
P AND D IN P~lXP = dgfo, . . . , ^ ) = D 
AS MATRIX FUNCTIONS OF X 

R. F. R I N E H A R T 

1. Introduction. Let tyftc1 be the algebra of n X n matrices over the 
complex field C, X = \\xrs\\ a matrix of 99?c

w,and/(X) = ||/„(ffii, xi2, . . . , xnn)\\ 
a function with domain and range in $Jlc

n- If the frs are differentiable with 
respect to each of the xijy on some open set R of $)?</, then the differential 
df(X) = WdfrsiXi^W exists, and, moreover, f(X) is Hausdorff-differentiable 
(HD) (1, 3, 7) i.e. df(X) is expressible in the form 

df(X) = £ AtdXBt, 

where dX = ||dxr5||, and the matrices Au Bt are independent of dX. The 
Hausdorff derivative f{X) is defined to be 

f(x) = jb AtBU 

i.e. the value of df(X) for dX = / , the identity matrix (2). 
If Tie71 is topologized by the topology induced by any suitable matrix norm, 

then the subset $ of Wlc
n consisting of matrices with n distinct eigenvalues is 

an open set in Wlcn since the eigenvalues of a matrix are continuous, and indeed 
differentiable, functions of the elements of the matrix. Hence, if X G JÎ, and 
P~lXP = dg(Xi, . . . , \n) = D, then D is a Hausdorff-differentiable function 
of X on JÎ. Further, as will be shown in §3, the matrix P can be so chosen that 
P is also a differentiable (therefore HD), function of X on $ . 

The purpose of this note is to examine the matrices D and P as HD functions, 
and in particular, to calculate their Hausdorff derivatives, which turn out to 
have the interesting properties: D1 = I and P1 = 0. The first of these results 
yields a simple and interesting partial differential equation satisfied by the 
eigenvalues of matrices I f 1 

2. The function D(X) = dg(Xi, . . . , \n). Let X belong to the space S of 
matrices of $lc

n with distinct eigenvalues. Then X is similar to a diagonal 
matrix, P~lXP = dg(Xi, . . . , \n) = D(X), and the \ t are differentiable func
tions of the elements of X (8). (The ordering of the A* may be fixed by selecting 
an ordering at some fixed XQ G $. The continuity of the X* as functions of 
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I Ç f thereby determines the ordering for all I f f . ) The differential of 
D(X) is d(D{X); dX) = dg(d\h . . . , d\n), and the Hausdorff derivative 
DT(X) is given by DT(X) = d(D(X); I) (2). 

THEOREM 2.1. DZ(X) = I throughout ®. 

Proof. It has been shown in (9) that Hausdorff differentiability on an open 
set of $)lcn implies differentiability in the following sense (i^-differentiability) : 
for norm H sufficiently small, 

(a) D(X + H) — D(X) is expressible in the form 

and 
(b) L = l im^o ]C Mi Nt exists. Further, L is equal to the Hausdorff 

derivative. 
Since L exists, let us choose H in the special form H = hi, h Ç C. Then, 

since the eigenvalues of X + hi are Xi + h, X2 + h, . . . , \n + h, 

D(X + hi) - D(X) = hi = HI and L = / = DT(X). 

Theorem 2.1 yields an interesting universal partial differential equation 
satisfied by the eigenvalues of matrices with distinct eigenvalues. 

COROLLARY 2.1. Let X Ç $ and let X;- be any eigenvalue of X. Then 

i=i dXa 

This result follows directly from the fact (2) that the Hausdorff derivative 
of an HD function/(X) on 3Jlc

n is given by 

£ §fgom 
i=i dXa 

3. The transforming matrix P as a function of X. Let X 6 $ C $lcn 

with n > 1 and let Q be a matrix such that 

(2"1X(2 = d g ( X 1 , . . . , X j =D. 

Even for a chosen ordering of the X*, the matrix <2 is not unique. Column i of 
Q is an eigenvector of X corresponding to X*. However, since X has distinct 
eigenvalues, the null space of X — \ t I has dimension 1 and all eigenvectors 
associated with X* are scalar multiples of one such eigenvector. Since X — \ t I 
is of rank n — 1, this fixed eigenvector can be taken to be the set of cofactors 
of the elements of any row of X — X* / , as long as not all of these cofactors 
are zero. At least one such non-zero row of cofactors exists since X — \ t I 
is of rank n• — 1. 
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To arrive at a * 'stabilized" choice of the columns of Q, we proceed as follows. 
For n = 1, choose Q = 1. For n > 1, let X0 be a fixed matrix of $ . For each 
i = 1, . . . , n choose a non-zero column j t of (X — A* J ) 4 as an eigenvector. 
Let Aji be the set of all matrices X of Tlc

n for which column j t of (X — X* I)A 

is non-zero. Since the elements of column j t are polynomials in A* and the 
elements of X, and are hence continuous (indeed difïerentiable) functions of 
the elements of X, it follows that A ; i is an open set of 9J?C

W- The set 

A = n A,, 
i=l 

is therefore also an open set that contains Xo as an interior point. The matrix 
P whose ith column is column j t of (X — A* I)A is therefore a Q which is a 
single-valued HD function of X defined in A. 

THEOREM 3.1. For any given fixed matrix X0 G $ , /Aere exists an open set A 
containing X0 ow which the matrix P such that P~lXP is diagonal can be chosen 
as an HD function of X. Its Hausdorff derivative 

is z£ro throughout A. 

The first part of this theorem has already been proved by Portmann (3) 
in less elementary fashion. For purposes of the last part of the theorem, a 
more explicit formulation of P than that of Portmann is required. 

The last assertion is all that remains to be proved. Before taking up its 
proof, some background observations about Hausdorff derivatives are in order. 

For primary functions (4, 5), i.e. those functions arising from the classical 
extension of scalar functions f(z) of a complex variable to complex matrices, 
it is true t h a t / 7 ( X ) = 0 implies/(X) is a constant (in this case a constant 
scalar matrix), since/7(X) in this case is equal to the primary function f(X), 
the extension of f (z) to 93?c

w- However, for more general functions, this asser
tion is false. For example, 

r ( * 11 * 12 A = ( #12 0 \ 

is a non-constant HD function of 

^ _ fxn %u\ 
\X2i X2J ' 

whose Hausdorff derivative is zero. Even for the highly restricted class of 
intrinsic functions (5, 6), i.e. functions that ' 'admit" all automorphisms and 
anti-automorphisms of $Jlcni which includes the class of primary functions, a 
non-constant function may have a zero Hausdorff derivative. An example is 

J \X21 ^ 2 2 / \X21 X 2 2 / 
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Thus the class of functions with a zero Hausdorff derivative is not a trivial class. 

Proof of Theorem 3.1. For n = 1 the last assertion of the theorem is trivially 
true. For n > 1 and for I f A, each element of P is a cofactor X™ of some 
element of some one of the matrices X — \ t I. P1 = 0 will therefore follow 
if the relation 

3=1 UJ^33 

is satisfied by every such cofactor. Applying the operator 

n ^ 

E — 
7 ^ 1 OJv j j 

to XiTS viewed as an (n — 1)-rowed determinant yields a sum of n — 1 de
terminants in each of which one row consists of the operator applied to the 
elements of that row of XIs. The elements of the differentiated row will be 
either of the form 

or of the form 
uX j j 

\J Jv <j j 

P^q, 

\pCpp A i ) . 

The first of these is clearly zero; the second is also zero by virtue of Corollary 
2.1. Hence, 

n syrs 

^2 ~r~~ = 0 for all i, r, s 
7"=1 \sJv j j 

and hence P1 = 0. 

Remarks on the stabilization of P. The process described for the construction 
of a single-valued P does not define a unique function P or a unique A con
taining Xo. A different selection of columns j t could yield a different single-
valued function P with a different A. Further, any selection of P could be 
modified by multiplying its ith. column by a differentiate function of the 
elements oi X — X{ I (with a possible associated restriction on Aj{ to ensure 
non-vanishing of the multiplying function). For any of these variants, Theorem 
3.1 remains valid. 

4. The case of real argument matrices. Let tyflR
n be the set of real 

n X n matrices, and let f{X) be a function with domain in WIR1 and with range 
in $)?c

w. The elements fTS of f{X) are complex-valued functions of the n2 real 
variables Xij. If the frs are differentiate functions of the xtj in the domain 
of / , then the concepts of Hausdorff differentiability and Hausdorff derivative 
of (1, 2, 7, 9) are directly extensible to such functions. The same is true of 
the generalized pointwise difference quotient definition of derivative in (9) and 
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of the equality of the two types of derivative when the Hausdorff derivative 
exists in a neighbourhood of the point (9). 

Hence if $R denotes the open set of matrices X £ WR
n with distinct eigen

values, the results of §2 remain valid, since the \ u being differentiate with 
respect to the xrs for X belonging to JÎ, are differentiable with respect to the 
xrs for X G StB. 

A significant difference occurs, however, in the case of the transforming 
matrix P , for P may now be defined globally over $tR by choosing column i of 
P as a unit eigenvector of X corresponding to X*. This amounts to choosing 
a non-zero column of (X — \ t I)A normalized to hermitian length 1. Since the 
columns of (X — \iI)A are proportional, the same vector (except possibly for 
sign) will be obtained no matter which non-zero vector of {X — \ t I)A is 
selected. The sign ambiguity in selecting the normalized column i of P can 
be removed by making the selection for some fixed X0 and thereafter selecting 
the sign at other X as dictated by the continuity of the elements of P. 

The elements of the normalized column of P will be of the form 

T n ~H 
. -\r rs \ \ ^ -\r r sv - rs 

prs = A j 2-r A * -&i 
Since X / s is equal to the corresponding cofactor of X — \ t I, and since \ u 

being an eigenvalue of X, is also a differentiate function of the xrs, the quan
tity in brackets will be a differentiable function of the xrs. Further, the argu
ment employed in the proof of Theorem 3.1 shows that 

for all r, s, i. Hence it follows that 

y^ dpr8 = Q 
j=i dXjj 

throughout ®R. This yields 

THEOREM 4.1. Let X belong to the open set $B of real n X n matrices with 
distinct eigenvalues. Let P be a matrix whose columns are unit complex vectors 
such that P~XXP is diagonal. With the sign of each column of P appropriately 
chosen, P is an HD function of X defined throughout $R, and its Hausdorff 
derivative 

j=X "•'V j j 

is zero throughout $R. 
In the case of the complex argument matrix domain of §3, this normalization 

would not yield an eigenvector whose elements are differentiable functions of 
the elements of X (essentially because zz is not a differentiable function of the 
complex variable z). For this reason, this otherwise attractive normalization 
had to be eschewed there. 
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