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COVERING THEOREMS FOR UNIVALENT FUNCTIONS
MAPPING ONTO DOMAINS BOUNDED BY
QUASICONFORMAL CIRCLES

DONALD K. BLEVINS

1. Introduction. Let I be a Jordan curve in the extended complex plane C.
T is called a quasiconformal circle if it is the image of a circle by a homeo-
morphism f which is quasiconformal in a neighborhood of that circle. If
q(z1, 22) is the chordal distance from z; to 2, the chordal cross ratio of a
quadruple zi, 22, 23, 24 in C is

q(21, 22) q(23, 34)
g(zlv 23) 9(22» 24) ’

Ahlfors [2] has shown that a Jordan curve T is a quasiconformal circle if and
only if

x(zh 29, 33, 24) =

sup {x(z1, 22, 23, 21) + x (22, 23, 24, 21)}
is finite, where the supremum is taken over all ordered quadruples on T.
Definition 1. For k € [0, 1], a Jordan curve T in C is a k-circle if
(1) x(z1, 29, 23, 24) + x(29, 23, 24, 21) = 1/k

for all ordered quadruples of points on T.

For k& = 0, condition (1) is vacuous, so a O-circle is an arbitrary Jordan
curve, while if & > 0, a k-circle is a quasiconformal circle. Since the chordal
cross ratio is invariant under Mo6bius transformations, it is easily verified that
a l-circle is a Euclidean circle or straight line. Thus as & runs from 0 to 1, the
class of k-circles interpolates between arbitrary Jordan curves and the simplest
Jordan curves. For each & € (0, 1], the curve consisting of the two rays arg (z)
= 4 arcsin (k) is a k-circle.

Aharanov and Kirwan [1] solved the following covering problem for the
class ¥ of normalized analytic univalent functions, f, which map U =
{z:]z] < 1} onto a convex domain. Let R(¢) = {w: argw = ¢} and let I(y)
denote the linear measure of R(¢) M f(U). What is the minimum of [(¢;) -
I{gs) (0 £ o1 £ ¢ < 2r) for f € € ? We will consider the same problem for
different classes of functions ¥, k € [0, 1], the class of functions f(z) =
2z + Y o ea,2" analytic and univalent in U such that f(U) is bounded by a
k-circle. We note ¥, C %4, if k2 < By and the uniform closure of %, is the
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full class .¥. A map f € .% is in ., for some & > 0 if and only if f can be
extended to a quasiconformal mapping of the whole plane [7, p. 98].

If D is a simply connected domain, f analytic and univalent in U, f(U) = D
and f(0) = z,, the inner mapping radius of D at 2y, rp(20), is defined by

ro(z0) = | f'(0)].
If D* is obtained from D by circular symmetrization with respect to a ray
from 2 then r;(20) = rpx(20) [5, p. 81] and equality holds if and only if D* is
obtained from D by a rotation around z, [6].

2. A symmetrization lemma.

LEmMA 1. Let D be a domain bounded by a k-circle, 0 € D, oo € 9D. If 4D
contains a point 3’ with |3'| = a then the circular symmetrization D* of D with
respect to the positive real axis is contained in the domain Dy, = {z : |arg (z + a)|
< 7 — arcsin (k)}.

Proof. For r > a the circle |z| = 7 separates z’ from o0, hence contains a
subarc separating z’ from © in C — D. The endpoints a and B of this arc
separate z’ from o0 on dD. Thus inequality (1) may be applied to the quadruple
a,3’, B, 0. We thus obtain

1
o= 2|+ I — 8l = ¢ la— 8]

Hence 2’ must be inside an ellipse with foci at « and 8 and eccentricity k.
If we let 2c = |« — 8| and b be the semi-minor axis of the ellipse, we have
b = (c/k)(1 — E2)V2. In order to satisfy |a| = |8] = 7, |2/| = @ and 2’ inside
the ellipse, we must have (¢ + b)? = 2 — ¢? which leads to

c = k((r? — R2a®)V2 — a(1 — k2)V2),
Thus the complement of D* includes the arc

{z:]z] =7, larg (2)| = 7 — arcsin (k/r((r* — a2k2)Y/2 — a(1 — k2)1/2))}
which is more easily described as

{z:]3] =7, larg(z + a)| = 7 — arcsin (k)}.

3. Covering of radial segments. We first obtain a boundary distortion
result.

LeMmMA 2. If D is a domain bounded by a k-circle, 0 € D and {1, {2 € D then

[§1 — & 1 4
il Tl = 700)

(m — arcsin k).
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Proof. The Mobius transformation
_ 14 f2— 1
@) Te)=.—+ A
maps D onto a k-domain D* and r5+(0) = r5+(7°(0)) = r5(0)|77(0)] so
rox(0) = 18 = & 75(0).
2 [[$4]

Since 00 = T'({;) € 9D* and 1 = T'(¢2) € dD*, the symmetrization, D**, of
D* is contained in the domain D, ; of Lemma 1. A branch of the function

3 1+ Z) 2(1r—ar(1:rsln k)

® A - (12 -1

maps U onto D, ; with f(0) = 0so7p,,,(0) =|fi/(0)] = (4/7)(x — arcsin k).
Thus

(m — arcsin k)

— 4
4) 7(0) [fa— 6] rox(0) < 7pes (0) = 71, 4(0) =
[$1] 18] T
We note in passing that Lemma 2 implies the following known covering
theorem [3, Corollary 2.3].

THEOREM 1. The Koebe region for the class & is a disk of radius = /4 (w — arcsin
k).

Proof. We must find

inf ( min | f(e“’)|) )
1€k N056<2r

By composing f with an appropriate Mébius transformation we see that the
infimum is attained for the case when f(U) is unbounded. Then we apply
Lemma 2 with D = f(U) so that r5(0) = 1 by the normalization of f, and
let {2 — 0. The function F;(z) = fi(2)/(f:'(0)), where f;(z) is defined by (3),
is in ¥, and

™

F(=1) = 4(r — arcsin k)

Thus the bound is sharp.

Let f € %, R(p) = {w:argw = ¢} and I(¢) denote the linear measure
of R(¢) M f(U). We wish to minimize I(¢1) - I(p2) (0 £ ¢1 = @2 < 27) over
the class.¥;. Equivalently we wish to minimize [(¢) - [(—¢) for0 < ¢ < 7/2.

THEOREM 2. Let f € Frand ¢ € [0, n/2). f /6 < ¢ < 7/2 then

o) " I(—¢) = (___ﬂgo___)z

2(m — arcsin &)
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while if 0 = ¢ < 7/6 then

o) =) 2 ()

4(r — arcs-iyg

For ¢ = 7 — arcsin k/2, equality is attained only for the function
F(z) = T-'(—fi(42))

where f; is the function defined in Equation (3) and T is the function (2) with
k¢ TSing 4

o= =T sin e .
! 2(mw — arcsin k)

= 2(w — arcsin k) and  § =

Proof. Let z; = rie', z, = re— ' be points on the boundary of f(U) such
that the segments [0, 71e%), [0, r.e~%) are in f(U). Then I(¢) - I(—¢) = r1ra.
By Lemma 2,

[rie® — ree” ™|
Y1t

=

4 (r — arcsin k).
™

For notational convenience we let K = (4/7)(r — arcsin k) and so

1 1 2
= e <
7’12+7’22 12C0$2¢_K,
1 < cos 2¢ n I:c05222<p _ _L + K2:|1/2,
71 7o 7o 2"
thus
5 > rs :
6) nz cos 2¢ + [(Kr;)® — sin” 2¢]"*
and
722
6) ) - U(—¢) 2 = h(ry).

cos 2¢ + [(Kra)® — sin® 2¢]"?

By Theorem 1, 7, = 1/K, so we wish to minimize the function 2 (x) on the
interval [1/K, o). Since lim . (x) = o we have a finite minimum. The substi-
tution Foeo

(Kx)2 = {2 — 2¢cos2¢ + 1

replaces h(x) by (1/K?)(t + 1/t — 2 cos 2¢) which expression we wish to
minimize for { € [cos 2¢ + |cos 2¢|, © ). For ¢ > 7/6, the minimum occurs
for { = 1 while if ¢ £ 7/6 the minimum occurs at { = cos 2¢ + |cos 2¢|. Thus
for ¢ > 7/6 we have

2 . 4 .
o) - U(—¢) 2 h(f( sin <p) = gesin’ ¢
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as claimed. For ¢

IIA

/6 we have

o) - U=¢) 2 h(Il{) = 512‘1—“5«,

However, by Theorem 1, we know I(¢) and I(—¢) are separately greater than
or equal to 1/K so we have the better estimate

He) - l(—¢) 2 1/K™

In order for the minimum to be attained we must have r; = (2/K) sin ¢ and
rire = h((2/K) sin ¢) which requires 71 = r;, and we must have equality at
each step in Inequality (4). This occurs if and only if D* is a rotation of D**
and D** = D, ;. This will occur if and only if f(U) = D = T=1(—Dy.)
where I is defined as above. This is possible if and only if 00 ¢ 7-'(—D; 1) or
e %% — 1 ¢ D, which means w—arcsin 2 < 2¢. In this case, an extremal
function F must map U onto the image of U under the map 7-'(—f.(z)) hence
F(z) = T7'(—f:(S(z))) for some self map, S, of U. Normalization of F then
requires S(z) = 4z and the proof is finished.

The inequality (5) which was used in the proof of Theorem 2 has the follow-
ing interesting interpretation.

TueoreMm 3. If f € Sy and ¢ € o(f(U)) then f(U) contains the disk with
center at —¢/ (K22 — 1) and radius K|¢|?/(K2|¢|2 — 1), where K = 4(x —
arcsin &) /.

Proof. With 7, constant, »; = 7, and 2¢ = 6, the equation corresponding to
inequality (5) is the polar coordinate equation of such a circle.

COROLLARY 1. If f € Py and | f(z)] £ M for all z € U, then f(U) contains
a disk, contatning the origin, with radius KM/ (K*M? — 1) where K = 4 (7w —
arcsin k) /.

REFERENCES

1. D. Aharanov and W. E. Kirwan, Covering theorems for classes of univalent functions, Can. J.
Math. 25 (1973), 412-419.

. L. V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291-301.

. D. K. Blevins, Conformal mappings of domains bounded by quasiconformal circles, Duke
Math. J. 40 (1973), 877-883.

w N

4. Harmonic measure and domains bounded by quasiconformal circles, Proc. Am. Math.
Soc. 41 (1973), 559-564.

5. W. K. Hayman, Multivalent functions (Cambridge University Press, Cambridge, 1958).

6. J. A. Jenkins, Some uniqueness resulis in the theory of symmetrisation, Ann. of Math. (2) 61

(1955), 106-115.
7. O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane (Springer-Verlag,
Berlin, 1973).

Unaversity of Florida,
Gainesville, Florida

https://doi.org/10.4153/CJM-1976-061-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-061-8

