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ON THE rth LATENT ROOT OF A COMPLEX MATRIXf) 

BY 

SABRI AL-ANI(2) 

1. Introduction and summary. Goodman [1] has pointed out the applications of 
the distributional results of the complex multivariate normal statistical analysis. 
Khatri [4], has suggested the maximum latent root statistic for testing the reality 
of a covariance matrix. The joint distribution of the latent roots under certain 
null hypotheses can be written as, [2], [3], 

\j=l ) i>j 

where 

Cl ^Û{r(n + m + q+j)l{r(n+j)r(m+j)r(j)}} 
3=1 

and 
0 < vvx < w2 < ' ' ' < wQ < 1. 

We may also note that when n is large, the joint distribution of nw—f^ j= 
1> • • . , q, 0 < / i < - • '<fg<co, can be written as 

(2) c2 n / r exP (- i /,) (n a-/,)2] 
i = l \ j=l I \i>3 ) 

where 

^ = i/{n[r(w+j)r(j)] 
Khatri [2], has derived the distribution of wQ (or wx) and/ff in a determinant 

form. In this paper we first derive the distribution of wq_1 and^_! and then the 
distribution of w{ a n d / . In this connection a lemma has been proved. 

2. Preliminary results. In this section, we first state two lemmas, and prove a 
third lemma. 

LEMMA 1. 

I i n ixrii-x,)* dXi] = n \ f V a - ^ r <*** 
J & j=l j=l L^O 
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where ^r'.{^<xx<^ • '<xs<x), ( x < l ) ; and on the left-hand side (m's,ri8), . . . , 
(m'19 n[) is any permutation of (ras, ns),. . . , (m1? nx) and the summation is taken 
over all such permutations. 

For proof, see Roy [6, p. 203, A. 9.3]. 

LEMMA 2. 

n(w,-w,)2=2 
i> j 

2q-2 .i(2«7—3 q—1 

W 
,2a—3 

W 
.,2g--4 , , ,« -2 

W 
, < z - l 

W ,ff-2 H>-, 

w/zere 2 means summation over all permutations {jl9j^ • • • J?) #/ 0> 2, . . . , q), 
and \A\ means the determinant of A. 

For proof, see Khatri [2]. 

LEMMA 3. 

2 J l H WQ-**?''d*A = n [ [ V(i-*y)n' <***]> 
w/zereiF^x^XL^C-x^* • *<x s <l ) , and on the left-hand side {ms, ris), . . . , (m{, m{) 
w a«y permutation of (m$, ns)9 . . . , (m1? «i) tf/zd the summation is taken over all 
such permutations. 

Proof is similar to Lemma 1. 

3. The distribution of w^. In this section we obtain first the cdf's of wq__1 and 
f_x and in the next those of wt and/^. Note that 

(3) P r K _ ! < x} = Pr{w, < x} + ?r{wq_1 < x < wQ < 1} 

Khatri [1], showed that 

(4) P r { w , ^ x } = c1 |(A+;-_2)| = ça 

Po Pi 
Pi P2 

Pq-1 Pq 

Pq-1 
Pa 

Plq-1 
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where cx is defined in (1), Pi+j_2=$%wm+i+j-2(l-w)n dw for i,j = 1, 2 , . . . 9q 
and (&+3_2) is a qxq matrix. Now the determinant in Lemma 2, can be written as 

(5) 2 signal, • • •, ta)w%1+tiW%2+t*. . . w%, 
1 

where (tl9... , tq) is a permutation of (0, 1 , . . . , q—l)9 sign(/1?. . . , tq) is positive 
if the permutation is even and negative if the permutation is odd, and 2 i means 
the summation over all such permutations. Then (1) can be written as 

4nwra-^-r 2 2sign(^...,g 

(6) X [wq wn wj2 • ' • wjq-i+wq Y>n wj2 • • • wjq_x+ • • • 

J-™**™0-1**1™*""2"*"*2. • • vo 1 + *«l 

First taking summation over (Jl9.. . ,ya_i), the permutation of ( 1 , 2 , . . . , # — 1) 
and integrate wq over x<wq<\9 and apply lemma, we get 

Pr(uv_! ^ x ^ wQ < 1) = cx J signfe . . . , tq)[P'q_1+tlpq_2+t2 - - fiu 
i 

(7) 
+ P«-l+<iPa-2+*2 ' ' ' r<„+ ' ' ' Pq-l+tiPn-2+tt ' ' ' Ptv' 

where 

P'i+j^ = [\m+i+1-\l-w)n dw, 
J X 

then (7) can be written as 

(8) cx 2 |GC_,)|, 

where |($+V_2)| is the determinant obtained from \(Pi+3-_2)\ by replacing, the kth 
column of \({ïi+j__2)\9 /?a, by the corresponding /^'s. So we proved the following 
theorem. 

THEOREM 1. If the joint distribution ofwl9...9 wQ is given by (1), then 

(9) Pr{w a_1<x} = c1il( /5« ,,_2)| 

where | ( ^ )
i _ 2 ) | = |(ft+i_2)|, a«d |($+,-_2)| w defined in (8), a«d cx w defined in (1). 

THEOREM 2. //* //ze distribution offl9. . . , / a w gww Zy> (2) Âe« 

(10) P r f / ^ £ x} = c2 J |(ri^_2)l, 

wferé? 7 i + i_ 2=J>w + i + i- 2exp(- iv)( iw, (yi+j^2) is a qxq matrix and (yj+,_2) is 
defined similar to that of (9), and c2 is defined in (2). 
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Proof is similar to that of Theorem 1. 

4. The distribution of w{. It may be noted here that 

(11) Pr{w, <x} = Pr{w,+1 <x} + Pr{w, < x < w m } , f = 1, . . . , q-1. 

To evaluate the second term of (11), we may write 

no^-w,)2 
i> j 

(12) 
" ' " " " " ' " v j ï 

31,...,3i 
2 signfo, . . . , 0 2 2 « 2 " * • K-i I w?-<+1" *-'+» 

where (fl9. . . , J ' ^ ) is permutation of ( /+1 , . - . , # ) and 2tx,•••.*' _, r u n s o v e r a ^ 
such permutations; (yl5 . . . 9j{) is a permutation of (1, . . . , /) and 2 n n r u n s 

overall such permutations; 22 is the summation over the terms j .) terms of 

obtained by taking q—i, (<xl5. . . , aa_t), at a time of q— \ + tl9 9—2+?2, . . . , tq. 
Substituting (12) in (1) and using Lemma 1 and Lemma 3, and as in § (3), 

we get 

(13) Pr(w, < x < w,+1) = Cl 2 IG& 2 ) I , 
2 

where ($$_ 2) is a qxq matrix obtained from (&+i_2) by replacing / columns of 
(fti+j-z) by the corresponding /^'s. Therefore by (10), (14) and Theorem 1 and 
reduction process, we can get the distribution of w,. 

It may be pointed out that, [5], 

(13)' Pr{tt^ < x; m, n) = 1 — Fr(wQ_i+1 < 1—x; n, m) 

where on the right side of (13) the parameters m and n are interchanged, hence 
the distribution of wl9 [2], can be written as 

(14) P r{w 1 <x} = 1 - ^ 1 ( ^ ^ ) 1 , 

where di+j_2—$l~xzn+i+i~2(l—z)m dz, and (ôi+j_2) is a qxq matrix, similarly, if 
we define ô'i+j_2=$l_xz

n+i+j-2(l— z)m dz9 the distribution of w2 can be written as 

(15) P r { w 2 ^ x } = = 1 - ^ 2 1 ( 3 ^ ) 1 , 

where, as before, | (<^_ 2) | is the determinant obtained from \(ôi+j_2)\ by replacing 
the Mi column of |(ôi+i_2)| by the corresponding cT's, and (ô(

i+j_2) = (ôi+j_2). A 
similar method gives 

(16) Pr{/< < x} = Pr{fi+1 < x} + Pr{/, < x <fi+1}9 i= 1, 2, . . . , q-\9 

and 

(17) Pr{/« < x < fi+1} = c 2 1 |(y<it2)|, 
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where c2 is defined in (2), and also (yl+J-2) is a qxq matrix obtained from (yi+j-.2) 
by replacing / columns of (yw_2) by the corresponding y'a's. 
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