes the proof of the theorem.
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