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HOMOGENEOUS POISSON STRUCTURES

F. MALEK AND A. SHAFEI DEH ABAD

In this paper we provide an algebraic definition for the Schouten product and
give a decomposition for homogeneous Poisson structures in any ra-dimensional
vector space. A large class of n-homogeneous Poisson structures in Rk is also
characterised.

0. INTRODUCTION

Poisson structures are among those mathematical structures which are most useful
in mathematical physics. In many areas of physics and mechanics we encounter this
type of structure in diverse forms. Even though there is much known about Poisson
structures, there are still many unsolved important problems. One of these problems
is that of classification, and another is the construction of Poisson structures. On
manifolds, a Poisson structure is denned by a skew-symmetric contravariant 2-tensor
whose Schouten product with itself is zero. Partial derivatives are involved in the
expression for the Schouten product of two skew-symmetric contravariant tensors on
manifolds. But for a large class of skew-symmetric contravariant tensors on Kn —
those having polynomial coefficients in the standard basis — the Schouten product can
be defined algebraically.

The algebraic definition of homogeneous Poisson structures of lower order —
namely constant, linear and quadratic — on vector spaces is already known. Constant
Poisson structures are in fact skew-symmetric bilinear forms; linear Poisson structures
on a vector space E are in one-to-one correspondence with Lie algebra structures on E* ,
and each quadratic Poisson structure on the vector space E corresponds to a solution
of the classical Yang-Baxter equation on End(i?*), and vice versa [l].

In this paper, we first give an algebraic definition of general Poisson structures
with polynomial coefficients on vector spaces, and then we give some results concerning
homogeneous Poisson structures, and generalise to all homogeneous Poisson structures
the decomposition of quadratic Poisson structures which has been given by Zhang-Ju
Lie [4]. We also construct a large class of homogeneous Poisson structures on Kn.
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2. ALGEBRAIC APPROACH TO POLYNOMIAL POISSON STRUCTURES

In the following, H denotes an n-dimensional real vector space, {ei}"= 1 is a basis
for H, {xi\^=1 its corresponding coordinate functions.

Poisson structures whose bracket relations in terms of coordinates are polynomials
are called polynomial Poisson structures. In the following (the K-algebra) of anti-
symmetric contravariant tensors with polynomial coefficients on H are called polyno-
mial tensors (and will be denoted by f2(JJ)).

Let VP(2P) and Aq(H) denote respectively the p-times symmetric tensor product
of H* and the g-times exterior product of H, and let

V(JT) ® /\{H) = ©„,, Vp (JT) ® A»(JT).

F o r a ® « G V?(H*) ® Ag{H) and /3®w G V{H*) ® A'{H), define

® A9+r{H).

Under the above multiplication, V(2P)® A(H) becomes an associative M-algebra.

Let a ® v = a 1 V • • • V a n ® vx A • • • A vm e Vn(F*) ® Am(jff). The linear operator

D :

is defined as follows:

n,m

D(a(8)u) = ^2 (-l)3+1vj(a
i)a1 V • • • V a* V • • • V a n <g> vx A • • • A vj A • • • A vm.

We say that A = Y^ai®vj is exact if and only if D(A) = 0.

There are some equivalent definitions of the Schouten product (see: [2, 3]). The

definition of the Schouten product which follows is an algebraic one equivalent to the

others on

DEFINITION 1.1: The Schouten product

[ ] : V(H*) ® A(JET) x V(JT) ® A{H) -> V( J*) ® A(H)

is an R-bilinear mapping defined by:

[U V] = D{U V)-D(U)V-(-l)uU.D(V),

where U G V(F*) ® AU{H) and F G V(H*)
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Now we are going to give a one-to-one correspondence between the polynomial
Poisson structures on H and some special structures on V(jff*) ® A(H).

Let G = • xineix A eh A A ejm G Q{H). The R-algebra
• l i 1 " > J l i — ,

homomorphism s : V(H*) <gi A(H) is denned by

A e J 2 A A e ;

i l l

It is clear that s is an isomorphism. Its inverse will be denoted by A .

LEMMA 1 . 1 . Let G e Cl(H), then soV = Dos , where V is the Koszul operator.

Let p be an orientable n-manifold with a volume element £2. The element Cl

induces an isomorphism $ from the space of all i-multiple vector fields, Xl{jp), to the
space of (n — i)-forms. Let D denote the exterior derivative of differential forms. The
Koszul operator V is denned by V = (-l)1"1"1^"1 o D o $ , the pull-back of D under
the isomorphism $ . Now the definition of the Schouten product of u 6 Xl{p) and
v € X3(p) is given by

[u v] = V ( u A v ) -

PROOF: Let

G =

then

A w - (-

A

A

A ejm G il(H),

s,k

lit'" >im

aoV(G)=

LEMMA 1 . 2 . Let G e Q(H). Then

s[G G} = [s(G)

PROOF:

•

s[G G] = s(V(GAG)-2V(G)AG)

= s(V(G A G)) - 2s(V(G) A G)

= D(s(G) • s(G)) - 2D(s(G)) • s{G)

= [s(G)
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THEOREM 1 . 1 . Let P e V(H*) ® A2(.ff). Tien A(P) is a polynomial Poisson
structure on H H and only if [P P] = 0.

PROOF: Let [P P] = 0, then

s[A(P) A(P)] = WA(P)) a(A(P))] = [P P] = 0,

and therefore

[A(P) A(P)] = 0.

Conversely, suppose that A(P) is a polynomial Poisson structure on H; then
[A(P) A(P)] = 0. Therefore

s([A(P) A(P)]) = [P P ] = 0 . D

REMARK. In [1] Bhaskara and Rama give a correspondence between quadratic Poisson
structures on the vector space H* and solutions of the classical Yang-Baxter equation
on the Lie algebra End (H) as follows: Let {Tij}™,=1 be the standard basis of End (if).

n

Assume that J^ rijTij A Tu is a solution of the classical Yang-Baxter equation on
i j k l l

End(H). If Ty = Xjd/dxi, then R = £ rfjfij A Tki is a quadratic Poisson
i,j,k,l=l

structure. For more details see [1].

Since Ri — T12 A T34 and R2 = TJ4 A T32 give rise to the same quadratic Poisson
structure R = T12AT34 — T14AT32 , it is clear that this correspondence is not one-to-one.
But the correspondence given in Theorem 1.1 is a one-to-one correspondence.

In what follows we shall use Theorem 1.1 implicity.

2. HOMOGENEOUS POISSON STRUCTURES

It is known that there exists a decomposition for any quadratic Poisson structure

on a finite dimensional space [4]. Our next goal is to find out such a decomposition for

all homogeneous Poisson structures.

LEMMA 2 . 1 . Let w = X) fh-ikd/dx^ A d/dxi2 A ••• A d/dxik be an n-

homogeneous contra variant fc-tensor on the vector space H and I = ]T] Xjd/dxj be its

identity vector Held. Then [I n] = (n -k)n.

PROOF: We can write:

[7 TT] = [ £ xjd/dxj Yl fh -ikd/dxh A d/dxi2 A • • • A d/dxik]
1
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(p(xjfil...ihd/dxj A d/dxh A • • • A d/dxih)

- Dixjd/dxj) A f h . . . . .ijd/ftB,^ A • • • A d/dxik

+ {xjd/dxj) A D(fil...ikd/dxil A • • • A B/8xikf)

= ^2 xjdfili2...ik/dxjd/dxil A • • • A a/aBi4

- /,-!...^dxj/dx^a/dxj A a/9xi2 A • • • A a / a ^

+ fil..4hdxi/dxiid/dxj A a/ftri, A d/0s,-3 A • • • A 0/fteiik + - •

+ {-i)kfix...ikdxjidxikd/dxj Aa/aasix A • • • A

which by the homogeneity of fi1i3—it is equal to rvK — kw. U

THEOREM 2 . 1 . Any n-homogeneous Poisson structure on E* has a unique de-
composition TV = TTX + I A X, such that

[TTX WX] = - 2 ( n - 2)TT A X,

wAere 7rx is an exact 2-tensor, I denotes the identity vector field and X is an exact

homogeneous vector field compatible with TTX , in the sense that Lx^x = 0.

PROOF: By the above lemma

(n - 2)TT = [/ TT] = D(I A TT) - £>(/) A n + / A £>(TT)

A TT) - kiv + I A D(TT),

so TT = l / ( n + fc - 2)[£>(/A TT) + 7 A £>(TT)]. Let TT^ = l / ( n + k - 2)D(I A TT) and

X = l / ( n + fc - 2)D(TT) . Then TTX = TT + X A 7, and so

[TTX nx] = k + X A 7 TT + X A 7]

= [TT TT] + 2[TT X A 7] + [X A 7 X A 7]

= 2[TT X A 7] = 2([TT X] A 7 - [TT 7] A X ) ,

and since [w X] = [n D(w)] = 0, then [irx TCX] = -2[TT 7] A X = - 2 ( n - 2)?r A X .
On the other hand,

[nx X] = [TT + X A 7 X] = [TT X] + [X A 7 X]

= [X A 7 X] = ([7 X] A X - [X X] A 7)

= [7 X] A X = (n - 1)X A X = 0.

This shows that TVX and X are compatible with each other.
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To prove that the above decomposition is unique, suppose that it has another
decomposition

•K - Try - Y A / ,

then
Try - Y A / = 7TJC - X A / ,

so

Try - TTX = (K - X) A / .

The left-hand side of the above equality is an exact tensor but the following lemma shows
that the right-hand side is not exact unless (Y — X) A / = 0. Therefore Try = nx • D

LEMMA 2 . 2 . Let Y be an n-homogeneous vector Held on Rk. Then Y A I is
equal to zero or it is not an exact tensor.

PROOF: Let Y A / be an exact tensor. Then

(n - 1)Y = [I Y] = D{I A Y) - D{I) A Y + IA D{Y)

= D{lAY)-kY + l

so
(n + k - \)Y = D{I A Y) + I A D{Y) = / A D{Y),

giving
Y = l/(n + k - \)I A D(Y),

consequently

From the above theorem we obtain that:

COROLLARY 2 . 1 . Any n-homogeneous Poisson structure IT on K* has a de-

compositition TT = TTJC — X A I. If n = 2 or k = 3, TTX is an exact Poisson structure.

PROOF: By the last theorem

= - 2 ( n - 2)TT A X,

thus if n = 2, [TT* 7rx] = 0. Let k = 3. Then

[TT TT] = £»(TT A TT) - 2£>(TT) A n - 0.

On the other hand TT A TT is a 4-tensor in R3 and so TT A TT = 0. Therefore D(n) A 7r =
XA5T = 0. D

The next theorem gives us a large class of n-homogeneous Poisson structures in
R*. First note the following evident proposition:
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PROPOSITION 2 . 1 . Let X be an exact homogeneous vector Held. Assume that

there exists an exact iinear vector Held Y such that LxY = 0. Then X A Y = •KX

is an exact homogeneous Poisson structure and wx + X A I is a homogeneous Poisson

structure.

THEOREM 2 . 2 . Let X be a homogeneous vector Held in Rk. Then X A I is a

homogeneous Poisson structure in M.k.

PROOF: It is evident that X A I = D{X A I) A I, so in the above proposition it

suffices to put Y — 0. D

COROLLARY 2 . 2 . For every two n-homogeneous vector fields X and Y the

Poisson structures X A I a.nd Y A I are compatible with each other.

PROOF: Observe that

X AI + Y AI=(X +Y)AI;

clearly X + Y is an n-homogeneous vector field, and by the last theorem (X + Y) A I

is a Poisson structure. Q

The following proposition shows that the class of all n-homogeneous Poisson struc-

tures of the form X A I, X G XP(Rk), is maximal. Let Xp(M.k) denote the set of

polynomial vector fields onR* homogeneous of degree p.

PROPOSITION 2 . 2 . It an n-homogeneous Poisson structure TV is compatible

with XAlforallX in Xp(R
k), then there exists Y in Xp(R

k) such that n = Y M.

PROOF: Let TT be an n-homogeneous Poisson structure on M.k which is compatible

with each X A I, X 6 Xp(W.k). Then there exists a unique exact 2-tensor 7ry and a

homogeneous vector field Y such that

•K = TtY + Y A I.

Let X be in Xp(R
k). Then

0 = [n X A I] = [Try + Y A I X A I] = [TTY X A I]

= [rry X]Al-XA[wY I] - [Try X] A I - (n - 2)X A Try,

so

[Try X]Al=(n-2)X Any,

or
[Try X] A I A I = (n - 2)X A nY A I = 0.

Since X is an arbitrary element of XP(R*) , then Try A I — 0. On the other hand

(n - 2)Try = [Try I] = D(7ry A / ) - I>(Try) A I - nY A D(I) = -kirY.

This shows that Try = 0. Therefore n-YAl, since - k ^ n - 2 . D
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