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Abstract

This note investigates torsion-free abelian groups G of finite rank which embed, as subgroups
of finite index, in a finite direct sum C of subgroups of the additive group of rational numbers.
Specifically, we examine the relationship between G and C when the index of G in C is
minimal. Some properties of Warfield duality are developed and used (in the case that G is
locally free) to relate our results to earlier ones by Burkhardt and Lady.

1991 Mathematics subject classification (Amer. Math. Soc): 20 K 15.

0. Introduction

In 1937, R. Baer [4] gave a promising start to the theory of torsion-free abelian
groups of finite rank with his classification of the completely decomposable
groups, those groups isomorphic to a direct sum of subgroups of the additive
rationals, Q. An obvious way in which to try to extend Baer's results is to
look at the almost completely decomposable groups-those torsion-free abelian
groups of finite rank which contain a completely decomposable group as a
subgroup of finite index. Given the success of Baer, it is perhaps surprising
that even with the finite rank assumption, almost completely decomposable
groups have proved so intractable. In 1979, L. Lady [7] defined and stud-
ied the regulating subgroups of an almost completely decomposable group
G: those completely decomposable subgroups of G of minimal index in
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144 A. Mader and C. Vinsonhaler [2]

G among all completely decomposable subgroups. A discouraging fact, illus-
trated by Lady, is that if C is a regulating subgroup of G, the finite quotient
G/C need not be an invariant of G. That is, different regulating subgroups
can give non-isomorphic quotients. Five years later, Burkhardt [5] defined
the regulator of an almost completely decomposable group as the intersec-
tion of all regulating subgroups. The regulator is a completely decomposable
fully invariant subgroup of finite index, a fact, apparently folklore, which
was used to study isomorphism of almost completely decomposable groups
in [6]. Until recently, the three papers discussed above represented most of
the work on almost completely decomposable groups (see references).

The goal of this note is a "dualization" of the basic facts on regulating sub-
groups and regulators established by Lady [7] and Burkhardt [5]. Instead of
treating completely decomposable subgroups of finite index in a given group
G, we consider completely decomposable groups which contain G as a sub-
group of finite index. Our methods shed some additional light on the results
in [7] and [5]. In the locally free setting, Warfield duality can be applied to
show directly the equivalence of our results to those of Lady and Burkhardt
(Section 2). The duality relationship in the general (not locally free) setting
remains an intriguing mystery. In any case, we consider it worthwhile to give
a cohesive treatment of the fundamental relationships between a completely
decomposable group and other groups in its quasi-equality class. The hope is
that our "dual" results can be combined with the known results on regulating
subgroups and regulators to facilitate further understanding of a complicated
class of groups.

1. Regulating Hulls

In what follows, all groups are abelian and are torsion-free finite rank
unless they are finite quotients of such. We regard each torsion-free group
G a s a subgroup of its divisible hull QG, a Q-vector space. Other standard
notation and terminology follow [7] and [2]. In particular, subgroups G and
H of the same Q-vector space are called quasi-equal if there is a positive
integer n such that nG C H and nH c G. More generally, two torsion-free
groups G and H are quasi-isomorphic if G is isomorphic to a subgroup of
finite index in H.

A male ACD-pair is an embedding G —• C where C is completely de-
composable of finite rank and the image of G has finite index in C. The
index of the image of G in C will be called the index of the A CD-pair.
This index is said to be minimal if it is minimal among all indices obtained
by imbedding G in a completely decomposable group. A female .4 CD-pair
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is an embedding C -* G, with index denned analogously. The terms "male"
and "female" will generally be omitted where there is no chance of confusion.
A type is an isomorphism class of rank one groups. We will write C = © CCT ,
where each Cg is a homogeneous completely decomposable group of type a .
In the interest of brevity, we write C<a = ©T<(J CT and C<a = 0 T < ( J CT.
The set of types for which Ca ^ 0 is called the critical typeset of C (or
G). Whenever a type T or a is mentioned, it tacitly is understood to be in
the critical typeset; and unless otherwise indicated, summations are over the
critical typeset.

A Butler group is a pure subgroup of a finite rank completely decomposable
group. Because the class of Butler groups is closed under quasi-isomorphism
(see [1]), almost completely decomposable groups are Butler groups and we
have the extensive machinery from that class at our disposal ([1] and [2]).
In the first part of the paper, we work primarily with homomorphic images
of almost completely decomposable groups G, and employ extensively the
following functorial subgroups.

G[a] = (xeG\ type(x) £ a ) , = f | { K e r / \f:G->Q, type/(G) < a)

and
G*[o] = p | G[r].

We will use, frequently and without reference, the fact that (for any Butler
group G)

0 -> G*[o]/G[o] -» G/G[a] -» G/G*[a] - 0

is a split exact sequence of groups, with G*[a]/G[a] homogeneous com-
pletely decomposable of type a (see [2]). Any map G/G[a] —> G*[a]/G[<r]
which splits this sequence will be called a splitting map.

PROPOSITION 1.1. Let G c C = ®Ca be an ACD-pair and let a be a
critical type.

(a) There is a commutative diagram with exact rows,

0 - C[tr] - C - C<ff ^ 0

• T i T T«,

aCT is the monomorphism induced by projection onto C<a

(b) There is a commutative diagram with exact rows,

ca -»' t

G*[a]/G[a] -

c < ( T

G/G[a]

-» c < a

- G/G*[a]
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where a'a: G*[a]/G[a] -* Ca is the restriction of aa: G/G[a] -> C<a, and
Pa is the monomorphism induced by projection onto C<a .

Moreover, in both (a) and (b), the induced sequence ofcokernels is exact.

PROOF. Routine exercise.

We will denote by ~Ga, ~G = G<a , and G<a the images of the three maps
a'a,aa and 0a in 1.1 (b).

PROPOSITION 1.2. Let G be an almost completely decomposable group.
For any choice of splitting maps na: G/G[a] —* G*[a]/G[a], the composition
G -> (&G/G[o] -• ®G*[a]/G[a] defines an ACD-pair. The index of this
pair is independent of the choice of the na 's.

PROOF. Let G -» C = ® Ca be an ACD-pair. Denote Dg = G*[o]/G[o]

and D = ©Z)ff. The composition n: G -> ®G/G[o] —* ($Da is a
monomorphism (for any Butler group G) by [2], Corollary 1.8(b). Since
G is quasi-equal to C, Dg is isomorphic to Ca , as both are homogeneous
completely decomposable and (quasi-)isomorphic to G*[o]/G[o], noting that
quasi-isomorphic homogeneous completely decomposable groups are isomor-
phic (see [1]). It follows that G is quasi-isomorphic to D and the index of
n(G) in D is finite.

To show the index is independent of the choice of the rc^'s, it suffices to fix
T and assume {n'a} are splitting maps with %x ^ n'x, na — n'a for a ^ T .
Let n : G -> D be the A CD-pair defined by replacing 0 na with (&n'a.
First assume G[x] ^ 0. Note that n{G[x\) = n'{G[x\). Moreover, both n
and n induce embeddings G/G[x] -* 0 ( T < T G/G[a] -* D<x. Since there
is a canonical isomorphism (G/G[T])/{G/G[T])[O] ~ G/G[a] for a < x,
we can apply induction on the rank of G to conclude that the imbeddings
G/G[x] -* D<r induced by n and ri have the same index. An appeal to
Proposition 1.1 (a) now shows that the original embeddings n and n have
the same index.

We conclude the proof by treating the case where G[x] = 0. In this case,
G = G*[x]®H, where H ~ G/G*[x]. Furthermore, n and n induce
embeddings G/G*[x] -* (&a<TG/G[o] —> D<T whose index is the same as
that of the original embeddings. This is because D% — G*[x] is a summand
of G. Since the rank of G/G*[x] is less than the rank of G, we may again
apply induction to obtain the equality of the two indices.

We call the index defined by Proposition 1.2 the male index of G and
denote it by fi{G).
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LEMMA 1.3. Let G C.HX®H2 be an ACD-pair, and G, the projection of
G onto Hx. If r. G, -» H' is an ACD-embedding with finite index k, then
there is a subgroup H[ of QHX such that G, c H[ ~ H' and \H[/GX\ = k.
Furthermore, G C H[ © H2 is an ACD-pair.

PROOF. Note that / extends uniquely to a vector space map QGX —> QH'.
Then H[ is just the inverse image of H' (in QGX = QHX) under this exten-
sion map.

This lemma will be utilized to replace a component C<a in an A CD-pair
G -> C = C<a © C[a] by a quasi-equal component C'<a .

PROPOSITION 1.4. Let G c C = ® CCT fee a« ACD-pair of minimal index
and a a critical type. Then, in the notation of Proposition 1.1,

(a) G/G[a] ^ C<CT a«rf

(b) G/(T[ff] ^ C<ff

are ACD-pairs of minimal index. Moreover, the indices in (a) and (b) are
equal.

PROOF. It is routine that the two embeddings are A CD-pairs.
Let the index in (a) be k. To see that k is minimal, suppose that

G/G[a] -» DQ is an A CD-pair of index k0. By applying Lemma 1.3 to
G c C<a © C[a], we can assume QD0 = QC<a and G c Do © C[a] = D
is an ^CD-pair. By Proposition 1.1 (a), \D~/G\ = \C[a]/G[a]\ • k0 and
\C/G\ = \C[a]/G[a]\ • k. Since \C/G\ is minimal, we have k < k0 and
k is minimal.

The proof of (b) is similar, using that the embedding in (a) has minimal
index. Let the index in (b) be j and suppose G/G*[a] —> D, is an ylCD-pair
of index j 0 . By Lemma 1.3, we may assume that QDX = QC<a and that
G/G[a] -> Ca®Dx is an ^CD-pair. By Proposition 1.1 (b), the index k' of
this pair satisfies k' = \CJGa\ • j Q . Similarly, k = \C<JG\ = \CJGJ • j .
Since k is minimal, j < j0 and j is minimal.

To see the last statement of the Proposition, again use 1.1 (b) to obtain

\C<JG\ = \Ca/Ga\.\C<a/G<a\.

This implies that \C<a/G\ > \C<a/G<a\. On the other hand, G ~ Ga © G<a

and Ga is homogeneous completely decomposable of type a . Thus, there is
an embedding G —• Ga © C<a which is an ACD-pair of index |C<(T/G<(J|.
Since \C<g/G\ is minimal by (a), we have |C<ff/G| < |C<(T/G<(T|.
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We are now ready for the main theorem of this section.

THEOREM 1.5. Let G c C = @Ca be an ACD-pair. The following are
equivalent.

(a) \C/G\ is minimal.
(b) If G<a and G<a are the projections of G into C<a and C<a respec-

tively, then G<ff = Ca © G<a.
(c) Each a'a: G*[a]/G[o]-+ Ca is an isomorphism and there are splitting

maps na: G/G[a] -> G*[a]/G[o) which make the following diagram
commute.

G - C ©Cff

• T T e « ;
G - @G/G[a] - ®G*[o]/G[o]

(d) \C/G\ =

PROOF. (a)->(b) By Proposition 1.4, \C<a/G\ = \C<a/G<a\. It follows
that Ca = Ga from Proposition 1.1 (b). This implies G = Ga ®G<a =
Ca © G<a by the Modular Law.

(b) -> (c) The equalities G = Ga®H = Ca® G<a (with H ~ G/G*[o])
imply that Ga = Ca, since Hom(C(T, H) = 0 . Thus, each a'a is an isomor-
phism. To obtain the required splitting map n , use the composition

G/G[a] -*• C<ff ,

It is easy to check that the diagram in (c) commutes.
(c) —• (a) and (d) Choose G C D an ACD-pair of minimal index. Since

we have already shown (a) -+ (b) —> (c), there is a commutative diagram

G - D
i T T

with © a ^ ' an isomorphism. This shows that \D/G\ = fi(G) = \C/G\ by
Proposition 1.2. That is, \C/G\ = fi(G) is minimal.

(d) - > ( a ) I f G c C is an ACD-pair with |C /G | = fi(G) and G c K is
an ^CZ)-pair with \D/G\ minimal, then by what has been shown, \D/G\ =
/i(G) = \C/G\ and \C/G\ is minimal.

If G C C is an 4̂ CD-pair satisfying the conditions of Theorem 1.5, we
will call C a regulating hull for G. The next example shows that regulating
hulls are not as plentiful as one might suspect.
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EXAMPLE 1.6. If G c D is an A CD-pair, it need not be the case that D
contains a regulating hull of G. Let A, B c S be subgroups of Q such
that A and B have incomparable types which are strictly less than the type
of S. Assume p is a prime for which p~ £ S. Form the completely
decomposable group D = Aa © Bb © Scx © Sc2 , where a, b, c,, c2 are
assumed to be elements of D of p-height 0. Let G be the subgroup of D
given by G = A(pa + cx) ®B(jpb + c2) ®pScx ©S(cx + c2) + Z(a + b). Finally,
let C = A(a - c2/p) © B(b + cjp) ®pScx © S(cx + c2) c QD. The following
facts will be shown.

(1) G is a subgroup of C and Z>.
(2) C/G is cyclic of order p, generated by a - c2/p + G.
(3) D/G is a cyclic group of order p2 generated by a + G.
(4) G is not completely decomposable.
(5) C is a regulating hull of G.
(6) £ = G + Zpa < D is not a regulating hull of G.

Facts (1) and (2) are routine. For (3), it is easy to check that Za + G = D
and that p2a e G. Assuming pae G gives an equation

pa = a{pa + c,) + ${pb + c2) + ypcl + y'(cl + c2) + n(a + b),

with aeA,fi€B,y,y'eS and n e Z . Solving gives y = -l/p € S1,
contrary to hypothesis. To see (4), suppose G is completely decomposable.
Since the type of S is a maximum, G = X®H, where H = pSc{ ®S(cl + c2)
and X ~A®B. But it is easy to check that X ~ G/H ~ Apa®Bpb + Z(a +
b), and the last group is indecomposable. This contradiction completes the
proof of (4).

It follows from (4) that C is a regulating hull of G, since C is completely
decomposable and \C/G\ = p is minimal. This gives (5). Moreover, D
contains a unique proper subgroup which contains G, namely, the subgroup
E generated by G and pa. In particular, E contains cx = pa + cx - pa
and pScx, so E contains Scx and therefore Sc2. Thus, if a = type(-S),
then Ea = Scx © Sc2 is a summand of E, while G*[a] = G*[a]/G[a] —
pScx ®Sc2. By Theorem 1.5(c), E cannot be a regulating hull for G, which
is (6). Since E is the unique candidate for a regulating hull inside D, we
have completed the proof of the example. Note that E cannot be completely
decomposable, and that D is therefore a regulating hull for E. Also note that
G projects onto each homogeneous component of D. Thus, this condition
is not sufficient to imply that D is a regulating hull for G, although it is
clearly necessary.

As mentioned in the introduction, Burkhardt [5] introduced the regulator
of an almost completely decomposable group and established some important
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properties of it. Our next theorem provides the analogous results on the
"dual" of the regulator. Since the regulator is the intersection of the regulating
subgroups, the coregulator will be the sum of the regulating hulls, taken in an
appropriate vector space over Q.

THEOREM 1.7. Let C = ©CCT be a regulating hull for G, and denote
E{G) = £{Z> : D a regulating hull with QD = QC}. Then E{G) =
(&d~lCa, where da = lcm{exponentZ)<(7/G<<T : D is a regulating hull of
G}. Moreover, any endomorphism of G induces a unique endomorphism of
E(G).

PROOF. We first show E(G) C 0 d~l Ca . Let D be a regulating hull with
QD = QC. By definition of da and Theorem 1.5, daD<g c G + D[a].
Projection onto Cg gives image dgD<a C image G = Ca. In other words,

image D<a Qd~lCo. But D<a is the only part of D which can map into

Ca . It follows that DC®d~lCa.

One more lemma allows us to complete the proof of Theorem 1.7.

LEMMA 1.8. If C is a regulating hull of G and the ACD-pair Pa: G/G[a]
-» C<a has index pmk with (k,p) = l, then p~mCa c E{G).

PROOF. Refer to Proposition 1.1 (b) for the definition of fia . By hypothe-
sis there exists a e C<a with order (a) = pm modulo V<a = Pa{G/G*[a]). It
is immediate that p-height (a) = 0 in C<a and /?-height (pma) — 0 in G<a .
Each rank one factor of G<a has type < a . If 0 / x 6 Ca , then by Remark
(2) on page 108 of [2], there is a homomorphism / : G<a —> (x)t c Ca such
that f{pma) = tx, where t is a nonzero integer prime to p. Further,

Thus, D = Ca © (1 + f)C<a © C[a] is a regulating hull for G. Moreover,
tp~mx = f(a) = (l+f)a-aeD + C, whence p~mx e D + C c E(G) since
(t, p) = 1. It follows that p~mCa c E(G) and the proof of the lemma is
complete.

Returning to the proof of Theorem 1.7, we show d~lCa c E{G) for every
regulating hull C = ($Ca of G. Again it suffices to fix a prime p and show
p~mCa c E(G), where m = p-height (da). Choose a regulating hull D of G
so that pm divides the index of G/G*[a] —>• D<a . By Lemma 1.3, we can
assume QD<a = QC<a and form a new regulating hull D' - D<a © C[a] of
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G. Write 0 ^ x e Ca as x = JC, + x2 with JC, € D<a and x2 e C[a]. First,
jCj e Dg since type(;t) = a. Thus, p~mx1 e £((7) by Lemma 1.8. Second,
x2 e C[a] has type(x2) > <r. This implies x2 e C*(o) = £T>(T CT. If <x is
a maximal type, then C*(<r) = 0 and p~mx = p~mxx e E{G). If a is not
maximal, write x2 = ^2xx, where xT € CT with x > a. By induction on the

type lattice, d~xxx e E(G) for x > a. However, T > a implies da divides
dx, by the definition of da . This establishes that p~mx2 e E(G), so that
p~mx e £(G) and E(G) = ®d~lCa as desired.

To prove the final statement of 1.7, let 6: G —• G be an endomorphism.
Take C and D to be regulating hulls of G and £((?) = ® ^ " ' C ^ , as above.
If ya denotes the vector space projection QC -+ QCa, then ya6(daD) =
7a0{daD<a) c yad{G), the last containment by definition of da . But ya8(G)
c ya(G) = Ca, since C is a regulating hull of G. We may conclude that
0(#) Q © ^ T ' C , = E(G) for each regulating hull D of G. It follows that
d(E(G)) = d(Y, regulating hulls of G) c E(G). This completes the proof.

2. Warfield duality

In this section we employ a duality discovered by Warfield [11] to show
that our results are equivalent to those of Lady and Burkhardt in certain
contexts, namely, those where the critical typeset is locally free. We begin by
recalling the relevant definitions and results.

Let X be a subgroup of Q. A torsion-free group G, always of finite
rank, is X-locally free provided outer type(G) < type(A") and pX = X if
and only if pG — G. Warfield showed, in essence, that Hom(- , X) provides
a duality from the category of X-locally free groups and homomorphisms to
itself. Our interest in this duality is that it does not require passing to a
"quasi" category. We can apply it to groups which are quasi-equal without
losing information. We will denote WG = Hom(G;, X) whenever it is clear
what X is; and if a is the type of a subgroup A of X, then aw is the type
of Hom(y4, X).

We begin with a housekeeping lemma.

LEMMA 2.1. Let X be a subgroup of Q.
(a) If G C C is an ACD-pair of X-locally free groups, then there is an

inclusion induced by restriction, Hom(C, X) C Hom(G, X), and C/G ~
Hom(G,X)/Hom(C,X) as groups.

(b) If A and B are rank one X-locally free groups, then type(y4) < type(-B)
if and only if type(Hom(2?, X)) < type(Hom(v4, X)), with equality holding
either in both cases or in neither case.
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PROOF. The induced containment in part (a) is routine. Moreover, both
C/G and Hom(G, X)/Hom(C, X) are finite groups, so it suffices to show
that their p-components are isomorphic. If (C/G)p is non-zero, then pC ^
C, so that G, C and X are p-reduced by the definition of X-locally free. In
particular, Gp and Cp are free Z -modules for which there is a stacked basis.
Thus, to show (C/G)p = Cp/Gp is isomorphic to Hom(G/X)p/Hom(C, X)p

— Hom(Gp, X )/Hom(C, Xp), it suffices to consider the case in which
rank G = rank C = 1. In this case the result is immediate.

Part (b) is a consequence of the fact that sup{type(^4), type(Hom(yl, X))}
= typeCA") when A is an X-locally free subgroup of X.

Following Lady [7], we denote, for any torsion-free group G and type
a, G*(o) = (£T>(7 ^ (T) )^ , the pure subgroup generated by the elements of
type bigger than a; and G(o) = {x e G: type(x) > a), a pure subgroup
containing G (a).

THEOREM 2.2. Let X be a subgroup of Q,G an X-locally free Butler
group and a an element of typeset(G). Then there are commutative diagrams
with exact rows and vertical isomorphisms,

(a)
()-• W(G/G[a]) -» WG -» W(G[a]) -»0

l a l l 1

0 - WG(aw) ^ WG ^ WG/WG(aw) - 0

(b)

0 ^ ^((//G*[c7]) -» WG -» W(G*[(T]) ^ 0
l / » I ' 1

0 - WG*(ow) ^ WG ^ WG/WG*(aw) -> 0

(c)

0 -

0 -

W(G/G*[a))
if

WG*(aw)

Fr(G/G[(T]) -» WfGVl/Glff]) -»0

fFG(ff"') -• H'G^J/WG'tff"') ^ 0

PROOF. The theorem shows what happens when we dualize the exact se-
quences induced by the u-socle and the a-radical of G. For example, (a)
describes the dual of the sequence 0 -> G[a] -> G -> G/G[a] -* 0. Note
that by replacing WG by G and aw by a, then dualizing, we obtain a
description of the dual of 0 -> G{a) -> G -> G/G{a) -• 0. We will give the
proof of (b), the others being similar (see also [3, 9, 10]).
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Because the sequence 0 - • G'[IT] - » ( ? - • G/G*[o] —> 0 is pure exact,
applying Hom(- , X) yields an exact sequence 0 —> W(G/G*[a]) -+ WG —>
W(G*[cr]) —> 0 because A" is pure injective in the category of Butler groups
with typeset bounded above by type(X) (see [8] or [2; Prop. 1.6]). We show
that the image of W{G/G*[a]) in WG is WG*{ow). Statement (b) is then
an immediate consequence. Let A be a subgroup of X with type(v4) < a ,
so that aw < type(Hom(^, X)). If 0 # / : G/G*[<r] - ^ is an element of
W(G/G*[a]), then the image of / in WG is the composition of / with
the quotient map G -> G/G*[a]. If A is the kernel of / , then the type
of / in WG is the type of the rank one group Hom(G/K, X), and G/K
is ^-locally free. But type(G/A:) < type(A), so aw < type(Hom(^, X)) <
type(Hom(G//(:, X)) = type(/). It follows that / G WG(aw). The defi-
nition of G*[a] implies that W(G/G*[a]) = Hom(G/G*[a], X) contains a
maximal linearly independent set of maps of the form / : G/G*[a] —> A with
type(yl) < a. We may conclude that the image of W(G/G*[a]) is contained
in WG {aw). The reverse inclusion is essentially a reverse argument. Let
/ e WG*{aw) have type greater than aw . If K is the kernel of / , then by
Lemma 2.1, type(G/K) < a. Thus, G*[a] C K, and / is in the image of
W(G/G*[a]).

We can now apply Warfield duality to the results of Section 1.

PROPOSITION 2.3. Let G be an almost completely decomposable group.
For any choice of splitting maps pt: G(T)/G*{T) —• G{x), the composition
®G{x)IG*{x) -• © G ( T ) -> G defines an ACD-pair. The index <p(G) of this
pair is independent of the choice of the px.

THEOREM 2.4. Let 0 C t = C c G be a female ACD-pair. The following
are equivalent.

(a) \G/C\ is minimal.
(b) For each T , G{x) = CT e G*{x).
(c) Each composition yz: Cx —> G(x) —> G(x)/G#(x) is an isomorphism

and there are splitting maps pT: G(x)/G#(x) -* G(x) such that the following
diagram commutes.

©C T -> C - G
®yT I I i

© G ( T ) / G # ( T ) —> © G ( T ) - G

(d)

These two results can either be found in, or derived from results in [7].
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In the locally free setting, they are direct dualizations of Proposition 1.2 and
Theorem 1.5. The duality in conditions 1.5(b) and 2.4(b) requires only the
observation that 2.4(b) (respectively, 1.5(b)) is equivalent to the statement
that each yx (respectively, a^) is an isomorphism.

We conclude with Burkhardt's result [5], which is a direct dualization of
Theorem 1.7 in the locally free setting.

THEOREM 2.5. Let C c G be a female ACD-pair with C a regulating
subgroup of G. Denote

R{G) = f]{D : D a regulating subgroup ofG}.

Then R(G) = ®dTCx, where dx - lcm{exp(G*(x)/D*{T)) : D a regulating
subgroup of G}. Moreover, R(G) is a fully invariant subgroup of G.
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