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Discrete Sets and Associated Dynamical
Systems in a Non-Commutative Setting

Takeo Yokonuma

Abstract. We define a uniform structure on the set of discrete sets of a locally compact topological

space on which a locally compact topological group acts continuously. Then we investigate the com-

pleteness of these uniform spaces and study these spaces by means of topological dynamical systems.

1 Introduction

Since the quasicrystalline materials were discovered in 1984 by Shechtman, Blech,
Gratias and Cahn ([16]), intensive studies have been done in order to analyse qua-

sicrystals and related topics mathematically (see e.g., the surveys [1, 9, 10]).

In many cases, quasicrystals or tilings are regarded as discrete sets and they are
studied by using the properties of dynamical systems built from discrete subsets.

Since these objects are originally in Euclidean space R
d, the theory of discrete sets

is formulated within the framework of locally compact Abelian groups. Let A be
such a group (the group operation is denoted additively) and let D be the set of dis-
crete subsets of A. Then we consider the closure of the A-orbit of Λ ∈ D, in a suitable

topology, as dynamical system. This topology on D is usually introduced via met-
rics or distance functions (see e.g., [8]). Thus metrizability has played an important
role. An alternative approach, particularly favoured by Schlottmann [15], has been
to work rather with uniformities. More precisely, let K be a compact subset of A and

V be a neighbourhood of the unit element, define UK,V ⊂ D × D by

UK,V := {(Λ1, Λ2) | ∃v1, v2 ∈ V such that (v1 + Λ1) ∩ K = (v2 + Λ2) ∩ K}.

The set {UK,V} is a fundamental system of uniformity U on D and it has been
proved that the uniform space (D, U) is complete. In above case (which we call the

Abelian group case) it is by now well understood how to introduce the topology and
establish the connection between finite local complexity (FLC) and compactness of
the closure of A-orbit (see e.g., [6, 7, 8, 15, 17]).

As the Euclidean group of plane, for example, is not Abelian, it seems interesting

to consider more general cases. Here we offer some extensions of these results to
the setting of discrete subsets of a locally compact Hausdorff topological space M on
which a locally compact Hausdorff topological group G acts continuously.

Let D be the set of discrete subsets of M. First we show that in a way similar to
that just described we can define a uniform structure U on D (cf. Definition 2.3).
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Although in the group case, where M = G and G acts by left translation, we can prove
the completeness of (D, U) in the same way as the Abelian case, the general case needs

another approach. Theorem 3.4 deals with (essentially) the group cases. Theorem
3.10 deals with the general case, where we now also assume that M is σ-compact.
With respect to metrizability, we remark that if G and M are metrizable then the
uniform space (D, U) is metrizable as well. (cf. [3, Chap. IX], [4, Chap. XII].)

When (D, U) is complete, define X(Λ) by the closure of G-orbit of Λ in D. In
§4.2 we give the definition of finite local complexity of Λ and discuss the relation
between FLC and compactness of X(Λ). Under a weak assumption, we can show that
these two notions are equivalent (Theorem 4.5 and Proposition 4.8). Finally in §4.4,

we briefly describe the pinwheel tiling, which offers an interesting example of above
setting.

In the very recent works of Benedetti and Gambando [2] and Sadun [14], dis-
crete subsets of a Riemannian manifold on which a finite dimensional Lie group acts,

are considered. And the compactness of the hull of a discrete set and minimality of
the dynamical system are discussed. But in these works metrics are used, and our
approach is different from theirs.

2 Uniformity on the Space of Discrete Sets

2.1 Definition of Uniformity

Let (X, U) be a uniform space, i.e., X be a set and U be a uniformity on X ( [3, Chap.II,
§1]). The elements of U are called entourages. There exists a unique topology on X

for which {V (x) | V ∈ U} forms the system of neighbourhoods of x ∈ X, where
V (x) := {y ∈ X | (x, y) ∈ V}. To define a uniformity U, it is enough to give a
fundamental system B. Then U is given by

U = {U ⊂ X × X | U ⊃ V for some V ∈ B}.

Considering the definition, we have the following proposition and its corollary.

Proposition 2.1 A set B of subsets of X × X is a fundamental system of a (unique)

uniformity if and only if

(FS1) For any V1,V2 ∈ B, there exists V3 ∈ B such that V1 ∩V2 ⊃ V3.

(FS2) For any V ∈ B, V ⊃ ∆ := {(x, x) | x ∈ X}.

(FS3) For any V ∈ B, there exists V ′ ∈ B such that V ′ ⊂ V−1 := {(y, x) |
(x, y) ∈ V }.

(FS4) For any V ∈ B, there exists W ∈ B such that W ◦W ⊂ V .

(For V1,V2 ∈ X×X, V1◦V2 := {(x, z) | ∃y ∈ X such that (x, y) ∈ V1, (y, z) ∈ V2}.)

Corollary 2.2 Let B ⊂ X × X be a fundamental system of a uniformity U. Let

B
′ ⊂ X × X satisfy (IN) and (IN ′):

(IN ′) For any V ∈ B, there exists V ′ ∈ B ′ such that V ⊃ V ′.

(IN) For any V ′ ∈ B ′, there exists V ∈ B such that V ′ ⊃ V .
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Then B ′ is also a fundamental system of the uniformity U.

Let G be a locally compact Hausdorff topological group (the group operation is
denoted multiplicatively, e being the identity element of G), and M be a locally com-

pact Hausdorff topological space on which G acts continuously, i.e., there exists a
continuous mapping G × M → M : (g, x) 7→ gx, such that;

(i) (g1g2)x = g1(g2x), for all g1, g2 ∈ G, x ∈ M;
(ii) ex = x, for all x ∈ M.

Let D be the set of all discrete subsets of M:

D := {Λ ⊂ M | Λ : discrete }.

In this note, Λ is defined to be discrete if and only if Λ ∩ K is finite for all compact
subsets K ⊂ M, i.e., Λ is closed and the induced topology on Λ is discrete.

For subsets G1 ⊂ G, M1 ⊂ M, G1M1 := {gx | g ∈ G1, x ∈ M1}. In particular, for
Λ ∈ D and g ∈ G, gΛ := {gx | x ∈ Λ} and gΛ ∈ D.

Definition 2.3 For a compact subset K of M and a neighbourhood V of e in G,
define UK,V ⊂ D × D by

UK,V := {(Λ1, Λ2) | ∃v1, v2 ∈ V such that (v1Λ1) ∩ K = (v2Λ2) ∩ K}.

From the definition, the next lemma is obvious.

Lemma 2.4 Let K1, K2 be compact subsets of M and V1,V2 be neighbourhoods of e.

Then, if K1 ⊃ K2 and V1 ⊂ V2, UK1,V1
⊂ UK2,V2

.

Theorem 2.5

B = {UK,V | K ⊂ M is compact, V is a neighbourhood of e ⊂ G}

is a fundamental system of a uniformity on D.

Proof It suffices to show the conditions (FS1) to (FS4). (FS2) and (FS3) are obvious.
(FS1): For UK,V , UK ′,V ′ , consider UK∪K ′,V∩V ′ .

(FS4): In order to find UK ′,V ′ such that UK ′,V ′ ◦ UK ′,V ′ ⊂ UK,V , we investigate
the condition for (Λ1, Λ2), (Λ2, Λ3) ∈ UK ′,V ′ (for some K ′,V ′).

By definition, for some v1, v2, v ′

2, v3 ∈ V ′,

(v1Λ1) ∩ K ′
= (v2Λ2) ∩ K ′, (v ′

2Λ2) ∩ K ′
= (v3Λ3) ∩ K ′.

Thus, by translating these identities by v−1
2 and v ′−1

2 , respectively, we have

((v−1
2 v1)Λ1) ∩ (v−1

2 K ′) ∩ (v ′−1
2 K ′) = ((v ′−1

2 v3)Λ3) ∩ (v ′−1
2 K ′) ∩ (v−1

2 K ′).

For the original UK,V , take a neighbourhood V ′ such that V ′ is compact and
V ′−1V ′ ⊂ V and put K ′

= V ′K. For v ∈ V ′, as vK ⊂ K ′, we have K ⊂ v−1K ′. Then
the above identity shows that, for (Λ1, Λ2), (Λ2, Λ3) ∈ UK ′,V ′ , (Λ1, Λ3) ∈ UK,V .
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Lemma 2.6 Define U ′

K,V for a compact subset K of M and a neighbourhood V of e as

follows:

U ′

K,V := {(Λ1, Λ2) | ∃v ∈ V such that Λ1 ∩ K = (vΛ2) ∩ K}.

Then B ′ := {U ′

K,V} is also a fundamental system of the same uniformity as B on D.

Similarly, it is true for B ′−1 := {U ′−1
K,V }.

Proof Let us use Corollary 2.2. Evidently U ′

K,V ⊂ UK,V , which shows (IN ′).

If (Λ1, Λ2) ∈ UK1,V1
, we have, for some v1, v2 ∈ V1,

Λ1 ∩ (v−1
1 K1) = ((v−1

1 v2)Λ2) ∩ (v−1
1 K1),

which shows UK1,V1
⊂ U ′

K2,V2
, where K2 =

⋂
v∈V1

(v−1K1) as long as K2 is non-empty

and V−1
1 V1 ⊂ V2.

Thus, for given U ′

K,V , take V1 such that V1 is compact and V−1
1 V1 ⊂ V , and put

K1 = V1K. Then K2 =
⋂

v∈V1
(v−1K1) ⊃ K and UK1,V1

⊂ U ′

K2,V ⊂ U ′

K,V , which
shows (IN).

U ′

K,V is more convenient to compute in some cases, and we can use both UK,V and
U ′

K,V as entourages.

2.2 Properties of the Topological Space D

Let G, M and D be same as §2.1 and consider the topology on D given by the unifor-
mity U defined in Theorem 2.5.

Proposition 2.7 The topological space D is Hausdorff.

Proof The topology on a uniform space (X, U) is Hausdorff if and only if⋂
V∈U

V = ∆ ([3, Chap. II, §1, Prop.3]). Thus, it suffices to show that, for Λ1, Λ2 ∈
D, Λ1 6= Λ2, there exists U ′

K,V ∈ B ′, such that (Λ1, Λ2) /∈ U ′

K,V . Take (say) x ∈ Λ1,
x /∈ Λ2. There exists a compact neighbourhood V of e, such that (V−1x) ∩ Λ2 = ∅.

Then, for K = V x, (Λ1, Λ2) /∈ U ′

K,V . In fact, if not, for some v ∈ V, Λ1 ∩ K =

(vΛ2) ∩ K ∋ x = vx ′(x ′ ∈ Λ2), which is a contradiction.

Proposition 2.8 The action of G on D by left translation:

G × D → D : (t, Λ) 7→ tΛ

is continuous.

Proof We have, for t ∈ G,

tUK,V (Λ) = UtK,V1
(tΛ),
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where V1 = tV t−1. Thus it is enough to show the continuity at t = e. For any
U ′−1

K,V ∈ B ′−1, we will look for a compact subset K ′ and neighbourhoods W0,W1 of

e satisfying,

W0U ′−1
K ′,W1

(Λ) ⊂ U ′−1
K,V (Λ).

If U ′−1
K1,W1

(Λ) ∋ Λ
′, we have Λ

′ ∩ K1 = (w1Λ) ∩ K1 for some w1 ∈ W1. And, for
w ∈ W0,

(wΛ
′) ∩ (wK1) = (ww1Λ) ∩ (wK1)

i.e., (wΛ
′) ∈ U ′−1

K2,W ′(Λ), where K2 =
⋂

w∈W0
(wK1) and W0W1 ⊂ W ′.

Thus, for given U ′−1
K,V (Λ), take W such that W is compact and WW ⊂ V , and

put K ′
= W

−1
K. Then K2 =

⋂
w∈W (wK ′) ⊃ K and WU ′−1

K ′,W (Λ) ⊂ U ′−1
K2,V

(Λ) ⊂
U ′−1

K,V (Λ).

Corollary 2.9

(i) G acts on D as homeomorphisms.

(ii) If E is a G-invariant subset of D, then the closure E is also G-invariant.

3 Sufficient Conditions for Which the Uniform Spaces (D,U) Are
Complete

3.1 Preliminaries

Let G, M and D be as §2.1. Before investigating the completeness of (D, U), we recall
several definitions and results for the convenience of readers.

Definition 3.1 Let (X, U) be a uniform space. Let (I,≤) be a directed set.

(i) A mapping x : I → X (which is called a net) is a Cauchy net if and only if, for
any V ∈ U there exists kV ∈ I such that (x(m), x(n)) ∈ V for all m, n ≥ kV .

(ii) (X, U) is complete if and only if every Cauchy net x : I → X converges.

Lemma 3.2 Let {Λi}i∈I be a Cauchy net (i 7→ Λi). Let J be a cofinal subset of I (i.e.,

for any m ∈ I there exists n ∈ J such that n ≥ m). If {Λ j} j∈ J converges, then {Λi}i∈I

converges also.

Proof The proof is similar to the case of a Cauchy sequence in a metric space.

Lemma 3.3 Let K be a family of compact subsets of M with the property that, for

every compact subset K ′(⊂ M), there exists K ′ ′ ∈ K which contains K ′. Let {Λi}i∈I be

a net which satisfies the following condition:

For any K ∈ K, there exists mK such that for all i, j ≥ mK , Λi ∩ K = Λ j ∩ K.

Define Λ ⊂ M by Λ :=
⋃

K∈K
(K ∩ ΛmK

). Then Λ ∩ K = K ∩ ΛmK
for all K ∈ K.

Moreover, Λ ∈ D and {Λi}i∈I converges to Λ.
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Proof Let x ∈ Λ ∩ K, K ∈ K and suppose x ∈ K1 ∩ ΛmK1
for K1 ∈ K. Then, for

p ≥ mK , mK1
, x ∈ Λp and x ∈ K ∩ Λp = K ∩ ΛmK

.

For a compact subset K ′ ⊂ M, take K ′ ′ ∈ K, K ′′ ⊃ K ′. Then, Λ∩K ′ ⊂ Λ∩K ′ ′
=

K ′ ′ ∩Λm
K ′ ′

= K ′ ′ ∩Λi(i ≥ mK ′ ′), which is finite. And Λ∩K ′
= Λi ∩K ′(i ≥ mK ′ ′)

shows that (Λi , Λ) ∈ UK ′,V for all V .

3.2 Completeness Conditions

Theorem 3.4 Suppose that G is transitive on M, that the stabilizer N of a point in M

is a normal subgroup and that M is homeomorphic to G/N by the canonical mapping.

Then the uniform space (D, U) is complete.

In particular, in the case where M = G and G acts on M by left translation (we call

it group case), the uniform space (D, U) is complete.

Proof (0) We show that a Cauchy net {Λi}i∈I in D always converges. To do so, we
will prove that we can reduce to the case where

⋂
i∈I Λi 6= ∅ and then construct a

family K mentioned in Lemma 3.3.

(1) At first, we can assume that there exists a compact K0 such that, for any m ∈ I,
there exists n ≥ m satisfying Λn ∩ K0 6= ∅. (If not, {Λi} converges to ∅.) Then
taking a subnet if necessary, we can assume Λi ∩ K0 6= ∅ for all i.

(2) Let xi ∈ Λi ∩ K0. Since K0 is compact, there exists a subnet {x j} j∈ J which
converges and let x0 be the limit of {x j} j∈ J . By assumption, there exist g̃ j ∈ G/N for
j ∈ J such that g̃ j(x j) = x0 and {g̃ j} j∈ J converges to ẽ = N ∈ G/N . Then, taking
the subset J as I and replacing {Λi}i∈I by {g̃i(Λi)}i∈I , we can assume

⋂
i∈I Λi ∋ x0,

for {g̃i(Λi)}i∈I is a Cauchy net, and it suffices to show that {g̃i(Λi)}i∈I converges.

(3) We can assume that there exists a compact neighbourhood W0 of x0 , such that
Λi ∩ W0 = {x0} for all i. In fact, take an open neighbourhood W of x0 where W is
compact and a neighbourhood V of e such that V x0 ⊂ W . Since {Λi} is a Cauchy

net, there exists m such that, for all i, j ≥ m, (Λi , Λ j) ∈ U ′

W ,V
. Therefore for any

j ≥ m, there exists v j ∈ V , satisfying

(v jΛ j) ∩W = Λm ∩W .

Since Λm ∩ W is finite, and v j(x0) ∈ Λm ∩ W , by taking a subnet if necessary, we
can assume that all v j(x0) are equal, thus all v−1

j (W ) are equal by assumption on the

stabilizer, i.e., Λi ∩ (v−1
i (W )) = Λ j ∩ (v−1

j (W )) ∋ x0. (n ∈ N fixes every point of

M.) Since Λi ∩ (v−1
i (W )) is finite and v−1

i (W ) is a neighbourhood of x0, in v−1
i (W )

we can find W0 as above.

(4) Let K = {K ⊂ M | compact, K ⊃ W0}. We claim that K satisfies the
conditions of Lemma 3.3. In fact, take a neighbourhood V of e such that V x0 ⊂ W0

and consider the entourages U ′

K,V , K ∈ K. There exists mK such that (Λi , Λ j) ∈ U ′

K,V

for all i, j ≥ mK , i.e., for some vi j ∈ V, Λi∩K = (vi jΛ j)∩K. Since vi j(x0) ∈ W0 ⊂ K

and vi j(x0) ∈ (vi jΛ j) ∩ K = Λi ∩ K, vi j(x0) ∈ Λi ∩W0 = {x0}, and by assumption
we have vi jΛ j = Λ j .
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Lemma 3.5 For a locally compact Hausdorff group G, there exists a fundamental sys-

tem F = {Wα} of neighbourhoods of e such that:

(i) There exists W0 ∈ F such that Wα ⊂ W0 for all Wα ∈ F.

(ii) For any Wα ∈ F, Wα is compact and Wα
−1

= Wα.

(iii) For any Wα ∈ F, there exists Wβ ∈ F such that Wβ
3 ⊂ Wα.

Proof Since there exists a compact neighbourhood of e, we can easily show this
lemma, considering definitions.

Proposition 3.6 Let {Λi}i∈I be a Cauchy net in D.

Then, for any compact subset K in M, there exists ΛK ∈ D satisfying that, for any

neighbourhood V of e, there exists iV ∈ I, such that, for any i ≥ iV , there exists vi ∈ V

such that

viΛi ∩ K = ΛK ∩ K.

In particular, if M is compact, then the uniform space (D, U) is complete.

Proof (0) Take a fundamental system {Wα} which satisfies the conditions in Lem-

ma 3.5. Let K̃ be W0K. (Then K ⊂ v−1
0 K̃ for any v0 ∈ W0.)

(1) Consider the entourage U ′

K̃,Wα
. Since {Λi}i∈I is a Cauchy net, there exists

mα ∈ I such that, for any i ≥ mα, there exists v(α)
i ∈ Wα satisfying

(v(α)
i Λi) ∩ K̃ = Λmα

∩ K̃.

(2) Since W0 is compact, there exists a cofinal subset J of I such that {v(0)
j } j∈ J

converges to an element ṽ ∈ W0.
Define ΛK by ΛK = (ṽ)−1

Λm0
.

(3) For any Wα, there exists jα ∈ J such that, for any j ≥ jα( j ∈ J), v(0)
j ∈ ṽWα.

(4) Let V be a neighbourhood of e. Take Wα such that V ⊃ Wα and Wβ such that
Wβ

3 ⊂ Wα . Then take kα ∈ J satisfying kα ≥ m0, mβ , jβ .
For any p ∈ I, p ≥ kα,

(v(β)
p Λp) ∩ K̃ = Λmβ

∩ K̃ = (v(β)

kα
Λkα

) ∩ K̃.

(5) By (1) for W0, (v(0)

kα
Λkα

) ∩ K̃ = Λm0
∩ K̃ = (ṽΛK) ∩ K̃, and by (3) v(0)

kα
= ṽwβ

for some wβ ∈ Wβ . Thus

(wβΛkα
) ∩ (ṽ−1K̃) = ΛK ∩ (ṽ−1K̃).

(6) By (4),

(wβ(v
(β)

kα
)−1v

(β)
p Λp) ∩ (wβ(v

(β)

kα
)−1K̃) = (wβΛkα

) ∩ (wβ(v
(β)

kα
)−1K̃).

Thus by (5)

(the left side ) ∩ (ṽ−1K̃) = ΛK ∩ (ṽ−1K̃) ∩ (wβ(v(β)

kα
)−1K̃).
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Let vp = wβ(v
(β)

kα
)−1v

(β)
p . Then vp ∈ Wβ

3 ⊂ Wα ⊂ V and we have, taking the
intersection with K, (vpΛp) ∩ K = ΛK ∩ K.

(7) When M is compact, {Λi}i∈I converges to ΛM by definition.

Lemma 3.7 Let {Wα} be a fundamental system as Lemma 3.5. Let {Λi}i∈I be a

Cauchy net in D.

Let K, K ′ be compact subsets of M such that K ⊂ K ′. Take ΛK̃ , ΛK̃ ′ ∈ D given by

Proposition 3.6 for K̃ = W0K and K̃ ′ = W0K ′ respectively. Then

ΛK̃ ∩ K = ΛK̃ ′ ∩ K.

Proof For any Wα, take Wβ such that Wβ
3 ⊂ Wα. Then, there exists i ′ ′ such that,

for any i ≥ i ′ ′, there exist vi, v ′

i ∈ Wβ such that

(viΛi) ∩ K̃ = ΛK̃ ∩ K̃, (v ′

i Λi) ∩ K̃ ′ = ΛK̃ ′ ∩ K̃ ′.

Thus we have

(viΛi) ∩ (viv
′−1
i K̃ ′) = (viv

′−1
i ΛK̃ ′) ∩ (viv

′−1
i K̃ ′).

Since (viv
′−1
i K̃ ′) ⊃ K ′ ⊃ K,

ΛK̃ ∩ K = (viv
′−1
i ΛK̃ ′) ∩ K,

which shows, for all Wα, there exists wα ∈ Wα such that

ΛK̃ ∩ K = (wαΛK̃ ′) ∩ K.

Since ΛK̃ ∩ K is finite and ΛK̃ ′ is discrete,

ΛK̃ ∩ K ⊂ ΛK̃ ′ ∩ K.

Similarly, for any Wα, there exists wα
′ ∈ Wα such that ΛK̃ ′ ∩ K = (wα

′
ΛK̃ ) ∩ K.

Thus we have ΛK̃ ∩ K = ΛK̃ ′ ∩ K

Definition 3.8 A locally compact space M is said to be σ-compact if it is a countable

union of compact subsets.

Remark 3.9 It is known that M is σ-compact if and only if there exists a sequence
{An | n = 1, 2, . . . } of open subsets of M satisfying:

(i) An is compact;
(ii) An ⊂ An+1 for all n;
(iii) M = ∪nAn. (cf. [3, Chap. I, §9.9])

Theorem 3.10 If M is σ-compact, then the uniform space (D, U) is complete.
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Proof (0) As before, we show that any Cauchy net {Λi}i∈I in D converges.
Take a fundamental system {Wα} of e in G satisfying the conditions in Lemma 3.5

and a sequence {An} of Remark 3.9. Let Kn = An.
(1) Take Λ̃n = ΛK̃n

, K̃n = W0Kn, as Proposition 3.6. And define Λ by

Λ :=
⋃

n

(Λ̃n ∩ Kn).

Then by Lemma 3.7, Λ ∩ Km = Λ̃m ∩ Km for all m.
Since, for any compact K ⊂ M, there exists Kn0

such that K ⊂ Kn0
, Λ ∩ K =

Λ ∩ Kn0
∩ K = Λ̃n0

∩ Kn0
∩ K is finite, i.e., Λ ∈ D.

(2) We show that {Λi}i∈I converges to Λ.
Let V be a neighbourhood of e and K be compact (say K ⊂ Kn0

). By definition of
Λ̃n0

, there exists iV,n0
such that, for any i ≥ iV,n0

, there exists vi,n0
∈ V such that

vi,n0
Λi ∩ Kn0

= Λ̃n0
∩ Kn0

.

Thus we have vi,n0
Λi ∩ K = Λ ∩ K, which shows (Λ, Λi) ∈ U ′

K,V .

4 Topological Dynamical Systems and Discrete Sets

4.1 Topological Dynamical System

We call a pair (X, H) a topological dynamical system if X is a compact topological
space and H is a locally compact topological (not necessarily Abelian) group acting
on X as homeomorphisms.

Let G, M and D be same as §2.1, and we denote by (D, U) the uniform space
defined by Theorem 2.5.

Throughout §4, we assume that (D, U) is complete.

Definition 4.1 For Λ ∈ D, define X(Λ) by

X(Λ) := {tΛ | t ∈ G}.

X(Λ) is called the G-hull of Λ.

X(Λ) is a complete Hausdorff uniform space, since it is closed in the complete
space D. And G acts on X(Λ) .

4.2 FLC (Finite Local Complexity)

Definition 4.2 Λ ∈ D has FLC (finite local complexity) if and only if, for any
compact subset K ⊂ M there exist, up to G-translation, only finitely many different

sets of the form Λ ∩ tK.
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Remark 4.3 ([15])

(i) The above definition of FLC is equivalent to the following:
For any compact K, there exists a finite set FK ⊂ M satisfying:

For any t ∈ G, there exist t ′ ∈ G and F ′ ⊂ FK such that (tΛ) ∩ K = t ′F ′.

(ii) In the group case, the condition that Λ ∈ D has FLC is equivalent to:

Λ
−1

Λ is discrete.

Proof By definition, if Λ has FLC, for a compact set K there exist finitely many,
finite subsets Fi = Λ∩ (tiK), satisfying the condition that, for t ∈ G, there exist i and

t ′ ∈ G such that Λ∩ (tK) = t ′Fi . Then the finite set FK = ∪Fi satisfies the condition
of (i).

Conversely, suppose that the condition of (i) is satisfied for FK . For t ∈ G, there
exist t ′ ∈ G and F ′ ⊂ FK such that (t−1

Λ)∩K = t ′F ′. Thus Λ∩ (tK) = tt ′F ′. Since

FK is finite, there exist only finitely many such F ′.
Next, consider the group case and let us prove (ii). Suppose that Λ has FLC. It

suffices to show that (Λ−1
Λ)∩ K̃ is finite, for any compact subset K̃ ⊂ G. Adding e to

K̃ if necessary, we can assume K̃ ∋ e. Let k = x−1 y ∈ (Λ−1
Λ)∩ K̃ (k ∈ K̃, x, y ∈ Λ).

Then y = xk ∈ Λ ∩ xK̃ = t ′Fi , where Fi satisfies the above condition. Since x is also
in t ′Fi , k = f1

−1 f2, for some f1, f2 ∈ Fi . Thus (Λ−1
Λ) ∩ K̃ is finite.

Conversely, suppose that Λ
−1

Λ is discrete. For a compact subset K ⊂ G, K−1K

is compact, thus FK = (Λ−1
Λ) ∩ (K−1K) is finite. For t ∈ G, let x0, y ∈ (tΛ) ∩ K.

Then x0
−1 y ∈ FK . Thus (tΛ) ∩ K ⊂ (x0FK ).

In the group case, we have the following beautiful result: For Λ ∈ D, X(Λ) is

compact if and only if Λ has FLC. In Abelian group case, see [15]. To prove and

generalize this result, we use the following Proposition 4.4.

Proposition 4.4 Let (X, U) be a complete Hausdorff uniform space and Y (6= ∅) be a

subset of X.

Then, Y is compact if and only if Y is totally bounded, i.e., for any V ∈ U, there exists

a finite set AV ⊂ Y such that

Y ⊂
⋃

a∈AV

V (a).

(See [3, Chap. II, §4.2, Theorem 3].)

Theorem 4.5 For Λ ∈ D, if X(Λ) is compact, then Λ has FLC.

Proof Suppose that X(Λ) is compact. For a compact subset K, take some compact

neighbourhood V of e and consider U ′−1
K,V . Since {tΛ | t ∈ G} is totally bounded, we

have a finite set A ⊂ G such that

{tΛ | t ∈ G} ⊂
⋃

a∈A

U ′−1
K,V (aΛ).
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Since (tΛ) ∩ K = (v(aΛ)) ∩ K = v{(aΛ) ∩ (v−1K)} for some a ∈ A and v ∈ V ,

FK =

⋃

a∈A

{(aΛ) ∩ (V−1K)}

satisfies (i) of Remark 4.3.

Definition 4.6 For a compact subset K ⊂ M, define

GK := {g ∈ G | ∃k ∈ K, gk ∈ K}.

Example 4.7 In the group case, for K ⊂ G, GK = KK−1. In this case, the assump-
tions of Proposition 4.8 are satisfied.

Proposition 4.8 Suppose that for any compact K, GK is contained in a compact set. If

Λ has FLC, then X(Λ) is compact.

Proof Suppose that Λ has FLC.

For a compact subset K and a neighbourhood V of e (here we can assume V

compact ), we will look for a finite set A ⊂ G such that

{tΛ | t ∈ G} ⊂
⋃

a∈A

U ′

K,V (aΛ).

Define a compact set K+ by K+ := V
−1

K(⊃ K).

By definition, there exist finite representatives P1, . . . , PN of translation classes of
sets of the form (tΛ) ∩ K+. Let Pi be (tiΛ) ∩ K+, (ti ∈ G).

If (tΛ) ∩ K+
= ∅, choose one t0 ∈ G satisfying (t0Λ) ∩ K+

= ∅, then tΛ ∈
U ′

K,V (t0Λ). Thus, assume (tΛ) ∩ K+ 6= ∅. Suppose that there exist t ′ ∈ G and i such

that (tΛ) ∩ K+
= t ′Pi = t ′{(tiΛ) ∩ K+} 6= ∅. Then t ′ ∈ GK+ .

By assumption, GK+ is contained in a compact set, we can take a finite set Ẽ(⊂ G)
satisfying GK+ ⊂ ⋃

ẽ∈Ẽ(V−1ẽ).
If t ′ = v−1ẽ (v ∈ V, ẽ ∈ Ẽ), (v(tΛ))∩ (vK+) = ẽPi . Since (vK+) ⊃ K, we see that,

for such t ∈ G, there exist v ∈ V, ẽ ∈ Ẽ and i such that (v(tΛ))∩K = (ẽPi)∩K. The
possibility of such (ẽ, i) is finite and we can choose one aẽ,i ∈ G satisfying (ẽPi)∩K =

(aẽ,iΛ) ∩ K for each (ẽ, i). And tΛ ∈ ⋃
U ′

K,V (aẽ,iΛ).

4.3 Minimality

Definition 4.9 Let (X, H) be a topological dynamical system. (X, H) is minimal if
the closure of every orbit coincides with X.

Proposition 4.10 For a topological dynamical system (X, H), there exists an H-invar-

iant closed subset Y 6= ∅ so that (Y, H) is minimal.

For proof, consider the collection of all non-empty H-invariant closed subsets, then
use Zorn’s lemma and compactness of X (finite intersection property).
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Definition 4.11 Let (X, H) be a topological dynamical system. Then x ∈ X is
almost periodic if, for any neighbourhood U of x, P(x,U ) := {h ∈ H | hx ∈ U } is

relatively dense (i.e., there exists a compact subset KU in H such that KU (P(x,U )) =

H).

Proposition 4.12 ([5, Chap.1])

(i) If (X, H) is minimal, every point of X is almost periodic.

(ii) If x ∈ X is almost periodic, then (Hx, H) is minimal.

Proof (i) For a neighbourhood U of x, X = HU =
⋃

(hiU ) (finite union). Then

KU = {hi} satisfies KU (P(x,U )) = H.
(ii) It suffices to show that, for all y ∈ Hx, x ∈ Hy. If not, there exists a compact

neighbourhood V of x such that V ∩ Hy = ∅. Since Hx = (KV (P(x,V )))x ⊂ KV V

and KV V is compact, Hx ⊂ KV V i.e., y = kv for some k ∈ KV , v ∈ V , which is a

contradiction.

We apply these to (X(Λ), G), G, Λ being as §4.1.

Remark 4.13 By definition of X(Λ) and U ′

K,V we have: Λ
′ ∈ X(Λ) if and only if,

for any compact subset K, there exists tK ∈ G such that Λ
′ ∩ K = (tKΛ) ∩ K.

Definition 4.14 Let Λ, Λ ′ be in D.

(i) Λ and Λ
′ are locally indistinguishable (LI) if, for any compact subset K, there

exist tK , t ′K ∈ G satisfying

Λ ∩ K = (t ′KΛ
′) ∩ K and (tKΛ) ∩ K = Λ

′ ∩ K.

(ii) Λ is repetitive if, for any compact subset K, PK := {t ∈ G | (tΛ) ∩ K = Λ ∩ K}
is relatively dense.

Remark 4.15 From the definition, Λ and Λ
′ are LI if and only if X(Λ) = X(Λ ′).

Proposition 4.16 Let Λ ∈ D. Suppose that X(Λ) is compact. Then the followings are

equivalent:

(i) For all Λ
′ ∈ X(Λ), Λ

′ and Λ are LI.

(ii) (X(Λ), G) is minimal.

(iii) Λ is almost periodic, i.e., P(Λ,U ) = {g ∈ G | gΛ ∈ U} is relatively dense for all

neighbourhoods U of Λ.

(iv) Λ is repetitive.

Proof The properties mentioned above show easily the equivalence of (i), (ii)
and (iii).

Let K be a compact subset. For all V, PK ⊂ P(Λ,U ′

K,V (Λ)), we have (iv)⇒ (iii).

Conversely, fix a compact neighbourhood V and take a compact subset C such that
C(P(Λ,U ′

K,V (Λ))) = G. Put C1 = CV−1, which is compact. Then C1PK = G. In
fact, write g = ct, c ∈ C, t ∈ P(Λ,U ′

K,V (Λ)). For t , there exists v ∈ V such that
(v(tΛ)) ∩ K = Λ ∩ K. Then vt ∈ PK and g = (cv−1)(vt).
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Proposition 4.17 (Point-set version of Radin-Wolff [13]) If Λ ∈ D has FLC and the

assumptions of Proposition 4.8 are satisfied, then there exists Λ
′ ∈ D satisfying:

(i) Λ
′ is repetitive and has FLC.

(ii) For any compact K, there exists tK ∈ G such that Λ
′ ∩ K = (tKΛ) ∩ K.

For proof, consider in X(Λ) a G-invariant minimal closed subset which is of the form
X(Λ ′). For (ii), use Remark 4.13.

4.4 An Example–Pinwheel Tiling

The pinwheel tiling (or the Radin aperiodic plane set) is an aperiodic tiling of plane

with a single prototile consisting of a right-angled triangle with sides of length 1, 2,√
5. (In this section, “triangle” means a triangle congruent to this one.) For the

construction of this tiling, see e.g., [11, p. 474] and [12]. A triangle in the plane is
described by its location (in the plane), orientation and chiral type. The location is

indicated by the coordinates of one point fixed to each triangle all at once, e.g., the
vertex with a right angle. The orientation is indicated by an element of a circle S,
and chiral type is indicated by + or −. Thus there is a one-to-one correspondence
between the set of triangles in the plane and the direct product set S ×{±1}× R

2 or

M = O(2)×R
2 (as a set), where O(2) denotes the real orthogonal group of degree 2.

The Euclidean group E(2) of plane is isomorphic to the semi-direct product O(2) ·
R

2 and the group operation is given by

(σ, a)(τ , b) = (στ, σb + a) ( for σ, τ ∈ O(2), a, b ∈ R
2)

The group E(2) and the subgroup G0 of E(2) consisting of the transformations which

keep the orientation of the plane act naturally on the plane, triangles and the tiling.
The action of E(2) on M is described by

(σ, a)(ρ, c) = (σρ, σc + a) ( for (σ, a) ∈ E(2), (ρ, c) ∈ M)

Namely, if we consider the set M as the underlying set of the group E(2), the action is
left translation of group elements. Since they satisfy the condition in Theorem 3.10,

the uniform space (D, U), where D is the set of discrete subsets of M and U is given
by Theorem 2.5 for the group G0 or E(2), is complete. And we can apply the results
in §4.

Let Λ be the tiling set of the pinwheel tiling, and consider the hull X(Λ). The

following geometric observation shows that Λ has FLC for the group G0 or E(2).
Thus by Proposition 4.8 we know that X(Λ) is compact. To show that Λ has FLC, we
use Remark 4.3 (i) and consider the case of G0. It is enough to consider as K the set
O(2)×K0 where K0 is the closed disc with radius R (R ≥

√
5) and centre O = (0, 0).

Let t ∈ G0 and K1 = t−1K0 be the closed disc with centre P1 = t−1O. Let T1 be a
triangle in K1 ∩Λ such that P1 ∈ T1. Take s ∈ G0 which moves T1 to T0 or T0

′, where
T0 is the triangle with vertices (0, 0), (2, 0), (2, 1) and T0

′ is the triangle with vertices
(0, 0), (2, 0), (2,−1). The triangles in Λ have the following property (PT):
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(PT) Any vertex of a triangle is a vertex or the middle point of a side of triangles
which contain that vertex.

The set s(Λ∩(t−1K)) is a subset of tiling sΛ and can be considered as a set of triangles

which have common points with the disc sK1, the centre of which is st−1O(∈ T0 or
T0

′) . The number of different coverings by triangles of the disc with radius (R+2
√

5)
and centre O, which have the above property (PT) and contain T0 or T0

′, is finite.
Thus the number of triangles which appear in these coverings, is also finite. Since

this disc contains K0 and sK1, we know that there exists a finite set FK(⊂ M) which
satisfies the condition of Remark 4.3 (i).
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