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Abs t r ac t . Models of twisted flux tube evolution provide a picture of how 
magnetic helicity is propagated through the solar convection zone into the corona. 
According to the models, helicity tends toward an approximately uniform length-
density along a tube, rather than concentrating at wider portions. Coronal fields 
lengthen rapidly during active region emergence, requiring additional helicity to 
propagate from the submerged flux tube. Recent observations of emerging ac­
tive regions show an evolution consistent with this prediction, and no evidence 
of helicity concentrating in wider sections. 

1. T w i s t e d F l u x T u b e s 

The solar magnetic field has been modeled as flux tubes, ever since Parker intro­
duced the concept and elucidated many of their properties. His comprehensive 
monograph, Cosmical Magnetic Fields; Their Origin and Their Activity (Parker 
1979), devotes three chapters exclusively to flux tubes . Shortly after its publi­
cation, Spruit (1981) introduced a part icularly useful non-linear model for the 
dynamical evolution of thin flux tubes (cross-sectional radius a <SC Hp the pres­
sure scale height), by expanding the magnetohydrodynamic equations about the 
tube 's axis. Solutions of these equations for rising active region tubes agree with 
many observed characteristics of bipolar active regions (see Fisher et al. 2000, 
and references therein). 

Recent interest in the chirality of the solar magnetic field motivated Long-
cope and Klapper (1997) to extend the s tandard th in flux t ube model to include 
degrees of freedom they called twist q{s,t) and spin ui(s,t). These define the 
azimuthal magnetic field B^ = qrB and plasma velocity v$ = tor small distances 
r from the axis (B = Q/na2 is the mean axial magnetic field in a tube of flux 
$ ) . The twisted tube carries an axial current i" = 2q& along its field lines and 
an opposite re turn current along its outer surface. 

Expanding both the ideal induction equation and the first moment of the 
momentum equation (i.e. the equation of axial angular momentum) yields dy­
namical equations coupling twist and spin (Longcope and Klapper 1997) 

dq duj „ dva ds dva du> odq d i n a2 . . . 

di = ^ - ? s - ^ + ( s x^)-^7 ' -d-t=v^s-
w^r ' (1) 

where v a ( s , t) is the velocity of the axis at length coordinate s, and § is the axis 
normal. The spin and twist are clearly affected by the dynamics of the tube ' s 
axis through v a and a in equations (1). For a slightly twisted tube , one for which 
qa -C 1, the axis dynamics are not affected by twist or spin. 
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In the case of a stationary axis, v a = a = 0, the spin and twist satisfy a 
pair of telegrapher's equations 

dq = duj_ dw_ ^ 2dq 
dt ds ' dt VA0S ' U 

whose solutions are torsional Alfven waves. Evidently, to be in equilibrium the 
tube's twist must be uniformly distributed along its axis, dq/ds = 0, regardless 
of any variation in its radius a(s). This tendency for uniform twist can be viewed 
as a consequence of either continuity of axial current / = 2g$, or a balance of 
axial torque. A violation, i.e. an interruption of current or a torque imbalance, 
will lead to a torsional Alfven pulse, whose propagation will move the variation 
toward the ends of the tube, thereby "seeking" to restore uniformity. 

The tendency for twist uniformity exhibited by the Longcope and Klapper 
thin twisted flux tube model contradicts a common assertion that twist will 
concentrate in the widest portions of a flux tube. Such assertions are typically 
justified by referring to Cosmical Magnetic Fields (Parker 1979), particularly 
to results from the chapter devoted to the internal structure of axisymmetric 
flux tubes, not restricted to thin tubes. We return shortly to show that when 
applied to thin tubes Parker's result actually corroborates the tendency toward 
twist uniformity, rather than predicting a concentration at wider regions. 

2. Coupl ing to t h e Corona 

The thin flux tube model generally fails within the several megameters below 
the photosphere. Higher still, in the corona, the field is believed to approximate 
a force-free equilibrium. Torque balance across the intervening layer shows that, 
except during brief transients, the tube's internal axial current must pass com­
pletely into the corona (Longcope and Welsch 2000). The flux tube's surface 
current, including the axial return current, joins the horizontal surface current 
of the merging layer. Thus we expect that twist observed in photospheric and 
coronal magnetic fields, generally of order \q\ ~ 10~8 m _ 1 (Pevstov et al. 1995), 
reflects a twist in the convection zone flux tubes to which they connect. 

Let us assume that the coronal field directly connected to the active region, 
and thus to the flux tube, consists of closed loops which together fill a finite vol­
ume of characteristic scale ~ d, the separation between the photospheric poles. 
In equilibrium these loops will compose a force-free field carrying a net cur­
rent Ic between footpoints. The detailed structure of this field will be complex 
depending as it does on the distribution of photospheric flux and current. Nev­
ertheless, it will have a relative helicity H, which we assume to be finite and, on 
dimensional grounds, to be H ~ CIc$d, for some constant C. 

During the process of emergence, the flux tube evidently injects the helicity 
H into the corona. It must do this while injecting little mass since the ratio 
of helicity per mass is greater in the corona than in the convection zone by 
~ PczO?IPcoid2 3> 1. Thus the emerging flux tube cannot "carry" its helicity 
into the corona by vertical flow, but must instead "wind" it into to coronal field 
by horizontal rotational motion. Evidently there is spin, LO+ and w_, in the 
positive and negative legs of the emerging flux tube which map to photospheric 
rotations. This spin, which can be decomposed into upward and downward 
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propagating torsional Alfven waves within the sub-photospheric legs, produces 
a coronal helicity flux (Pevtsov et al. 2003) 

dH/dt = 2C$2{qcd + qcd) = - $ 2 ( w + + W_)/2TT , (3) 

where qc = Ic/2$ is the value of twist where the thin flux tubes meet the corona. 
Pevtsov et al. (2003) used combined MDI and EIT observations of six emerg­

ing active regions to test this model of helicity injection. With the exception 
of one apparently untwisted case, the coronal twist increased from zero to a 
final value over about 1.5 days. In all five cases with twist, the time history of 
d(t) and qc(t) were fit by solutions of (2) and (3), with similar values of sub-
photospheric Alfven speed and asymptotic twist q ~ 10 m - 1 . According to 
this interpretation, the separating poles (d > 0), lengthened the coronal field 
lines, causing helicity to be drawn from the submerged tubes over a time d/vA. 

3. Internal Twist Distribution 

It is worth comparing this to Parker's model for the internal distribution of twist 
in an axisymmetric, vertical, equilibrium flux tube. A general axisymmetric field 
can be written in terms of a flux function1 ip(r, z) as B = Vip x V</> + B^(r, z)<fi. 
The flux function rises monotonically from zero on axis to ip(a, z) = $>/2ir at 
the outer surface, r = a(z). 

Since the azimuthal Lorentz force (i.e. magnetic torque) cannot be compen­
sated by pressure, it must vanish in equilibrium, requiring rB^ = F(ip) a general 
function of the flux function. Following Parker we argue that the internal plasma 
pressure is hydrostatic, and thereby obtain the zero-/3 Grad-Shafranov equation 
for the flux function 

r2 V • ( r _ 2 w ) = - F'{$) F{ip) . (4) 

The function F(ip) determines the azimuthal field even where a(z) varies 
significantly. Parker argues that in any section which can be considered thin, 
so ip ~ Br2/2, F{ip) can be approximated by the leading term from its series, 
F(-0) — 2qip. Here q has the same meaning as in the thin-tube dynamical 
theory of Longcope and Klapper (1997). Since F(ip) must be the same in every 
portion of the tube, Parker's theory confirms that q is uniform throughout the 
equilibrium, regardless of radius. 

In a non-thin tube section equation (4) demands a linear force-free field with 
a — 2q. In a thin or approximately straight section d2ip/ds2 may be dropped 
yieliding the Lundquist solution found by Parker 

$ rJi{2qr) 1 dip q$? 
^=o 7 /o \ ' Bz = ~T = lit \M2qr) (5) 

2ir aJi(Zqa) r dr TraJi{2qa) 
where Jn(x) is the Bessel function of order n. The common assertion about 
twist concentration follows from the observation that when the tube is wide 

Parker casts his analysis in terms of a generating function, / , related to ip and B$. 
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enough that 2qa — j ^ , \ — 2.405, the axial field vanishes and the local twist, 
B<f,/rBz, diverges at the tube surface. This large twist is achieved, it is argued, 
by concentrating all of the tube's twist in this one wider section. 

The previous section showed that the dynamically significant quantity is 
not the local twist, but rather the helicity per unit length, 

for the Lundquist field (5). In the weakly twisted limit, ^a < 1, the factor 
in braces approaches one-half, recovering the Longcope and Klapper limit, H ~ 
q$2/2ir, independent of tube radius a. Even the pathologically "fat" tube, 2qa = 
jo,i has helicity only two times greater (in spite of an infinite twist density). 
Cross-section alone, it seems, can only double the helicity requirement of the 
tube apex, while its net extension requires far more. 

Solar flux tubes have such small values of twist, q ~ 10~8m_ 1, that even 
their widest sections, while not thin, are still weakly twisted, ^ f l C l , and will 
seek uniform helicity density. Only the coronal field, d ~ 108 m, might depart 
from this regime, however, this is also the section most poorly approximated as 
axisymmetric. The helicity density in a maximum width Id (Lundquist) field 
(Parker 1979) is double that of a thin tube, however, 2d axisymmetric fields 
show slightly different enhancements (Longcope and Welsch 2000). 

In conclusion, there is no strong tendency for twist or helicity to move 
preferentially toward wider portions of flux tubes, or even into the zero-/? coronal 
field. It will instead seek uniform density per length, and thus flow to lengthening 
portions. Observations show evidence of this tendency as emerging active regions 
fill with helicity through horizontal photospheric motions. This same reasoning 
predicts that removal of coronal helicity, by cornal mass ejections for instance, 
should be followed by replenishing photospheric motions driven by the twisted 
flux tube below. In this way the corona and heliosphere together may function 
as a sink of helicity produced in the solar interior. 
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