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Multisymplectic Reduction for Proper
Actions

Jędrzej Śniatycki

Abstract. We consider symmetries of the Dedonder equation arising from variational problems with

partial derivatives. Assuming a proper action of the symmetry group, we identify a set of reduced

equations on an open dense subset of the domain of definition of the fields under consideration. By

continuity, the Dedonder equation is satisfied whenever the reduced equations are satisfied.

1 Introduction

Multisymplectic formulation of a variational problem is implicit in the works of

Th. Dedonder [9], and Th. H. J. Lepage [17]. A comprehensive review of early works

can be found in [12]. It was rediscovered in the late sixties in the context of relativistic

field theories, mainly because it provides a covariant transition from the Lagrangian

formulation to the infinite-dimensional Hamiltonian formalism. A comprehensive

list of references can be found in [1], [13], [14], see also [16]. The current revival is

related to the discovery of multisymplectic integrators, see [19], [20], [2], and refer-

ences quoted there.

There are four levels of approach to second-order partial differential equations

arising from variational problems:

• variational approach in which points are evolutions of the fields under considera-

tion,
• infinite-dimensional Hamiltonian approach on the space of Cauchy data,
• multisymplectic formulation on the first jet bundle of the fields, and
• Euler-Lagrange equations.

The Euler-Lagrange equations of a variational problem are second-order differential

equations. On the other hand, in the multisymplectic approach we are dealing with

a system of equations in exterior differential forms on the first jet bundle, in which

we can forget about the target map associating to a 1-jet the value of the fields at the

same source point. For this reason, a study of symmetries of the theory which do not

preserve the target map is easier in the multisymplectic approach than on the level of

the Euler-Lagrange equations.

Reduction of symmetries of various types of dynamical systems has been stud-

ied quite extensively, see [5] and hundreds of references quoted there. In most cases
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Multisymplectic Reduction for Proper Actions 639

one assumes that the symmetry group acts properly on the space on which one stud-

ies equations of motion. Hence, each of the approaches listed above can handle a

different class of symmetry groups. For example, time dependent gauge transforma-

tions can be studied in the framework of the variational approach [18]. The space

of Cauchy data approach enables one to discuss reduction of the group of time inde-

pendent gauge transformations [21], [22]. Since the group of gauge transformations

does not act properly on the first jet bundle, neither the multisymplectic formula-

tion nor the Euler-Lagrange equations approach are suitable for the discussion of

reduction of gauge symmetries, at least in terms of the commonly used techniques

which require properness of the action. Finite-dimensional symplectic reduction of

the zero level of the momentum map for an improper group action has been success-

fully treated in [23]. However, it requires techniques which we have not been able to

extend to infinite-dimensional Hamiltonian systems.

If the fields under consideration are local sections σ : M → Q of a fibre bundle

µ : Q → M, then the Lagrangian of the theory gives rise to an exact form Ω on the

first jet bundle P of Q such that σ satisfies the Lagrange-Euler equations if and only

if its jet extension j1σ satisfies the equation

(1) ( j1σ)∗(X Ω) = 0

for all vector fields X tangent to the fibres of the source map α : P → M [9].

Let β : P → Q denote the target map. A multisymplectic theory is said to be

regular if, for every local section ρ : M → P of α such that

(2) ρ∗(X Ω) = 0

for all vector fields X tangent to the fibres of α, the section σ = β ◦ ρ of µ satisfies

the Lagrange-Euler equations. We refer to equation (2) as the Dedonder equation.

Regular multisymplectic theories include the relativistic theory of scalar field, Yang-

Mills theory, and general relativity1 [1].

The aim of this paper is to discuss reduction of symmetries of multisymplectic the-

ories under the assumption that the action of a finite-dimensional symmetry group G

on P is proper, and G-orbits are contained in the fibres of the source map α : P → M.

The reduction is performed in terms of a G-invariant Riemannian metric k on P,

which is used to define directions normal to G-orbits.

In the multisymplectic approach conservation laws are expressed by the vanish-

ing of the divergence of appropriate currents. Constants of motion are given by the

integrals of conserved currents over Cauchy surfaces, and are defined only in the

infinite-dimensional formulation in the space of Cauchy data. Moreover, the De-

donder equation (2) admits neither existence nor uniqueness theorem. In order to

obtain existence and uniqueness theorems one also has to proceed to the Cauchy

data space formulation. Hence, the presented multisymplectic reduction of symme-

tries does not lead to the same degree of simplification as in the case of Hamiltonian

systems.

1The Hilbert Lagrangian of general relativity depends linearly on the second jets of the metric tensor.
This requires a modification of the definition of the form Ω.
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For each p ∈ P, there is a submanifold N of P consisting of points of the same

orbit type (see the discussion following equation (12)). The G-invariant metric k

on P enables us to decompose the tangent bundle to P along N into TN and its

k-orthogonal complement T⊥N . Moreover, TN can be split into the vertical compo-

nent, ver TN , tangent to G-orbits in N and its k-orthogonal complement, hor TN ,

(see equation (15)). This gives rise to a splitting of the Dedonder equation into three

equations. We identify the structure of each of these equations in terms of the geome-

try of the orbit space. The first reduced equation is of the form of an inhomogeneous

Dedonder equation with the right hand side given by the interaction of the degrees

of freedom in hor TN and ver TN . The second reduced equation is an invariant

form of the conservation laws. The third reduced equation involves the structure of

links of the stratification of the orbit space. In the case when the action of the sym-

metry group is free, the third reduced equation is vacuously satisfied. We illustrate

the general theory with a simple example of a complex relativistic scalar field with a

U (1)-invariant potential.

2 Relationship to Variational Problems

We consider here the multisymplectic dynamics of fields represented by local sections

σ : M → Q of a fibre bundle µ : Q → M. We denote by P = J1(Q) the bundle of

1-jets of sections of µ, and by α : P → M and β : P → Q the source and the target

map, respectively. For each x ∈ M, elements of α−1(x) ⊂ P are equivalence classes

j1
xσ of local sections σ of µ, under the equivalence relation σ ∼ σ ′ if and only if

the derived maps Tσ : TM → TQ and Tσ ′ : TM → TQ coincide at x, that is if

Txσ = Txσ
′. For each section σ of π with domain U ⊆ M, we denote by j1σ : U → P

the 1-jet extension of σ given by j1σ(x) = j1
xσ for every x ∈ U .

We denote by L : P → R the Lagrangian of the theory and by ϑ a volume form on

M. There are several forms Ω on P such that a local section σ of π satisfies the Euler-

Lagrange equations for L, if and only if its first jet extension j1σ satisfies equation (1)

[17]. Here we take

(3) Ω = dΘ,

where Θ is a form introduced by Dedonder [9], which satisfies the condition

(4) u1 (u2 Θ) = 0 ∀u1, u2 ∈ ker Tα.

We refer to Θ as the Dedonder form2 for L, and to Ω as the corresponding multisym-

plectic form.

In terms of local coordinates (xµ, qA, pA
µ) on P, a section σ : M → Q of π is given

by qA = qA(x) and its first jet extension j1σ by qA = qA(x) and pA
µ = qA

,µ(x), where

qA
,µ(x) denotes the derivative of qA(x) with respect to xµ. We assume that the co-

ordinates are such that locally ϑ = dx1 ∧ · · · ∧ dxn ≡ dnx, and use the notation

2This form appears in the literature also as a Poincaré-Cartan form or a Hamilton-Cartan form. How-
ever, in [3], E. Cartan attributed it to Th. Dedonder.
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dxµ =
∂

∂xµ ϑ. If L = L(xµ, qA, pA
µ) is the coordinate expression for the Lagrangian,

then

(5) Θ =
∂L

∂pA
µ

dqA ∧ dxµ +
(

L − pA
µ

∂L

∂pA
µ

)

dnx.

Let ρ : M → P be a local section of the source map α : P → M. In local coordi-

nates (xµ, qA, pA
µ) it is given by qA = qA(x) and pA

µ = pA
µ(x). The Dedonder equations

(2) for ρ are

∂2L

∂pB
ν∂pA

µ

qA
,µ(x) =

∂H

∂pB
ν

,

( ∂2L

∂qB∂pA
µ

−
∂2L

∂qA∂pB
µ

)

qA
,µ(x) =

∂H

∂qB
,

where H = pA
µ

∂L
∂pA

µ
− L.

3 Symmetries of an Abstract Dedonder Equation

We can abstract from most of the structure used in the derivation given in the pre-

ceding section. We consider a locally trivial fibration α : P → M, with dim M = n,

and an (n + 1)-form Ω on P such that

(6) dΩ = 0,

and

(7) u1

(

u2 (u3 Ω)
)

= 0 ∀u1, u2, u3 ∈ ker Tα.

We refer to Ω as the multisymplectic form of the theory, and consider local sections

ρ of α : P → M satisfying the Dedonder equation

(8) ρ∗(X Ω) = 0

for all vector fields X on P tangent to the fibres of α : P → M.

Let

(9) Φ : G × P → P : (g, p) 7→ Φg(p) ≡ g · p

be a proper action of a Lie group G on P which preserves Ω and induces the identity

transformation on M. In other words,

(10) Φ
∗
g Ω = Ω, and α ◦ Φg = α

for all g ∈ G. We denote by P̄ = P/G the space of G orbits on P, and by π : P → P̄

the orbit map. By hypothesis, for each p ∈ P, the fibre of π through p is contained in

the fibre of α : P → M through p, and there exists a smooth map αP̄ : P̄ → M such

that α = αP̄ ◦ π.
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4 Orbit Type

The orbit space P̄ = P/G of a proper action is a stratified space, [10], and it has

a decomposition as a union of manifolds which are called strata. We shall use this

decomposition to determine the reduced equations and the invariant form of con-

servation laws in each stratum.

For each p ∈ P, the isotropy group of p is

(11) Gp = {g ∈ G | g p = p}.

Since the action of G on P is proper, all isotropy groups are compact. For each com-

pact subgroup K of G, we consider the set

(12) P(K) = {p ∈ P | Gp is conjugate to K},

consisting of points of orbit type K. Each P(K) is a local submanifold of P. Moreover,

the projection π(P(K)) ⊆ P̄ is locally a manifold [15], [6].

Let N̄ be a connected component of π(P(K)) and N = π−1(N̄). Since π(P(K)) is

locally a manifold, it follows that N̄ is a manifold, and N is a submanifold of P. Let

πN : N → N̄ be the projection map defined by the restriction of π to N . Similarly,

we denote by αN : N → M the restriction of α to N and by αN̄ : N̄ → M the unique

map such that αN = αN̄ ◦ πN . The action of G on P preserves N , and it induces an

action of G on N such that N̄ is the space of G-orbits on N , and πN is the orbit map.

Using the pull-back to N of the G-invariant metric k on P, we obtain a decompo-

sition TN = ver TN ⊕ hor TN . The action of G on N preserves ver TN and hor TN

separately. The space of G-orbits in hor TN can be identified with TN̄, and the orbit

map with TπN restricted to hor TN . Let

(13) VN̄ = (ver TN)/G

denote the space of G-orbits in ver TN , and γN : ver TN → VN̄ the orbit map. The

space VN̄ is a vector bundle over N̄ with projection map ϑN̄ : VN̄ → N̄ such that

ϑN̄ ◦ γN = πN ◦ (τTN | ver TN). Let T⊥N be the k-orthogonal complement of TN

in the restriction TN P of TP to N . In other words, for each p ∈ N ,

(14) T⊥
p N = {v ∈ TpP | k(v, w) = 0 ∀w ∈ TpN}.

We have a direct sum decomposition

(15) TN P = T⊥N ⊕ ver TN ⊕ hor TN.

Suppose that ρ is a local section of α : P → M with domain U such that ρ(U ) ⊆
N . We denote by ρN : U → N the local section of αN defined by ρ. It is uniquely

defined by the condition ρ = ρN ◦ ιN , where ιN : N → P is the inclusion map. We

denote by ρN̄ : U → N̄ the projection of ρN to a section of αN̄ : N̄ → M. In other

words,

(16) ρN̄ = πN ◦ ρN .
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We can split TρN into its horizontal component, hor TρN , with values in hor TN and

the vertical component, ver TρN , with values in ver TN , and write

(17) TρN = hor TρN ⊕ ver TρN .

Clearly, TπN ◦ hor TρN = TρN̄ , so that all the information provided by TπN ◦

hor TρN is already encoded in ρN̄ . Additional information is carried by

(18) ρ]
N = γN ◦ ver TρN : TU → VN̄ .

We shall study the Dedonder equation (2) for ρ in terms of the decompositions (15)

and (17).

The assumption that U is open, non-empty and ρ(U ) ⊆ N implies that Tpα maps

Tρ(U )N onto TU M and Tρ(TU ) ⊆ Tρ(U )N , where Tρ(U )N denotes the restriction of

TN to ρ(U ). Since Tρ(U )P = kerρ(U ) Tα ⊕ Tρ(TU M) = Tρ(U )N ⊕ T⊥
ρ(U )N it follows

that

(19) kerρ(U ) Tα = kerρ(U ) TαN ⊕ (T⊥
ρ(U )N ∩ kerρ(U ) Tα).

Consider the vector field X in the Dedonder equation (2). It appears in the equations

only through its values at points of ρ(U ), and it has values in ker Tα. We can decom-

pose the restriction XN of X to points of N into its components corresponding to the

decomposition (15) obtaining

XN = hor XN + ver XN + X⊥
N .

This gives rise to the decomposition of the Dedonder equation into three sets of equa-

tions

ρ∗N (hor XN Ω) = 0,(20)

ρ∗N(ver XN Ω) = 0,(21)

ρ∗N (X⊥
N Ω) = 0,(22)

for all vector fields XN with values in ker Tα.

5 The First Reduced Equation

For every x ∈ U , evaluating the left- hand side of equation (20) on u1, . . . , un ∈ TxM,

and taking into account equation (7), we obtain

ρ∗N (hor XN (p) Ω)(u1, . . . , un)

=

n
∑

k=1

(−1)k
[

ver TρN (uk) (hor XN(p) Ω)
](

hor TρN (u1), . . . , hor TρN (un)
)

+ (hor XN (p) Ω)
(

hor TρN (u1), . . . , hor TρN(un)
)
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where p = ρN(x). Hence, equation (20) at p = ρ(x) is equivalent to

n
∑

k=1

(−1)k
[

ver TρN (uk)
(

hor XN(p) Ω
)](

hor TρN (u1), . . . , hor TρN (un)
)

+
(

hor XN (p) Ω
)(

hor TρN (u1), . . . , hor TρN (un)
)

= 0

(23)

for all vectors hor XN(p) ∈ ker TαN ∩ hor TpN . Let hor ΩN denote the horizontal

part of the pull-back of Ω to N . In other words,

hor ΩN (w1, . . . , wn+1) = Ω(hor w1, . . . , hor wn+1)

for every w1, . . . , wn+1 ∈ TpN , and p ∈ N . It is a G-invariant (n + 1)-form on N ,

annihilated by vectors in ver TN = ker TπN . Hence, it pushes forward to a unique

(n + 1)-form ΩN̄ on N̄ such that

(24) hor ΩN = π∗
NΩN̄ .

Moreover,

(

hor XN (p) Ω
)(

hor Tρ(u1), . . . , hor Tρ(un)
)

=
(

TπN

(

hor XN(p)
)

ΩN̄

)(

TρN̄ (u1), . . . , TρN̄ (un)
)

.

(25)

In order to interpret the second term on the left hand side of equation (23) we intro-

duce an n-form ΞN on N with values in (ver TN)∗ defined as follows. For p ∈ N ,

w1, . . . , wn ∈ TpN , and v ∈ ver TpP,

(26) ΞN(w1, . . . , wn)(v) = Ω(v, hor w1, . . . , hor wn).

Since Ω is G-invariant, it follows that

Ξ
(

TΦg(w1), . . . , TΦg(wn)
)(

TΦg(v)
)

= Ξ(w1, . . . , wn)(v)

for every g ∈ G. Hence, ΞN is G-equivariant. Moreover, as an n-form on N , ΞN is

annihilated by vectors in ver TN . Therefore, ΞN induces an n-form ΞN̄ on the orbit

space N̄ = π(N) with values in V ∗
N̄

such that

(27) ΞN (w1, . . . , wn)(v) = ΞN̄

(

TπN (w1), . . . , TπN (wn)
)(

γN (v)
)

.

We can now rewrite the first term in equation (23) in the form

n
∑

k=1

(−1)k
[

ver TρN (uk) (hor XN (p) Ω)
](

hor TρN (u1), . . . , hor TρN (un)
)

= −

n
∑

k=1

(−1)k
[

ρ∗N̄((Tπ(hor XN (p))) ΞN̄ )(u1, . . . , uk−1, uk+1, . . . , un)(ρ]
N (uk))

]

.
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In order to simplify the form of the result, for every vector field XN̄ on N̄, we intro-

duce the notation

(

ρ]
N ∧̇ ρ∗N̄ (XN̄ ΞN̄)

)

(u1, . . . , un)

= −

n
∑

k=1

(−1)k
[

ρ∗N̄(XN̄ ΞN̄ )(u1, . . . , uk−1, uk+1, . . . , un)
(

ρ]
N (uk)

)]

.

(28)

Taking into account equations (23) and (25), we can rewrite equation (20) in the

form

(29) ρ∗N̄ (XN̄ ΩN̄ ) + ρ]
N ∧̇ ρ∗N̄(XN̄ ΞN̄ ) = 0

for all vector fields XN̄ on N̄ tangent to the fibres of αN̄ : N̄ → M.

6 The Second Reduced Equation

For each ξ in the Lie algebra g of G, we denote by Xξ the fundamental vector field on P

generating the action of the 1-parameter subgroup exp tξ of G. Since G is a symmetry

group, the Lie derivative £Xξ
Ω of Ω with respect to Xξ vanishes. Moreover, dΩ = 0

implies that Xξ Ω is closed. Suppose that Xξ Ω is exact. In other words, assume

that there exists an n-form Ψξ on P such that

Xξ Ω = dΨξ.

If ρ is a local section of α : P → M satisfying the Dedonder equation (8), then

(30) dρ∗
Ψξ = 0.

Equation (30) is a multisymplectic version of the conservation law corresponding to

the 1-parameter group of symmetries exp tξ.

Since the vertical distribution, ver TN , is spanned by the fundamental vector fields

Xξ , for ξ ∈ g, the equation (21) is equivalent to the totality of conservation laws.

However, equation (30) requires an additional assumption that Xξ Ω is exact. More-

over, the fundamental vector fields Xξ need not be G-invariant. Hence, the conser-

vation laws (30) do not lead directly to an equation in the orbit space. In order to

exhibit the invariant content of equation (21), we introduce an (n − 1)-form ΣN on

N with values in ∧2(ver TN)∗ defined as follows. For every p ∈ N , v1, v2 ∈ ver TpN

and w1, . . . , wn−1 ∈ TpN ,

(31) ΣN (w1, . . . , wn−1)(v1, v2) = Ω(v1, v2, w1, . . . , wn−1).

G-invariance of Ω implies that

ΣN

(

TΦg(w1), . . . , TΦg(wn−1)
)(

TΦg(v1), TΦg(v2)
)

= Σ(w1, . . . , wn−1)(v1, v2)

https://doi.org/10.4153/CJM-2004-029-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-029-8
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for every g ∈ G. Moreover, the condition (7) implies that, as an (n − 1) form on N ,

ΣN is annihilated by vectors in ver TN . Hence, it gives rise to a unique (n − 1)-form

ΣN̄ on N̄ with values in ∧2V ∗
N̄

such that,

(32)

ΣN (w1, . . . , wn−1)(v1, v2) = ΣN̄

(

TπN (w1), . . . , TπN(wn−1)
)(

γN (v1), γN (v2)
)

.

For x ∈ U , let p = ρN(x). The left hand side of equation (21) evaluated on

u1, . . . , un ∈ TxM reads

ρ∗N
(

ver XN (p) Ω
)

(u1, . . . , un)

= ρ∗N̄ΞN̄ (u1, . . . , un)
(

γN

(

ver XN (p)
))

−

n
∑

k=1

(−1)kρ∗N̄ΣN̄(u1, . . . , uk−1, uk+1, . . . , un)
(

γN (ver XN (p)), ρ]
N (uk)

)

.

Introducing the notation

(ρ]
N ∧̇ ρ∗N̄ΣN̄ )(u1, . . . , un)(v)

= −

n
∑

k=1

(−1)kρ∗N̄ΣN̄(u1, . . . , uk−1, uk+1, . . . , un)
(

v, ρ]
N (uk)

)

,

(33)

we can rewrite equation (21) in the form

(34) ρ∗N̄ΞN̄ + ρ]
N ∧̇ ρ∗N̄ΣN̄ = 0.

Equation (34) is equivalent to the conservation law (30).

7 The Third Reduced Equation

In this subsection we are going to discuss equation (22). The bundle T⊥N over N is

G-invariant. We denote the space of G-orbits in T⊥N by TcN̄ . It is a cone bundle over

N̄ which encodes the information about links of the stratification structure of P̄ [8].

Let κN : T⊥N → TcN̄ denote the orbit map, and (TcN̄)∗ the space of homogeneous

functions on TcN̄ of degree 1.

We introduce an n-form ΓN on N with values in (T⊥N)∗ defined as follows. For

every p ∈ N , u ∈ T⊥
p N , and w1, . . . , wn ∈ TpN ,

(35) ΓN (w1, . . . , wn)(u) = Ω(u, hor w1, . . . , hor wn).

The G-invariance of Ω implies that, for every g ∈ G,

ΓN

(

TΦg(w1), . . . , TΦg(wn)
)(

TΦg(u)
)

= ΓN(w1, . . . , wn)(u).

Moreover, ΓN is annihilated by vectors in ver TN . In other words, ΓN (w1, . . . , wn) =

0 if one of the vectors w1, . . . , wn is in ver TN . The form ΓN induces a unique n-form

on N̄ with values in (TcN̄)∗ such that

(36) ΓN(w1, . . . , wn)(u) = ΓN̄

(

TπN(w1), . . . , TπN(wn)
)(

κN(u)
)

.
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Next, we introduce an (n − 1)-form ∆N on N with values in the space of linear

maps from ver TN to (T⊥N)∗ defined as follows. For every p ∈ N , u ∈ T⊥
p N ,

v ∈ ver TpN and w1, . . . , wn−1 ∈ TpN ,

(37) ∆N (w1, . . . , wn−1)(v)(u) = Ω(u, v, w1, . . . , wn−1).

The G-invariance of Ω implies that, for every g ∈ G,

∆N

(

TΦg(w1), . . . , TΦg(wn−1)
)(

TΦg(v)
)(

TΦg(u)
)

= ∆N (w1, . . . , wn−1)(v)(u).

Moreover, ∆N is annihilated by vectors in ver TN . Hence, ∆N induces an (n − 1)-

form ∆N̄ on N̄ with values in the space of functions from VN̄ to TcN̄ such that

(38)

∆N (w1, . . . , wn−1)(v)(u) = ∆N̄

(

TπN (w1), . . . , TπN(wn−1)
)(

γN (v)
)(

κN (u)
)

.

For x ∈ U , p = ρ(x), we evaluate the left hand side of equation (22) on u1, . . . , un

∈ TxM, taking into account equations (7), (35), (36), (37) and (38), and obtain

ρ∗N
(

X⊥
N (p) Ω

)

(u1, . . . , un)

=
(

X⊥
N (p) Ω

)(

hor TρN (u1), . . . , hor TρN (un)
)

+

n
∑

k=1

(−1)kρ∗N
[

ver TρN (uk)
(

X⊥
N (p) Ω

)]

(u1, . . . , uk−1, uk+1, . . . , un).

Hence, using equations (35), (36), (37) and (38), we get

ρ∗N
(

X⊥
N (p) Ω

)

(u1, . . . , un)

= ΓN̄

(

TρN̄ (u1), . . . , TρN̄ (un)
)(

κN

(

X⊥
N (p)

))

+

n
∑

k=1

(−1)kρ∗N̄∆N̄ (u1, . . . , uk−1, uk+1, . . . , un)
(

ρ]
N (uk)

)(

κN

(

X⊥
N (p)

))

.

Hence, equation (22) is equivalent to

(39) ρ∗N̄ΓN̄ + ρ]
N ∧̇ ρ∗N̄∆N̄ = 0,

where ρ]
N ∧̇ ρ∗

N̄
∆N̄ is defined as in equation (33).

8 Reconstruction

The reduced equations (29), (34) and (39) are conditions on maps ρN̄ : U → N̄ and

ρ]
N : TU → VN̄ such that ϑN̄ ◦ ρ]

N = ρN̄ ◦ τM , where U is an open subset of M and

τM : TM → M is the tangent bundle projection.

Suppose we have ρN̄ : U → N̄ and ρ]
N : TU → VN̄ satisfying equations (29), (34)

and (39). The aim of reconstruction is to find a section ρN : U → N satisfying the

Dedonder equation (2) such that

(40) ρN̄ = πN ◦ ρN and ρ]
N = γN ◦ ver TρN ,
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see equation (18). It is clear from the derivation of the reduced equations that if ρN

satisfies equations (40), then it satisfies the Dedonder equation (2). Thus, it suffices

to find ρN satisfying equations (40).

Equation ρN̄ = πN ◦ ρN implies that ρN is a lift of ρN̄ to a section of αN : N → M.

Lifts of sections are determined up to gauge transformations on N . In other words, if

ρ ′
N : U → N is any lift of ρN̄ , then ρN = φN ◦ ρ ′

N for some diffeomorphism φN : N →
N which commutes with the action of G on N and satisfies πN ◦ φN = πN . Thus, we

may choose any lift ρ ′
N of ρN , and need to determine the diffeomorphism φN so that

(41) ρ]
N = γN ◦ ver T(φN ◦ ρ ′

N).

Our results can be summarized in the following:

Theorem A local section ρN of αN : N → M satisfies the Dedonder equation (2) if and

only if ρN = φN ◦ ρ ′
N where ρN̄ = πN ◦ ρ ′

N and ρ]
N = γN ◦ ver T(φN ◦ ρ ′

N ) satisfy the

reduced equations (29), (34) and (39).

9 A generic case

The orbit space P̄ is stratified by connected components of local manifolds π(P(K)),

where K runs over compact subgroups of G and P(K) is the local submanifold of

P given by equation (12). Hence, P is stratified by connected components of local

manifolds P(K). In the above discussion we have assumed that ρ is a local section of

α : P → M with range contained in a single stratum. In general, this is not the case,

and we may consider the partition of the domain of ρ given by sets S(K) = ρ−1(P(K)),

as K varies over compact subroups of G. By the properties of stratification, [15],

see also [6], the union of connected components of sets S(K) which are open in M is

dense in the domain of ρ.
Since ρ is smooth, it follows that it satisfies the Dedonder equation (2) if and

only if it satisfies the Dedonder equation on an open dense subset of its domain. In

particular, ρ satisfies the Dedonder equation if its restriction to each open connected

component U of S(K) satisfies the Dedonder equation. Since U is connected and ρ
is continuous, ρ(U ) is contained in a connected component N of P(K). We denote

by ρN : U → N the section obtained from ρ by restrictiong its domain to U and

co-domain to N . It follows from the discussion in the preceding sections that ρN

satisfies the Dedonder equation if and only ρN̄ = πN ◦ ρ and ρ]
N = γN ◦ verTρN

satisfy equations (29), (34) and (39).

We can summarize our result in the following

Singular Reduction Theorem The domain of a smooth local section ρ of α : P → M is

contained in the closure of the union of open sets U ⊆ M such that ρ(U ) is contained in

a connected component N of P(K). The section ρ satisfies the Dedonder equation if and

only if ρN̄ = πN ◦ ρN and ρ]
N = γN ◦ verTρN satisfy equations (29), (34) and (39),

where ρN : U → N denote the section obtained from ρ by restrictiong its domain to U

and co-domain to N.
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10 Regular Reduction

Reduction for a free and proper action of G on P is usually referred to as a regular

reduction. In the case of a free and proper action, P has the structure of a (left) princi-

pal fibre bundle over P̄ with structure group G and the projection map π. Therefore,

there is only one isotropy group, namely the trivial subgroup {e} of G consisting of

the identity element in G. Hence, P = P{e} = P({e}). Moreover, if P is connected,

then N = P and N̄ = P̄.

The space of G-orbits in ver TP is naturally isomorphic to the adjoint bundle P[g].

We use the notation γ : ver TP → P[g] and ϑ : P[g] → P̄ for the orbit map and the

vector bundle projection, respectively. As before, to each local section ρ of α : P → M

with domain U we associate ρP̄ = π ◦ ρ : U → P̄ and ρ] = γ ◦ ver Tρ : TU → P[g].

Since N̄ = P̄, we can write ΩN̄ = ΩP̄, ΞN̄ = ΞP̄ and ΣN̄ = ΣP̄. Moreover,

T⊥P = 0 implies that the left hand side of equation (39) vanishes identically. There-

fore, we obtain:

Regular Reduction Theorem For a free and proper action of G on P, a smooth local

section ρ of α : P → M satisfies the Dedonder equation if and only if ρ̄ = π ◦ ρ and

ρ] = γ ◦ ver Tρ satisfy the reduced equations

ρ∗P̄ΞP̄ + ρ] ∧̇ ρ∗P̄ΣP̄ = 0,

and

ρ∗P̄(XP̄ ΩP̄) + ρ] ∧̇ ρ∗P̄(XP̄ ΞP̄) = 0,

for all vector fields XP̄ on P̄ tangent to the fibres of αP̄ : P̄ → M.

11 An Example

We consider here a relativistic complex scalar field ϕ with a potential V which de-

pends on |ϕ|2 = ϕϕ̄. In the terminology of Section 2, M = R
4 and Q =

M × C with µ : Q → M given by the projection to the first factor. Let (gλν) =

diag(1,−1,−1,−1), where λ, ν = 0, . . . , 3, be the Minkowski metric tensor on M.

The Lagrangian form on P = R
4 × C × (C ⊗ R

4) is given by

(42) L =

( 1

2
pν p̄ν −V (zz̄)

)

d4x,

where z ∈ C, pµ ∈ C ⊗ R
4, and the Greek indices are raised in terms of gµν , i.e.,

pµ = gµν pν , and we use convention of summation over the repeated indices. The

corresponding Dedonder form is

(43) Θ =
1

2
(pµdz̄ + p̄µdz) ∧ dxµ −

( 1

2
pν p̄ν + V (zz̄)

)

d4x.

Hence,

(44) Ω =
1

2
(dpµ ∧ dz̄ + dp̄µ ∧ dz) ∧ dxµ −

( 1

2
pνdp̄ν +

1

2
p̄νdpν + dV (zz̄)

)

∧ d4x.
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The Dedonder equation (2) for a section ρ given by z = z(x) and pµ = pµ(x)

yields

z,µ(x) = pµ(x), z̄,µ(x) = p̄µ(x),(45)

1

2
gµν pµ,ν = −

∂V

∂z̄
,

1

2
gµν p̄µ,ν = −

∂V

∂z
.(46)

Equation (45) ensures that ρ is the first jet extension of its projection σ = β ◦ ρ.

Hence, the Dedonder equations (45) and (46) are equivalent to the Euler-Lagrange

equations for the Lagrangian (42), given by

1

2
gµνz,µν = −

∂V

∂z̄
,

1

2
gµν z̄,µν = −

∂V

∂z
.

Introducing real variables r, t , and complex variables sµ such that z = reit and

pµ = rsµeit , we get

dz = ireitdt + eit dr, dpµ = irsµeit dt + eit sµdr + eit rdsµ.

Hence,

(47) Θ =
ir2

2
(s̄µ − sµ)dt ∧ dxµ +

r

2
(s̄µ + sµ)dr ∧ dxµ −

( 1

2
r2sν s̄ν + V (r2)

)

d4x

and

Ω =
ir2

2
d(s̄µ − sµ) ∧ dt ∧ dxµ + ir(s̄µ − sµ)dr ∧ dt ∧ dxµ

+
r

2
d(s̄µ + sµ)dr ∧ dxµ − d

( 1

2
r2sν s̄ν + V (r2)

)

d4x.

(48)

The Lagrangian (42) is relativistically invariant. However, the action of the

Poincaré group does not satisfy the assumptions made here. On the other hand,

the theory is also invariant under the action

(49) Φ : U (1) × P → P : (eiθ, (xµ, z, pµ)) 7→ (xµ, eiθz, eiθ pµ).

In the following we describe the reduction of U (1) symmetry corresponding to the

action (49) as a simple example of the general theory developed here.

The group U (1) is compact. Hence the action Φ is proper, but it is not free. There

are two isotropy groups: the whole group U (1), and the trivial subgroup {1} consist-

ing of the identity in G. We have two connected components to consider:

NU (1) = PU (1) = P(U (1)) = {(xµ, z, pµ) ∈ P | z = 0, pµ = 0},

consisting of points in P fixed by the action of U (1), and its complement

N{1} = P{1} = P({1}) = {(xµ, z, pµ) ∈ P | zz̄ + p0 p̄0 + pi p̄i 6= 0},
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on which U (1) acts freely.

We consider first NU (1). It is the image of the zero section of α : P → M. Hence,

αNU (1)
: NU (1) → M is injective, and ker TαNU (1)

= 0. Hence, the left hand sides of

equations (20) and (21) are identically zero. On the other hand, a section ρNU (1)
of

αNU (1)
has values in NU (1) = PU (1), which implies that TρNU (1)

(u) is U (1)-invariant.

Hence, for every x ∈ M, u1, . . . , un ∈ TxM, eiθ ∈ U (1), and v ∈ T⊥
p N , where

p = ρNU (1)
(x), U (1)-invariance of Ω implies that

ρ∗NU (1)

(

TΦeiθ (v) Ω
)

(u1, . . . , un)

=
(

TΦeiθ (v) Ω
)(

TρNU (1)
(u1), . . . , TρNU (1)

(un)
)

=
(

TΦeiθ (v) Ω
)(

TΦeiθ (TρNU (1)
(u1)), . . . , TΦeiθ (TρNU (1)

(un))
)

= (v Φ
∗
eiθΩ)(u1, . . . , un) = (v Ω)(u1, . . . , un)

= ρ∗NU (1)
(v Ω)(u1, . . . , un).

Hence,

ρ∗NU (1)

(

TΦeiθ (v) Ω
)

= ρ∗NU (1)
(v Ω)

for every v ∈ T⊥NU (1) and every eiθ ∈ U (1). However, the bundle T⊥NU (1) consists

of vectors in TNU (1)
N with vanishing average over U (1) [8]. Hence, integrating over

U (1) we get

ρ∗NU (1)
(v Ω) =

1

2π

∫ 2π

1

ρ∗NU (1)

(

TΦeiθ (v) Ω
)

dθ

=
1

2π
ρ∗NU (1)

(

(

∫ 2π

1

(

TΦeiθ (v)
)

dθ
)

Ω

)

= 0.

Thus, the left hand side of equation (22) vanishes identically.

It follows from the discussion above that every local section of αNU (1)
satisfies the

Dedonder equation. Since sections of αNU (1)
are zero sections, we conclude that ev-

ery zero section satisfies the Dedonder equation. This result is evident from equa-

tions (45) and (46).

We consider now a section ρN{e}
of αN{e}

: N{e} → M. Since the action of U (1)

on N{e} is free, we are dealing with regular reduction. Observe first that N{e} is open

in P. Hence, T⊥N{e} = 0, which implies that the left hand side of equation (22)

vanishes identically.

In order to continue our discussion, we need to introduce a U (1)-invariant Rie-

mannian metric k on P. We choose

(50) k = dx0 ⊗ dx0 + dxi ⊗ dxi + dz ⊗ dz̄ + dp0 ⊗ dp̄0 + dpi ⊗ dp̄i ,

where we have adopted the convention of summation over the repeated index i =

1, 2, 3. The restriction of k to N{e}, described in terms of the coordinates (xµ, t, r, sµ),
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is

k = dx0 ⊗ dx0 + dxi ⊗ dxi + r2(1 + s0 s̄0 + si s̄i)dt ⊗ dt

+ (1 + s0 s̄0 + si s̄i)dr ⊗ dr + r2(ds0 ⊗ ds̄0 + dsi ⊗ ds̄i)

+ rdr ⊗ (s0ds̄0 + s̄0ds0 + sids̄i + s̄idsi).

(51)

The orbit space N̄{e} is parametrized by the variables (xµ, r, sµ, s̄µ). The vertical

distribution, ver TN{e}, is spanned by the vector field X = i ∂
∂t

on N{e}. Hence,

ver TN{e} is 1-dimensional, and equation (31) yields ΣN{e}
= 0, which implies

(52) ΣN̄{e}
= 0.

Similarly, equation (26), (27) and (48) yield

(53) ΞN̄{e}
= −

ir2

2
d(s̄µ − sµ) ∧ dxµ − ir(s̄µ − sµ)dr ∧ dxµ.

We denote by Υ the unique 1-form on P such that 〈Υ|w〉 = k(i ∂
∂t

, w) for all w ∈
TN{e}. Taking into account equation (51) we get

Υ = −ir2(1 + s0 s̄0 + si s̄i)dt.

Since 〈Υ|i ∂
∂t
〉 = r2(1 + s0 s̄0 + si s̄i), equation (48) yields

hor ΩN{e}
= Ω −

1

r2(1 + s0 s̄0 + si s̄i)
Υ ∧

(

i
∂

∂t
Ω

)

=
r

2
d(s̄µ + sµ) ∧ dr ∧ dxµ − d

( 1

2
r2sν s̄ν + V (r2)

)

d4x.

(54)

Taking into account equation (24) we get

(55) ΩN̄{e}
=

r

2
d(s̄µ + sµ) ∧ dr ∧ dxµ − d

( 1

2
r2sν s̄ν + V (r2)

)

d4x.

The vector field i ∂
∂t

on N{e} generates the action of U (1), and it induces a triv-

ialization of the bundle VN̄{e}
. Each v ∈ ver TpN{e} is of the form v = s(i ∂

∂t
),

for some s ∈ R, and γN{e}
(v) =

(

πN{e}(p), s
)

. The section ρN{e}
under con-

sideration is given by xµ 7→
(

xµ, r(x), t(x), sµ(x), s̄µ(x)
)

. It gives rise to a section

ρN̄{e}
: xµ 7→

(

xµ, r(x), sµ(x), s̄µ(x)
)

of αN̄{e}
. In the reduced equations (29) and (34)

ρN̄ and ρ]
N are independent variables. Hence, we can write ρ]

N{e}
= yµdxµ, where yµ

are unknowns to be determined. Taking into account equations (53) and (55), we get

from equation (29) the following equations:

−
r

2
(sµ,µ + s̄µ,µ) −

(

2rsµs̄µ + V ′(r2)
)

− iryµ(s̄µ − sµ) = 0,(56)

r

2
r,µ + r2s̄µ +

ir2

2
yµ = 0.(57)
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Similarly, taking into account equations (52) and (53), we obtain from equation (34)

(58) gµν
(

r2(s̄ν,µ − sν,µ) + 2r(s̄ν − sν)r,µ

)

= 0.

Equation (39) does not introduce any additional conditions because its left hand side

vanishes identically.

If we have r(x), sµ(x) and yµ(x) satisfying equations (56), (57) and (58), we can

reconstruct the section ρ as follows. Assume that ρ is given by z = r(x)eit(x), and

pµ(x) = r(x)sµ(x)eit(x), where the phase factor t(x) is to be determined. Then,

Tρ
( ∂

∂xµ

)

=
∂

∂xµ
+ r,µ

∂

∂r
+ t,µ

∂

∂t
+ sν,µ

∂

∂sν
+ s̄ν,µ

∂

∂ s̄ν
,

and

k

(

i
∂

∂t
, Tρ

( ∂

∂xµ

)

)

= ir2(1 + s0 s̄0 + si s̄i)t,µ,

which implies that

ver Tρ
( ∂

∂xµ

)

= t,µ
∂

∂t
.

Hence, ρ] = t,µdxµ, which yields the reconstruction equation t,µ = yµ. Integrating

this equation we get t(x) up to a constant. In other words, we get the section ρ up to

the action of U (1).
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Euler-Poincaré Equations. Proc. Amer. Math. Soc. 128(2000), 2155–2164.
[5] H. Cendra, J. E. Marsden and T. S. Ratiu: Geometric mechanics, Lagrangian reduction and

nonholonomic systems. In: Mathematics Unlimited—2001 and Beyond (eds. B. Engquist and
W. Schmid), Springer, Berlin, 2001, 221–273.

[6] R. Cushman and L. Bates, Global Aspects of Classical Integrable Systems. Birkhäuser, Basel, 1997.
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