On Kloosterman Sums with Oscillating Coefficients

Peiming Deng

Abstract. In this paper we prove: for any positive integers a and q with $(a, q)=1$, we have uniformly

$$
\sum_{\substack{n \leq N \\(n, q)=1, n \overline{\bar{n}} \equiv 1(\bmod q)}} \mu(n) e\left(\frac{a \bar{n}}{q}\right) \ll N d(q)\left\{\frac{\log ^{\frac{5}{2}} N}{q^{\frac{1}{2}}}+\frac{q^{\frac{1}{5}} \log ^{\frac{13}{5}} N}{N^{\frac{1}{5}}}\right\}
$$

This improves the previous bound obtained by D. Hajela, A. Pollington and B. Smith [5].

1 Introduction

For any positive integers a and q with $(a, q)=1$, we write

$$
\begin{equation*}
S(N, a, q)=\sum_{\substack{n \leq N \\ n \bar{n} \equiv 1(\bmod q)}} \mu(n) \delta_{q}(n) e\left(\frac{a \bar{n}}{q}\right) \tag{1}
\end{equation*}
$$

where $\mu(n)$ is the Möbius function, $\delta_{q}(n)=1$ when $(n, q)=1$ and 0 otherwise, and $e(x)=e^{2 x i x}$ for the real x.

In [5], Hajela, Pollington and Smith considered Kloosterman sums with the above type of oscillating coefficients. They showed that

$$
\begin{equation*}
S(N, a, q) \ll_{\varepsilon} N q^{\varepsilon}\left\{\frac{\log ^{\frac{5}{2}} N}{q^{\frac{1}{2}}}+\frac{q^{\frac{3}{10}}(\log N)^{\frac{11}{5}}}{N^{\frac{1}{5}}}\right\} \tag{2}
\end{equation*}
$$

which is valid for any positive integers a and q with $(a, q)=1$, and $1 \leq q \leq N^{\frac{2}{3}-\varepsilon}$. Interest in estimating Kloosterman sums of this and similar types stem from applications to additive problems with smooth coefficients; we refer to [3] for some examples. The purpose of this paper is to sharpen (2) by proving the following theorem.
Theorem For any positive integers a and q with $(a, q)=1$, and $1 \leq q \leq N / \log ^{\frac{3}{4}} N$, we have uniformly

$$
\begin{equation*}
S(N, a, q) \ll N d(q)\left\{\frac{\log ^{\frac{5}{2}} N}{q^{\frac{1}{2}}}+\frac{q^{\frac{1}{5}} \log ^{\frac{13}{5}} N}{N^{\frac{1}{5}}}\right\} \tag{3}
\end{equation*}
$$

where $d(q)$ is the number of positive divisors of q.
Received by the editors September 17, 1997; revised July 23, 1998.
AMS subject classification: 10G10.
Keywords: Kloosterman sums, oscillating coefficients, estimate.
(c)Canadian Mathematical Society 1999.

Under the generalized Riemann hypothesis, we show that

$$
\begin{equation*}
S(N, a, q) \ll_{\varepsilon} q^{\frac{1}{2}} N^{\frac{1}{2}+\varepsilon} \tag{4}
\end{equation*}
$$

in the range $1 \ll q \ll N^{1-\varepsilon}$, which can be compared to our theorem.
From (1) we have

$$
\begin{aligned}
S(N, a, q) & =\sum_{m=1}^{q} \sum_{\substack{n \leq N \\
n m \equiv 1(\bmod q)}} \mu(n) \delta_{q}(n) e\left(\frac{a m}{q}\right) \\
& =\frac{1}{\varphi(q)} \sum_{\chi}\left\{\sum_{n \leq N} \chi(n) \mu(n)\right\}\left\{\sum_{m=1}^{q} \chi(m) e\left(\frac{a m}{q}\right)\right\} \\
& =\frac{1}{\varphi(q)} \sum_{\chi} G(a, \chi) \sum_{n \leq N} \chi(n) \mu(n)
\end{aligned}
$$

where $G(a, \chi)$ is the Gauss sum defined by

$$
G(a, \chi)=\sum_{m=1}^{q} \chi(m) e\left(\frac{a m}{q}\right)
$$

It is known that

$$
S(N, a, q) \ll q^{\frac{1}{2}} \max \left|\sum_{n \leq N} \chi(n) \mu(n)\right| .
$$

We conclude that (4) is true for any $\varepsilon>0$ under the generalized Riemann hypothesis.

2 Proof of the Theorem

The technique that we use to prove our theorem is an application of Vaughan's identity [2], [7] along with an estimate for incomplete Kloosterman sums [4], [6] which follows from Weil's estimate for Kloosterman sums. We first establish a suitable version of Vaughan's inequality.
Lemma 1 Let N, U, V be real numbers with $1 \leq U, 1 \leq V$ and $U V \leq N$, let $f(n)$ be an arithmetic function such that $|f(n)| \leq 1$ for all integers n. Then we have

$$
\begin{align*}
\sum_{n \leq N} \mu(n) f(n) \ll U & +V+\sum_{m \leq U V} d(m)\left|\sum_{r \leq N / m} f(m r)\right| \\
& +\max _{U<Y \leq N / V} Y^{\frac{1}{2}} \log ^{\frac{5}{2}} N\left\{\sum_{Y<s \leq 2 Y}\left|\sum_{V<t \leq N / s} \mu(t) f(t s)\right|^{2}\right\}^{\frac{1}{2}} \tag{5}
\end{align*}
$$

Proof By Vaughan's identity (see [2, p. 138]), we have

$$
\begin{equation*}
\sum_{n \leq N} \mu(n) f(n)=S_{1}+S_{2}-S_{3}-S_{4} \tag{6}
\end{equation*}
$$

where

$$
\begin{gathered}
S_{1}=\sum_{n \leq U} \mu(n) f(n), \quad S_{2}=\sum_{n \leq V} \mu(n) f(n), \\
S_{3}=\sum_{\substack{s t r \leq N \\
s \leq U \\
t \leq V}} \mu(s) \mu(t) f(s t r), \quad S_{4}=\sum_{\substack{s t r \leq N \\
s>U \\
t>V}} \mu(t)\left\{\sum_{\substack{d \mid s \\
d<U}} \mu(d)\right\} f(s t) .
\end{gathered}
$$

The trivial estimate yields $\left|S_{1}\right| \leq U,\left|S_{2}\right| \leq V$, and

$$
S_{3}=\sum_{m \leq U V}\left\{\sum_{\substack{s t=m \\ s \leq U \\ t \leq V}} \mu(s) \mu(t)\right\} \sum_{r \leq N / m} f(m r)
$$

so that

$$
\begin{equation*}
\left|S_{3}\right| \leq \sum_{m \leq U V} d(m)\left|\sum_{r \leq N / m} f(m r)\right| \tag{7}
\end{equation*}
$$

To estimate S_{4}, we use Cauchy's inequality,

$$
\begin{aligned}
S_{4} & =\sum_{U<s \leq N / V}\left(\sum_{\substack{d \mid s \\
d<U}} \mu(d)\right) \sum_{V<t \leq N / s} \mu(t) f(s t) \\
& \left.\ll \sum_{U<s \leq N / V} d(s)\right|_{V<t \leq N / s} \mu(t) f(s t) \mid \\
& \left.\ll \log N \max _{U<Y \leq N / V} \sum_{Y<s \leq 2 Y} d(s)\right|_{V<t \leq N / s} \mu(t) f(s t) \mid \\
& \ll \log N \max _{U<Y \leq N / V}\left(\sum_{Y<s \leq 2 Y} d^{2}(s)\right)^{\frac{1}{2}}\left\{\sum_{Y<s \leq 2 Y}\left|\sum_{V<t \leq N / s} \mu(t) f(s t)\right|^{2}\right\}^{\frac{1}{2}} \\
& \ll \log ^{\frac{5}{2}} N \max _{U<Y \leq N / V} Y^{\frac{1}{2}}\left\{\sum_{Y<s \leq 2 Y}\left|\sum_{V<t \leq N / s} \mu(t) f(s t)\right|^{2}\right\}^{\frac{1}{2}} .
\end{aligned}
$$

The lemma follows from (6).
The estimate for incomplete Kloosterman sums that we shall need is the following (see [4, p. 36]):

Lemma 2 For any positive number N, we have

$$
\begin{equation*}
\sum_{n \leq N} \delta_{q}(n) e\left(\frac{b \bar{n}}{q}\right) \ll\left[\frac{N}{q}\right](b, q)+q^{\frac{1}{2}} d(q)(b, q)^{\frac{1}{2}} \log q . \tag{8}
\end{equation*}
$$

Now, we can prove the theorem by using the above lemmas. Taking $f(n)=\delta_{q}(n) e\left(\frac{a \bar{n}}{q}\right)$ in Lemma 1 , if U, V are two parameters such that $1 \leq U, 1 \leq V, U V \leq N$, then

$$
\begin{align*}
S(N, a, q) \ll U & +V+\sum_{m \leq U V} d(m)\left|\sum_{r \leq N / m} \delta_{q}(m r) e\left(\frac{a \bar{m} \bar{r}}{q}\right)\right| \\
& +\log ^{\frac{5}{2}} N \max _{U<y \leq N / V} y^{\frac{1}{2}}\left(\sum_{y<s \leq 2 y}\left|\sum_{V<t \leq N / s} \mu(t) \delta_{q}(s t) e\left(\frac{a \bar{s} \bar{t}}{q}\right)\right|^{2}\right)^{\frac{1}{2}} . \tag{9}
\end{align*}
$$

It is known that

$$
\sum_{n \leq x} \frac{d(n)}{n} \ll \log ^{2} x
$$

By Lemma 2,

$$
\begin{align*}
\sum_{m \leq U V} d(m)\left|\sum_{r \leq N / m} \delta_{q}(m r) e\left(\frac{a \bar{m} \bar{r}}{q}\right)\right| & \ll \sum_{m \leq U V} d(m)\left\{\frac{N}{m q}+q^{\frac{1}{2}} d(q) \log q\right\} \tag{10}\\
& \ll \frac{N}{q} \log ^{2} N+U V q^{\frac{1}{2}} d(q) \log ^{2} N
\end{align*}
$$

To estimate the last term of right hand side of (9), we have

$$
\begin{aligned}
\sum_{y<s \leq 2 y} & \left|\sum_{V<t \leq N / s} \mu(t) \delta_{q}(s t) e\left(\frac{a \bar{s} \bar{t}}{q}\right)\right|^{2} \\
& =\sum_{y<s \leq 2 y} \delta_{q}(s) \sum_{\substack{V<t_{1} \leq N / s \\
V<t_{2} \leq N / s}} \mu\left(t_{1}\right) \mu\left(t_{2}\right) \delta_{q}\left(t_{1}\right) \delta_{q}\left(t_{2}\right) e\left(\frac{a \bar{s}\left(\bar{t}_{1}-\bar{t}_{2}\right)}{q}\right) \\
& \ll \sum_{\substack{V<t_{1} \leq N / y \\
V<t_{2} \leq N / y}}\left|\sum_{y<s \leq 2 y} \delta_{q}(s) e\left(\frac{a \bar{s}\left(\bar{t}_{1}-\bar{t}_{2}\right)}{q}\right)\right| \\
& \ll \sum_{V<t_{1} \leq N / y}\left\{\frac{y\left(\bar{t}_{1}-\bar{t}_{2}, q\right)}{q}+q^{\frac{1}{2}} d(q)\left(\bar{t}_{1}-\bar{t}_{2}, q\right)^{\frac{1}{2}} \log q\right\} \\
& \ll \frac{y}{q} \sum_{d \mid q} d \sum_{V<t_{1} \leq N / y}\left\{\frac{N}{y d}+1\right\}+q^{\frac{1}{2}} d(q) \log q \sum_{d \mid q} d^{\frac{1}{2}} \sum_{V<t_{1} \leq N / y}\left\{\frac{N}{y d}+1\right\} \\
& \ll \frac{N^{2} d(q)}{q y}+N d(q)+\frac{N^{2} q^{\frac{1}{2}} d^{2}(q) \log q}{y^{2}}+\frac{N q d^{2}(q) \log q}{y} .
\end{aligned}
$$

By (9), we have

$$
\begin{align*}
S(N, a, q) \ll U & +V+\frac{N}{q} \log ^{2} N+U V q^{\frac{1}{2}} d(q) \log ^{2} N+\log ^{\frac{5}{2}} N \frac{N d(q)}{q^{\frac{1}{2}}} \\
& +\frac{N d(q) \log ^{\frac{5}{2}} N}{V^{\frac{1}{2}}}+\frac{N q^{\frac{1}{4}} d(q) \log ^{3} N}{U^{\frac{1}{2}}}+N^{\frac{1}{2}} q^{\frac{1}{2}} d(q) \log ^{3} N \tag{11}
\end{align*}
$$

Let

$$
\begin{equation*}
U=N^{\frac{2}{3}} q^{-\frac{1}{6}} V^{-\frac{2}{3}} \log ^{\frac{2}{3}} N \tag{12}
\end{equation*}
$$

then

$$
\begin{equation*}
U V q^{\frac{1}{2}} d(q) \log ^{2} N+\frac{N q^{\frac{1}{4}} d(q) \log ^{3} N}{U^{\frac{1}{2}}} \ll N^{\frac{2}{3}} q^{\frac{1}{3}} V^{\frac{1}{3}} d(q) \log ^{\frac{8}{3}} N \tag{13}
\end{equation*}
$$

Let

$$
\begin{equation*}
V=N^{\frac{2}{5}} q^{-\frac{2}{5}} \log ^{-\frac{1}{5}} N \tag{14}
\end{equation*}
$$

then

$$
\begin{equation*}
N^{\frac{2}{3}} q^{\frac{1}{3}} V^{\frac{1}{3}} d(q) \log ^{\frac{8}{3}} N+\frac{N d(q) \log ^{\frac{5}{2}} N}{V^{\frac{1}{2}}} \ll N^{\frac{4}{5}} q^{\frac{1}{5}} d(q) \log ^{\frac{13}{5}} N \tag{15}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
S(N, a, q) \ll \frac{N d(q) \log ^{\frac{5}{2}} N}{q^{\frac{1}{2}}}+N^{\frac{4}{5}} q^{\frac{1}{5}} d(q) \log ^{\frac{13}{5}} N+N^{\frac{1}{2}} q^{\frac{1}{2}} d(q) \log ^{3} N \tag{16}
\end{equation*}
$$

Since $q \leq N / \log ^{\frac{4}{3}} N$, we have $N^{\frac{1}{2}} q^{\frac{1}{2}} \log ^{3} N \leq N^{\frac{4}{5}} q^{\frac{1}{5}} \log ^{\frac{13}{5}} N$, moreover, $1 \leq V, 1 \leq U$, and $U V \leq N$ by (14) and (12). Thus (16) becomes

$$
\begin{equation*}
S(N, a, q) \ll N d(q)\left\{\frac{\log ^{\frac{5}{2}} N}{q^{\frac{1}{2}}}+\frac{q^{\frac{1}{5}} \log ^{\frac{13}{5}} N}{N^{\frac{1}{5}}}\right\} \tag{17}
\end{equation*}
$$

which completes the proof of the theorem.

Acknowledgement I am grateful to Professor A. Granville for advice and the referee for his kind help and suggestion.

References

[1] T. Apostol, Introduction to Analytic Number Theory. Springer-Verlag, 1976.
[2] H. Davenport, Multiplicative Number Theory. Springer-Verlag, 1980.
[3] J. M. Deshouillers and H. Iwaniec, Kloosterman Sums and Fourier Coefficients of Cusp Forms. Invent. Math. 70(1982), 219-288.
[4] P. D. T. A. Elliott, Arithmetic Functions and Integer Products. Springer-Verlag, 1984.
[5] D. Hajela, A. Pollington and B. Smith, On Kloosterman Sums with Oscillating Coefficients. Canad. Math. Bull. (1) 31(1988), 32-36.
[6] C. Hooley, On the Brun-Titchmarsh Theorem. J. Reine Angew. Math. 225(1972), 60-79.
[7] R. C. Vaughan, An Elementary Method in Prime Number Theory. Recent Progress in Analytic Number Theory, Academic Press, 1981.

Department of Mathematics
The Normal University of Guangxi
Guilin, Guangxi 541004
P.R. China

