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A monadicity theorem

Francis Borceux and B.J. Day
A monadicity theorem is established, for functors which satisfy

the conditions of the "first isomorphism theorem" (following

Linton's terminology). An application is made to the

characterisation of certain types of algebraic categories

generated by linear monads.

Introduction

In this article we establish that a functor U : 8 -»• C with a left

adjoint is crudely monadic if it satisfies conditions analogous to those

described by Linton [6] and there called the first isomorphism theorem.

For certain types of algebraic category this monadicity theorem is an

important alternative to the standard monadicity criteria of Beck [7].

In Section 2 we give a characterisation theorem based on the first

isomorphism theorem for certain types of algebraic category generated by

linear monads.

Throughout the article we suppose, unless otherwise stated, that

V = (f, ®, I, ...) is a complete and cocomplete symmetric monoidal closed

category and that all categorical algebra is relative to this f . For

terminology and notation we refer to Ei lenberg and Ke I ly [5] and Mac Lane

VI.

1. The theorem

DEFINITION 1.1. The first isomorphism theorem is said to hold for a

functor U : 8 -»• C if

FIT 0: 8 has coequalisers and kernel pairs,
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FIT 1: f is a coequaliser in 8 iff Uf is a coequaliser

in C ,

FIT 2: (/, g) is a kernel pair in 8 if (Uf, Ug) is a

kernel pair in C . //

THEOREM 1.2. If C has coequalisers and kernel pairs and

F —i U : 8 ->- C , then 8 is crudely monadic over C if the first

isomorphism theorem holds for U .

Proof. Let T = (T, y, n) be the monad generated by the adjunction

(e,n) '• F -* U : B ->• C , and let M : 8 -*• C be the canonical comparison

functor

where MB is UB with structure Uen : UFUB -*• UB . Because 8 has
D

coequalisers, M has a left adjoint M defined by the following

coequaliser:

FUFC

and the counit £ is given by:

FUe

FC M(C,

~-FC

FUFUB B -*• FUB * MMB

FUB

Applying U , we have that J/en = coequ^UFUz-, Us

coequaliser in C by hypothesis, so Ue

FUB'
But Ue

MB

MB
is an epimorphism, so We is

B
an isomorphism. Thus e_ is a coequaliser (by hypothesis) so M reflects

D

isomorphisms, so U reflects isomorphisms, so e is an isomorphism.

Also n : 1 •*• MM is given by
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MFUFC
MFZ,

-»• MFC

'FC

Let (c)> , <J> ) be the kernel pair of e in C (as in C ) . The functor

U preserves kernel pairs, so Ue - coequ(U<}> , Uffo) i n C by hypothesis.

Thus n = coequ(^ .£/<)) , Z, .!/())„] in C . Hence it remains to show that l"|«

is a monomorphism. Consider

* C

MM{C,t,) .

Let (TT , ir_) be the kernel pair of £_ in C (as in C ) . Then the

comparison 9 is a monomorphism and MJ> #6 =ir. (i = 1, 2) . But M —* M,
l "i-

so we have

for a unique A : MP -*• Q . Thus n p is a monomorphism, hence is an

isomorphism. Thus [M^i .MX, M<J) .AA) is a kernel pair in C , so, by

hypothesis, ((f>,-A, <(>p.A) is a kernel pair in B . Now, by definition of

n, A, 6 , and a. (i = 1, 2) , the following diagram commutes

U = 1, 2) :
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* MFC

MMP

But e = coequ(a , a ) in 8 because M is a reflection, and

coequ(a,, a?) in C is just (C, 5) because C, is an epimorphism.

Thus

e = coequ(<j> Ae, <t>ô e)

= coequ^A, ^ A ) ,

since e i s an epimorphism. Hence A i s an isomorphism because (<f » <t>5)

and ('('̂ A, ^pA) are now both kernel pairs of e . Hence 9 is an

isomorphism, so ri_ i s an isomorphism. / /

COROLLARY 1.3. If C has eoequalisers and kernel pairs and

F - < i / : 8 - > C is an adjunction such that UF preserves aoequalisers of

reflective pairs then 8 is crudely monadic over C if and only if the

first isomorphism "theorem holds on U . //

X

2. Linear monads

Let N : A •*• C be a fully faithful dense functor. Following Diers
has[4 ] , we say that an iV-theory (T, t) is algebraic if t : A •*

a right iV-adjoint R . We call an algebraic theory s t r ic t ly #-hyper-

linear if the mean tensor product (see [/]) C(M, C) * RtA exists in C

and is flf-absolute.

As usual, the category C of T-algebras is defined by the pullback:

I

t <
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As a consequence

(A
[t, l]t[C(N-, O) = T(tA, t-) ® C{NA, C)

rA
^ I C{N-, RtA) ® C(NA, C) ^ C[N-, C{NA, C) * RtA) .

So we o b t a i n F -H U where UF i s j u s t t h e r e s t r i c t i o n o f t"-f [t, l ] t o

C .

UFC = C(NA, C) * RtA .

Thus RtA & UFNA and

rA ,A

C(NB, UFC) c* C(NA, C) ® C(NB, RtA) S C{NA, C) ® C(NB, UFNA) .

Thus the monad T = UF is s t r i c t l y iV-hyperlinear in the sense of Day [ 3 ] .

Such an algebraic category C will be called strongly AP-algebraic.

THEOREM 2.1 . If C has ooequalisers and kernel pairs and each

C(NA, -) , A 6 A , preserves ooequalisers of reflective pairs, then a

category 8 is strongly N-algebraio over C if and only if there exists

F H U : B -»• C such that

[A

(1) C(M, C) ® C(NB, UFNA) 3S C(flB, t/FC) ,

(2) the first isomorphism theorem holds for U .

Proof. Necessity follows from the fact that C(NA, -) , A € A ,

preserves coequalisers of reflective pairs, thus UF '=S C(NA, -) * UFA

preserves coequalisers of reflective pairs, thus U creates coequalisers

of reflective pairs. For sufficiency we have that U is monadic by (2)

[A
and Theorem 1.2. By density of N we have C(M4, C)-UFNA ^ UFC from

(l). Thus the monad generated by the theory which maps A to the full

image of FN (see Day [2]) coincides with the monad UF , as required. //

This result should be compared with Lawvere's characterisation theorem

(Linton [6], Corollary to Proposition 6) for the case C = Bru, .
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