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EXAMPLES OF WEAK HOPF ALGEBRAS ARISING

FROM VACANT DOUBLE GROUPOIDS
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JUAN MARTÍN MOMBELLI

Abstract. We construct explicit examples of weak Hopf algebras (actually face
algebras in the sense of Hayashi [H]) via vacant double groupoids as explained
in [AN]. To this end, we first study the Kac exact sequence for matched pairs
of groupoids and show that it can be computed via group cohomology. Then
we describe explicit examples of finite vacant double groupoids.

Introduction

Tensor categories have many important applications in several areas

of mathematics and theoretical physics. A source of examples of tensor

categories is the theory of Hopf algebras; namely the category of represen-

tations of a Hopf algebra is naturally a tensor category. However, there

are important linear tensor categories that do not arise as the category

of representations of any Hopf algebra. Some fifteen years ago, Ocneanu

proposed the notion of paragroup to encompass these examples. In this

direction, Hayashi introduced face algebras in 1991; eventually, he showed

that a suitable linear tensor category arises as the category of represen-

tations of a face algebra (canonical Tannaka reconstruction). See [H] and

references therein. Weak Hopf algebras were introduced in [BNS], [BS]; face

algebras are weak Hopf algebras with commutative target subalgebra.

Recently, it was explained how to build up weak Hopf algebras (actu-

ally face algebras) starting from a matched pairs of finite groupoids and

a suitable pair of cocycles [AN]. The purpose of the present paper is to

exhibit explicit examples of weak Hopf algebras in the framework of this

construction (that we recall in Subsection 2.3). For this, we need to give
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2 N. ANDRUSKIEWITSCH AND J. M. MOMBELLI

explicit examples of matched pairs of finite groupoids (what we do in Sec-

tion 3), and to compute the corresponding 2 cohomology group (the so-

called Opext). As said in [AN], see also [BaSV], an efficient way for this

last task is through the Kac exact sequence, a generalization of the anal-

ogous sequence for matched pairs of groups. We elaborate on Kac exact

sequences in Section 2, relating to cohomology of weak Hopf algebras, which

we discuss in Section 1.

The reader interested in the construction of explicit examples might

find useful the Summaries 3.3, 3.5, 3.7 and 3.10. We include along the way

some calculations of the Opext groups, by reduction to group cohomology.

Notation. We shall denote by K a commutative ring and by k a field
of characteristic zero. If R is an algebra, we denote by RM the category of
left R-modules. If X is a set, we denote by KX the free K-module with basis
(X)X∈X . We shall use Sweedler’s notation but omitting the summation sign
for coalgebras: ∆(x) = x(1)⊗x(2), if ∆ is the comultiplication of a coalgebra
C, x ∈ C. For any ring R we shall denote by R× the group of invertible
elements in R.

Acknowledgments. We thank Sonia Natale for many conversations.
Part of the work of the second author was done during a visit to the Univer-
sity of Rheims in the framework of the project ECOS. He is very grateful
to Jacques Alev for his kind hospitality.

§1. Cohomology of groupoids

1.1. Weak Hopf algebras

We first recall the definition of weak Hopf algebras, or quantum group-

oids [BNS], [BS]; see also [NV]. Weak Hopf algebras over commutative

rings, like groupoid algebras, are considered in [BW]. A weak bialgebra is

a collection (H,m,∆), where (H,m) is an associative K-algebra with unit

1 and (H,∆) is a coassociative K-coalgebra with counit ε, such that the

following axioms hold:

∆(ab) = ∆(a)∆(b), ∀a, b ∈ H.(1.1)

∆(2)(1) = (∆(1) ⊗ 1)(1 ⊗∆(1)) = (1⊗∆(1))(∆(1) ⊗ 1).(1.2)

ε(abc) = ε(ab(1))ε(b(2)c) = ε(ab(2))ε(b(1)c), ∀a, b, c ∈ H.(1.3)
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EXAMPLES OF FACE ALGEBRAS 3

A weak bialgebra H is a weak Hopf algebra or a quantum groupoid if

there exists a linear map S : H → H satisfying

m(id⊗ S)∆(h) = (ε⊗ id)(∆(1)(h ⊗ 1)) =: εt(h),(1.4)

m(S ⊗ id)∆(h) = (id⊗ ε)((1 ⊗ h)∆(1)) =: εs(h),(1.5)

m(2)(S ⊗ id⊗ S)∆(2) = S,(1.6)

for all h ∈ H. The maps εs, εt are respectively called the source and target

maps; their images are called the source and target subalgebras, and we

denote them respectively by Hs and Ht.

The weak Hopf algebra H is an Ht-bimodule via z.h.w := zhw for h ∈
H, z, w ∈ Ht and the target subalgebra Ht has a left H-module structure

given by:

h.w = εt(hw),

for all h ∈ H, and w ∈ Ht. This action when restricted to Ht gives the left

regular action [NV, p. 215]. The following Lemma will be useful later.

Lemma 1.1. Let be H a weak Hopf algebra, Ht its target subalgebra,

M a left Ht-module and N a left H-module. Then H ⊗Ht M has a left

H-module structure via multiplication on the first tensorand and there are

natural isomorphisms

HomH(H ⊗Ht M,N) ' HomHt(M,ResHHt
N).

For any projective Ht-module M , the H-module H ⊗Ht M is projective.

Proof. The desired natural isomorphisms are defined by

φ : HomH(H ⊗Ht M,N)→ HomHt(M,ResHHt
N), φ(f)(m) = f(1⊗m),

ψ : HomHt(M,ResHHt
N)→ HomH(H ⊗Ht M,N), ψ(g)(h ⊗m) = hg(m),

for all h ∈ H, m ∈M . The last claim follows from the first one.

Remark 1.2. If K = k is a field then by [NV, Prop. 2.3.4] the target
subalgebra is separable and therefore semisimple and thus every Ht-module
is projective. In this case, if Ht is commutative then H is a face algebra in
the sense of Hayashi [H].
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1.2. The Bar resolution for weak Hopf algebras

Let H be a weak Hopf algebra with target subalgebra Ht. We define

the cohomology groups of H with coefficients in M ∈ HM by

Hn(H,M) := ExtnH(Ht,M).

These cohomology groups can be computed by means of a “normalized

bar resolution”. Let H be the Ht-bimodule H/Ht; and let h be the class

in H of h ∈ H. Note that H ' Ht ⊕H as left Ht-modules, since Ht is the

image of a projector which is Ht-linear, cf. [BW, Ch. 6]. Let us assume that

H (or equivalently H) is a projective Ht-module. If N ∈ HM and n ∈ N0,

we set

Bn(H,N) := H ⊗Ht H ⊗Ht · · · ⊗Ht H︸ ︷︷ ︸
n-times

⊗HtN.

Then Bn(H,N) is a left H-module via multiplication on the first tenso-

rand, and if N is a projective Ht-module then Bn(H,N) is a projective

H-module thanks to Lemma 1.1. Let us define maps ε : B0(H,N) → N ,

∂n : Bn(H,N) → Bn−1(H,N), n > 0, and sn : Bn(H,N) → Bn+1(H,N),

n ≥ 0, by

ε(h⊗m) = h.m,

∂n(h⊗ h1 ⊗ · · · ⊗ hn ⊗m) = hh1 ⊗ h2 ⊗ · · · ⊗ hn ⊗m

+
n−1∑

i=1

(−1)ih⊗ h1 ⊗ · · · ⊗ hihi+1 ⊗ · · · ⊗ hn ⊗m

+ (−1)nh⊗ h1 ⊗ · · · ⊗ hn−1 ⊗ hn.m,

and

sn(h⊗ h1 ⊗ · · · ⊗ hn ⊗m) = 1⊗ h⊗ h1 ⊗ · · · ⊗ hn ⊗m,

for all h, h1, . . . , hn ∈ H and for all m ∈ N .

Lemma 1.3. For any n > 0, we have

i) the maps ∂n are well defined H-module homomorphisms,

ii) ∂n−1∂n = 0, and

iii) ∂n+1sn + sn−1∂n = idBn(H,N).
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Proof. We verify i). Assume that hi ∈ Ht for 1 < i < n then

∂n(h⊗ h1 ⊗ · · · ⊗ hn ⊗m)

= (−1)i−1h⊗ · · · ⊗ hi−1hi ⊗ · · · ⊗m

+ (−1)ih⊗ · · · ⊗ hihi+1 ⊗ · · · ⊗m

= (−1)i−1h⊗ · · · ⊗ hi−1 ⊗ hihi+1 · · · ⊗m

+ (−1)ih⊗ · · · ⊗ hihi+1 ⊗ · · · ⊗m = 0.

The second equality follows since we are taking tensor products over Ht.
For i = 1, n the proof is similar. Hence ∂n is well-defined, and it is clearly a
H-module homomorphism. The proof of ii) is standard and iii) follows by
a straightforward calculation.

Lemma 1.3 says that the complex

· · · −→ Bn(H,N)
∂n−→ Bn−1(H,N) −→ · · ·

−→ B2(H,N)
∂2−→ B1(H,N)

∂1−→ B0(H,N)
ε
−→ N

is acyclic. Thus, we have a projective resolution of the H-module N and

we can compute the Ext groups ExtnH(N,M) for any M ∈ HM, as the

cohomology groups ExtnH(N,M) := Ker(∂n)/ Im(∂n−1) of the complex

0 −→ C0(N,M)
∂0

−→ C1(N,M)
∂2

−→ · · ·

−→ Cn(N,M)
∂n

−→ Cn+1(N,M) −→ · · ·

where Cn(N,M) := HomH(Bn(H,N),M).

1.3. Groupoids

Recall that a (finite) groupoid is a small category (with finitely many ar-

rows), such that every morphism has an inverse. We shall denote a groupoid

by e, s : G ⇒ P, or simply by G, where G is the set of arrows, P is the set

of objects and e, s are the target and source maps. The set of arrows be-

tween two objects P and Q is denoted by G(P,Q) and we shall also denote

G(P ) := G(P, P ). The composition map is denoted by m : G e×s G → G,
and for two composable arrows g and h, that is e(g) = s(h), the composition

will be denoted by juxtaposition: m(g, h) = gh.

A morphism between two groupoids is a functor of the underlying cate-

gories. If G ⇒ P, and H⇒ Q are groupoids, and φ : G → H is a morphism
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6 N. ANDRUSKIEWITSCH AND J. M. MOMBELLI

of groupoids, then for any Q ∈ P, φ(idQ) = ide(φ(idQ)), and φ induces a map

φ0 : P → Q, namely φ0(Q) := e(φ(idQ)). Thus e(φ(g)) = φ0(e(g)), for any

g ∈ G. If φ and ψ are two morphisms of groupoids then (φψ)0 = φ0ψ0.

We recall a well-known definition.

Definition 1.4. Two morphisms of groupoids φ, ψ : G → H are simi-

lar, denoted φ ∼ ψ, if there is a natural transformation between them; that
is, if there exists a map τ : P → H such that

φ(g)τ(e(g)) = τ(s(g))ψ(g), g ∈ G.

Observe that “similarity” is an equivalence relation since every natural
transformation between two groupoid morphisms is necessarily a natural
isomorphism.

Two groupoids G, H are similar, and we write G ∼ H, if there is
an equivalence of categories between them. In other words, if there are
morphisms φ : G → H, ψ : H → G such that φ ◦ ψ and ψ ◦ φ are similar to
the corresponding identities.

A basic operation between groupoids is the disjoint union. Namely, if

G ⇒ P, H⇒ Q are two groupoids, the disjoint union is the groupoid whose

set of arrows is G
∐
H, and whose base is the disjoint union of the bases:

P
∐
Q. If G ∼ G′ and H ∼ H′ then G

∐
G′ ∼ H

∐
H′.

Let us define an equivalence relation on the base P by P ≈ Q if

G(P,Q) 6= ∅. A groupoid e, s : G ⇒ P is connected if P ≈ Q for all

P,Q ∈ P.

Let S be an equivalence class in P and let GS denote the corresponding

connected groupoid with base S; that is, GS(P,Q) = G(P,Q) for any P,Q ∈
S. Then the groupoid G is similar to the disjoint union of the groupoids

GS: G ∼
∐
S∈P/≈ GS .

A subgroupoid H of a groupoid G is wide if H has the same base P as

G.

Lemma 1.5. Let G be a groupoid.

(i) If G is connected, then G ∼ G(P ) for any P ∈ P.

(ii) If S is a system of representatives of P/≈ then

(1.7) G ∼
∐

P∈S

G(P ).
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Proof. (i) Let us fix P ∈ P. For any Q ∈ P, denote by τQ an element in
G(P,Q) such that τP = idP . So, we have defined a map τ : P → G. Define
the following maps φ : G → G(P ), ψ : G(p) → G by φ(g) = τs(g) g τ

−1
e(g),

ψ(h) = h. In fact these maps are morphisms of groupoids. Since we have
required that τP = idP then φ ◦ ψ is the identity map. By the definition
of φ we have that (ψ ◦ φ)(g)τe(g) = τs(g)g, and then ψ ◦ φ ∼ id. Part (ii)
follows from (i).

Definition 1.6. Given a groupoid G and a map p : E → P, a left

action of G on p is a map . : G e×p E → E such that

p(g . x) = s(g), g . (h . x) = gh . x, idp(x) . x = x,

for all composable g, h ∈ G, x ∈ E . We shall say in this case that (E , p), or
E , is a G-bundle.

A right action of G on E is a map / : E p×s G → E such that

p(x / g) = e(g), (x . g) . h = x / gh, x / idp(x) = x,

for all composable g, h ∈ G, x ∈ E .

1.4. The groupoid algebra

The groupoid algebra KG is the K-algebra with basis {g : g ∈ G}, the

product of two elements in the basis being equal to their composition if they

are composable, and 0 otherwise. The groupoid algebra KG has a weak Hopf

algebra structure via: ∆(g) = g ⊗ g, ε(g) = 1, S(g) = g−1, for all g ∈ G.
The target subalgebra of this weak Hopf algebra is KP :=

⊕
P∈P K idP .

A G-module bundle is a G-bundle (E , p) such that EQ := p−1(Q) is

a K-module for any Q ∈ P and the map g . : Ee(g) → Es(g) is a linear

isomorphism for any g ∈ G.

There is an equivalence of categories between the category of G-module

bundles and KGM.

The left KG-module associated to a G-module bundle (E , p) is given by

M :=
⊕

Q∈P EQ, and the action of G on M is given by g.m = g . m if

m ∈ Ee(g) and g.m = 0 otherwise. Note that the fiber EQ might be zero for

some Q ∈ P.

Reciprocally, let M be a left KG-module and set MP = idPM , P ∈ P;

then M =
⊕

P∈P MP . Let

E := {(Q,m) ∈ P ×M such that m ∈MQ},
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let p : E → P be given by p(Q,m) = Q, and let . : G e×p E → E be defined

by g . (e(g),m) = (s(g), g.m). Then (E , p) is a G-module bundle.

Proposition 1.7. If G ⇒ P and H ⇒ Q are similar groupoids then

the categories KGM and kHM are tensor equivalent. In particular the

groupoid algebras KG, KH are Morita equivalent.

Proof. By hypothesis, there are morphisms of groupoids φ : G → H
and ψ : H → G satisfying that φψ ∼ idH and ψφ ∼ idG ; that is, there are
maps θ : P → G and η : Q → H such that

ψφ(g)θ(e(g)) = θ(s(g))g,(1.8)

φψ(h)η(e(h)) = η(s(h))h,(1.9)

for all g ∈ G and h ∈ H.

We define functors Ψ : KGM→ kHM, Φ : kHM→ KGM by

Ψ(M)Q := Mψ0(Q), and Φ(V )P := Vφ0(P ),

for all objects M ∈ KGM, V ∈ kHM and for all P ∈ P, Q ∈ Q. The action
of H in Ψ(M) is defined as follows: if x ∈ H and m ∈ Ψ(M)Q then

x.m =

{
ψ(x)m if e(x) = Q,

0 otherwise.

The action of G in Φ(V ) is defined as follows: if g ∈ G and v ∈ Φ(V )P then

g.v =

{
φ(g)v if e(g) = P ,

0 otherwise.

Clearly, these are indeed actions of the corresponding groupoids. We define
natural isomorphisms ξ : Id→ ΨΦ and ζ : ΨΦ→ Id by

ξVQ
: VQ → V(ψφ)0(Q), ξVQ

(v) = θ(Q)v and

ζMP
: MP →M(φψ)0(P ), ζMP

(m) = η(P )m

for all V ∈ kHM and M ∈ KGM. Equations (1.8), (1.9) imply that ξ and
ζ are morphisms; thus the functors Φ and Ψ define an equivalence between

KGM and kHM. A straightforward verification shows that these functors
are in fact strict tensor functors.
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Combining Lemma 1.5 and Proposition 1.7 we get

Corollary 1.8. If G is a connected groupoid then the tensor cate-

gories KGM and kG(P )M are tensor equivalent for any P ∈ P. In particular

the groupoid algebra KG is Morita equivalent to the group algebra KG(P ).

1.5. Groupoid cohomology

We briefly recall the well-known groupoid cohomology.

Let us fix a groupoid e, s : G ⇒ P. Define G(0) := {idQ}Q∈P , G(1) = G,
and for n ≥ 2

G(n) = {(g1, . . . , gn) ∈ G
n : g1|g2| · · · |gn−1|gn}.

Let (E , p) be a G-module bundle, and define

C0(G, E) = {f : P → E : p(f(Q)) = Q ∀Q ∈ P},

Cn(G, E) = {f : G(n) → E : f(g1, . . . , gn) = 0, if some gi ∈ G
(0),

and p(f(g1, . . . , gn)) = s(g1) ∀ (g1, . . . , gn) ∈ G
(n)}.

The cohomology groups Hn(G, E) of G with coefficients in the G-module

bundle (E , p) are the cohomology groups of the complex

0 −→ C0(G, E)
d0−→ C1(G, E)

d1−→ C2(G, E)
d2−→ · · ·(1.10)

−→ Cn(G, E)
dn−→ Cn+1(G, E) −→ · · ·

where

d0f(g) = g . f(e(g)) − f(s(g)),(1.11)

dnf(g0, . . . , gn) = g0 . f(g1, . . . , gn) +
n∑

i=1

(−1)if(g0, . . . , gi−1gi, . . . , gn)

+ (−1)n+1f(g0, . . . , gn−1).

Let us denote as usual Zn(G,M) := Ker(dn), Bn(G,M) := Im(dn−1),

n ≥ 0. We next show that this groupoid cohomology coincides with the

cohomology of the weak Hopf algebra KG.

Proposition 1.9. If E is a G-module bundle and M is the associated

KG-module, then the groups Hn(G, E) and Hn(KG,M) are naturally iso-

morphic.
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Proof. Let Cn(KP,M) := HomKG(Bn(KG,KP),M) as in Section 1.2.
Let us define Fn : Cn(KP,M)→ Cn(G, E) by

F0(f)(P ) = f(idP ), P ∈ P,

Fn(f)(g1, . . . , gn) = f(ids(g1) ⊗ g1 ⊗ · · · ⊗ gn), (g1, . . . , gn) ∈ G
(n).

Then Fn are isomorphisms whose inverses are the maps Gn : Cn(G, E) →
Cn(KP,M) given by

G0(f)(g) = g . f(e(g)),

Gn(f)(go ⊗ g1 ⊗ · · · ⊗ gn) = g0 . f(g1, . . . , gn).

It follows from the definition of the maps dn that dnFn = Fn∂
n for any

n ≥ 0. Thus, the maps Fn induce isomorphisms Hn(G, E)→ Hn(KG,M).

As a consequence, we show that groupoid cohomology can be derived

from group cohomology.

Proposition 1.10. (i) Let E be a G-module bundle and let S be a

complete set of representatives of equivalence classes in P. Then there are

natural isomorphisms– induced by the respective inclusions

Hn(G, E) '
⊕

P∈S

Hn(G(P ), EP ).

(ii) Assume that G is connected and let us fix O ∈ P. Let E be a G-
module bundle and let H be a connected wide subgroupoid of G. Set G =
G(O), H = H(O). Then the following diagram commutes:

Hn(G, E)
res

−−−−→ Hn(H,ResGH(E))
y

y

Hn(G, EO)
res

−−−−→ Hn(H,ResGH(EO)),

where the vertical arrows are the isomorphisms from part (i).

Proof. (i) Combine (1.7), Proposition 1.9, and the fact that the Ext
groups are Morita invariant. Here the well-known natural isomorphisms
ExtnA×B(M ⊕N,U ⊕ V ) ' ExtnA(M,U) ⊕ ExtnB(N,V ), n ∈ N, are present,
where A and B are rings, M and U are A-modules and N and V are B-
modules.

(ii) Straightforward.
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Definition 1.11. Let A be a K-module. We shall denote by A the
G-module bundle such that AP := A, P ∈ P, with trivial action of G. That
is, A is the G-module bundle corresponding to the KG-module KP ⊗K A.
By Proposition 1.10 (i), Hn(G, A) '

⊕
P∈SH

n(G(P ), A).

Observe that if A is a K-module then the set Z2(G, A) is identified with

the set of maps σ : G e×s G → A such that

σ(g, hf)σ(h, f) = σ(gh, f)σ(g, h),

for composable g, h, f ∈ G.

§2. The Kac exact sequence for matched pairs of groupoids

2.1. Matched pairs of groupoids

We briefly recall the definition of matched pair of groupoids, and the

equivalent formulations in terms of exact factorizations or vacant double

groupoids, see [Ma] or [AN] for details.

A matched pair of groupoids is a collection (H,V, ., /), where b, t : V ⇒

P and r, l : H⇒ P are two groupoids over the same base P, . : H r×t V → V
is a left action of H on (V, t), / : H r×t V → H is a right action of V on

(H, r) such that

b(x . g) = l(x / g),

x . gh = (x . g)((x / g) . h),(2.1)

xy / g = (x / (y . g))(y / g),

for composable elements x, y ∈ H and g, h ∈ V. Here and below we use the

‘horizontal and vertical notation’: the source and target of H, resp. V, are

denoted l and r (left and right), resp. t and b (top and bottom).

Let (H,V, /, .) be a matched pair of groupoids. There is an associated

diagonal groupoid V ./ H with set of arrows V b×lH, base P, source, target,

composition and identity given by

s(g, x) = t(g), e(g, x) = r(x),

(g, x)(h, y) = (g(x . h), (x / h)y), idP = (idP , idP ),

g, h ∈ V, x, y ∈ H, P ∈ P. Then we have an exact factorization of groupoids

V ./ H = VH. Conversely, if D = VH is an exact factorization of groupoids
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12 N. ANDRUSKIEWITSCH AND J. M. MOMBELLI

then there are actions /, . such that (H,V, /, .) form a matched pair of

groupoids, and D ' V ./ H.

There is also a vacant double groupoid associated to the matched pair of

groupoids (H,V). In simple terms, this is a collection of groupoids
B ⇒ H
� �

V ⇒ P
with the following meaning. A pair (x, g) in B := H r×t V is depicted as a

box

x

h g

y

where h = x.g, y = x/g. The horizontal groupoid r, l : B ⇒ V

has source, target, composition and identity given by

r(x, g) = g, l(x, g) = x . g, (x, g)(y, h) = (xy, h), id(g) = (idt(g), g)

x, y ∈ H, g, h ∈ V. The vertical groupoid t, b : B ⇒ H has source, target,

composition and identity given by

b(x, g) = x / g, t(x, g) = x, (x, g)(y, h) = (x, gh), id(x) = (x, idr(x)),

x, y ∈ H, g, h ∈ V. If A, B are two boxes we denote A|B if they are

horizontally composable, and
A

B
if they are vertically composable, that is

if A =

x

h g

y

and B =

z

f k

w

, then A|B if and only if g = f , and
A

B
if

and only if y = z.

2.2. The Kac exact sequence

In this Subsection we shall review and complete details of the proof of

the Kac exact sequence for vacant double groupoids introduced in [AN].

Let (H,V, /, .) be a matched pair of groupoids. We begin by a non stan-

dard resolution of the diagonal groupoid, adapting ideas from [M1] to the

groupoid case. If r, s ∈ N, we denote by B[r,s] the set of matrices




A11 A12 · · · A1s

A21 A22 · · · A2s

· · · · · · · · · · · ·
Ar1 Ar2 · · · Ars


 ∈ B

r×s

such that
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• For all i, j, Aij |Ai,j+1,
Aij
Ai+1,j

. This condition is summarized in the

notation:

A11 A12 · · · A1s

A21 A22 · · · A2s

· · · · · · · · · · · ·

Ar1 Ar2 · · · Ars

• If j < s then Aij is not a horizontal identity.

• If i > 1 then Aij is not a vertical identity.

Observe that if A = (Aij) is an element in B[r,s] then A is determined

by s composable elements x1, . . . , xs in H–those in the top of the array–

and r composable elements g1, . . . , gr in V–those in the right side of the

array, with r(xs) = t(g1). We shall denote it by

A =:

x1, . . . , xs
g1, . . . , gr.

Let sr,sV : KB[r,s] → KB[r+1,s] (vertical homotopy maps), ∂r,sV : KB[r,s] →
KB[r−1,s] and ∂r,sH : KB[r,s]→ KB[r,s−1] (vertical and horizontal coboundary

maps) be defined by

sr,sV

( x1, . . . , xs
g1, . . . , gr

)
:=

x1, . . . , xs
idt(g1), g1, . . . , gr;

∂r,sH

( x1, . . . , xs
g1, . . . , gr

)

=

s−1∑

j=1

(−1)s−j−1
x1, . . . , xjxj+1, . . . , xs

g1, . . . , gr

+ (−1)s−1
x2, . . . , xs

g1, . . . , gr;
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14 N. ANDRUSKIEWITSCH AND J. M. MOMBELLI

∂r,sV

( x1, . . . , xs
g1, . . . , gr

)

=
r−1∑

i=1

(−1)i−1
x1, . . . , xs

g1, . . . , gigi+1, . . . , gr

+ (−1)r−1
x1, . . . , xs

g1, . . . , gr−1.

A straightforward computation shows that the following diagram com-

mutes:

KB[r,s]
∂r,s

H−−−−→ KB[r,s−1]

∂r,s

V

y
y∂r,s−1

V

KB[r−1,s]
∂r−1,s

H−−−−→ KB[r−1,s−1].
Thus, we have constructed a double chain complex B•,•:

B
•,• =

...
y

KB[3,1] ∂H←−−−−
... · · ·

y∂V

y−∂V

KB[2,1] ∂H←−−−− KB[2,2] ∂H←−−−−
... · · ·

y∂V

y−∂V

y

KB[1,1] ∂H←−−−− KB[1,2] ∂H←−−−− KB[1,3] ←−−−− · · ·

Note that B[r,s] is a subset of the set B(r,s) defined in [AN]; and the

double complex presented here is different from the double complex in [AN].

However these will be reconciliated in Remark 2.5 below.

Let us now define an action of the diagonal groupoid V ./ H on KB [r,s],

r, s > 0. The P-gradation on KB[r,s] is given by:

p

( x1, . . . , xs
g1, . . . , gr

)
:= t(g1) = r(xs).
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If h ∈ V, y ∈ H are such that r(y) = r(xs) = t(g1) = b(h), then we set

y.

( x1, . . . , xs
g1, . . . , gr

)
(2.2)

:=

x1, . . . , xsy
−1

y . g1, (y / g1) . g2, . . . , (y / g1 . . . gr−1) . gr,

h.

( x1, . . . , xs
g1, . . . , gr

)
(2.3)

:=

x1 / (x2 . . . xs . h
−1), . . . , xs / h

−1

hg1, g2, . . . , gr.

Lemma 2.1. (i) The rules (2.2) and (2.3) induce a structure of

KV ./ H-module on KB[r,s].

(ii) There are KV ./ H-isomorphisms:

• KB[r,s] ' KV ./ H⊗KP KB[r−1,s−1] for any r, s > 1,

• KB[r,1] ' KV ./ H⊗KP KV(r−1) for any r > 0,

• KB[1,s] ' KV ./ H⊗KP KH(s−1) for any s > 0,

where the action of KV ./ H on KV ./ H ⊗KP L is on the first

tensorand, for any L ∈ KPM.

(iii) KB[r,s] is a projective KV ./ H-module for any r, s > 0.

(iv) The coboundary maps ∂r,sV , ∂r,sH are morphisms of KV ./ H-modules.

(v) ∂r+1,s
V sr,sV + sr−1,s

V ∂r,sV = id
KB[r,s].

Proof. (i) Let A =

x1, . . . , xs
g1, . . . , gr ∈ B

[r,s]; let h ∈ V, y ∈ H,

such that r(y) = t(h) and b(h) = p(A). We claim that y.(h.A) = (y.h).((y/
h).A). We have

y.(h.A) =

x1/(x2...xs.h−1),...,(xs/h−1)y−1

y.hg1,(y/hg1).g2,...,(y/hg1...gr−1).gr;
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16 N. ANDRUSKIEWITSCH AND J. M. MOMBELLI

and (y . h).((y / h).A) =

x1/((x2...xs(y/h)−1).(y.h)−1),...,(xs(y/h)−1)/(y.h)−1

(y.h)((y/h).g1),...,((y/hg1...gr−1).gr.

Then y.(h.A) = (y . h).((y / h).A) by (2.1) and the identities

(y . h)−1 = (y / h) . h−1, (y / h)−1 = y−1 / (y . h).

(ii) Assume that r, s > 1. Define the maps φ : KB [r,s] → KV ./ H⊗KP

KB[r−1,s−1], ψ : KV ./ H⊗KP KB[r−1,s−1] → KB[r,s] by the formulas

φ

( x1, . . . , xs
g1, . . . , gr

)
:= (x−1

s , xs . g1)

⊗
x1/(x2...xs.g1),...,xs−1/(xs.g1)

(xs/g1).g2,...,(xs/g1...gr−1).gr,

ψ

(
(y, h)⊗

x1, . . . , xs−1

g1, . . . , gr−1

)

:= (y, h).

( x1, . . . , xs−1, idr(xs−1)

idt(g1), g1, . . . , gr−1

)
.

These maps are morphisms of KV ./ H-modules and one is the inverse
of each other. The proof of the cases r = 1 or s = 1 follows similarly.
Part (iii) follows from (ii) and Lemma 1.1. The proof of (iv) and (v) is
straightforward.

Let A•,• be the double chain complex obtained from B•,• by removing

the edges; that is Ar,s := Br+1,s+1. Let M be a left KV ./ H-module

and thus a left KH-module and also a left KV-module. Define the double

cochain complexes B•,•(M), E•,•(M), A•,•(M) by

B
r,s(M) := HomKV./H(KB[r,s],M),

Ar,s(M) := HomKV./H(KB[r+1,s+1],M),

and Er,s(M) consists only of the edges of B(M).
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Remark 2.2. Let M be a KV ./ H-module. Lemma 2.1 (ii) implies that
there are natural K-linear isomorphisms: Br,s(M) ' HomK(KB[r−1,s−1],M)
for any r, s > 1, and there are natural bijections: Br,1(M) ' C(r−1)(V, E),
B1,s(M) ' C(s−1)(H, E) for any r, s > 0, where E is the module bundle
corresponding to M .

Remark 2.3. Let B(r,s) be as in [AN]. Suppose that r, s > 1. We extend
any µ ∈ Br,s(M) ' HomK(KB[r−1,s−1],M) to µ̃ ∈ HomK(KB(r−1,s−1),M)
by 0 on B(r−1,s−1)−B[r−1,s−1]. In other words, the elements of Br,s(M) are
normalized by definition.

Now we can formulate the Kac exact sequence for groupoids.

Theorem 2.4. ([AN, Prop. 3.14]) Let M be a KV ./ H-module. Then,

there is an exact sequence

(2.4)

0 −→ H1(D,M)
res

−→ H1(H,M)⊕H1(V,M) −→ H0(TotA•,•(M))

−→ H2(D,M)
res

−→ H2(H,M)⊕H2(V,M) −→ H1(TotA•,•(M))

−→ H3(D,M)
res

−→ H3(H,M)⊕H3(V,M) −→ · · ·

The maps denoted by res in the above exact sequence come from the usual

restriction maps.

Proof. The short exact sequence of double complexes 0→ A•,•(M)→
B•,•(M)→ E•,•(M)→ 0 induces a long exact sequence in cohomology. By
Remark 2.2 it is easy to see that

Hn(TotE•,•(M)) ' Hn(H,M)⊕Hn(V,M)

for any n ∈ N0. By Lemma 2.1 (v) each column of B•,• is acyclic. Hence
the associated total complex

· · · −→ Tot(B)n
∂n−→ Tot(B)n−1 −→ · · ·(2.5)

−→ Tot(B)3
∂1−→ Tot(B)2

ε
−→ KP,

where ε : Tot(B)1 → KP is given by the degree: ε
( x

g
)

= l(x), is a

projective resolution of the trivial KV ./ H-module. See, for instance, [W,
Ex. 1.2.5]. Hence Hn(TotB(M)) ' Hn(V ./ H,M) for any n ∈ N0, and
this finishes the proof.
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Remark 2.5. Let now K = Z and A = k× and recall the meaning of
k× in Definition 1.11. Let us denote

Aut(kT ) := H0(TotA•,•(k×)), Opext(V,H) := H1(TotA•,•(k×)).

The group Z2(TotA•,•(k×)) can be identified with set of pairs (σ, τ)
such that σ is a normalized 2-cocycle with values in k× for the vertical
groupoid B ⇒ H, τ is a normalized 2-cocycle with values in k× for the
horizontal groupoid B ⇒ V and

(2.6) σ(AB,CD) τ

(
A
C
,
B
D

)
= τ(A,B)τ(C,D)σ(A,C)σ(B,D),

for any A, B, C, D such that
A B

C D
. Hence, Opext(V,H) coincides with

the group considered in [AN]. We have the familiar expression

(2.7)

0 −→ H1(D,k×)
res
−→ H1(H,k×)⊕H1(V,k×) −→ Aut(k T )

−→ H2(D,k×)
res
−→ H2(H,k×)⊕H2(V,k×) −→ Opext(V,H)

−→ H3(D,K×)
res
−→ H3(H,k×)⊕H3(V,k×) −→ · · ·

Notice that, if (σ, τ) ∈ Z2(TotA•,•(k×)), then it follows from equation
(2.6) that

(2.8)
σ((ids(g), g), (ids(h), h)) = 1, g, h ∈ V,

τ((x, ide(x)), (y, ide(y))) = 1, x, y ∈ H.

2.3. Weak Hopf algebras arising from matched pairs of group-

oids

Here we recall the construction of a weak Hopf algebra– actually a

face algebra in the sense of Hayashi [H]– starting from a matched pair

of groupoids and an element of the corresponding Opext, given in [AN].

This motivates the discussion in this section as well as the computations

performed in the next one.

Let (H,V, /, .) be a matched pair of groupoids and let T :=
B ⇒ H
� �

V ⇒ P
be

the vacant double groupoid associated to (H,V). Let (σ, τ) ∈ Z 2(TotA•,•

(k×)). Let kτσT be the vector space with basis B and multiplication and

comultiplication defined on the basis B, respectively by
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• A.B = σ(A,B)AB, if
A

B
, and 0 otherwise.

• ∆(A) =
∑
τ(B,C)B⊗C, where the sum is over all pairs (B,C) with

B|C and A = BC.

Theorem 2.6. ([AN, Th. 3.8]) (i) kτσT is a weak Hopf algebra with an-

tipode defined by S(A) = τ(A,Ah)−1 σ(A−1, Ah)−1A−1, A ∈ B. The source

and target subalgebras are commutative of dimension |P|, thus kτσT is ac-

tually a face algebra.

(ii) Let (ν, η) be another normalized 2-cocycle on T with values in k×.

Let ψ : T → k× be a map and let Ψ : kτσT → k
η
νT be the linear map given by

Ψ(B) = ψ(B)B, B ∈ B. Then Ψ is an isomorphism of quantum groupoids

if and only if

ψ
(
A
B

)
σ(A,B) = ψ(A)ψ(B)ν(A,B),(2.9)

for all A,B ∈ B such that
A

B
;

ψ(CD)η(C,D) = ψ(C)ψ(D)τ(C,D),(2.10)

for all C,D ∈ B such that C|D.

The category Rep kτσT of finite-dimensional representations of the weak

Hopf algebra kτσT has a structure of a k-linear rigid monoidal category

[NV]. Recall from [ENO] the definition of a multifusion category : this is

a semisimple k-linear rigid tensor category with finitely many isoclasses of

simple objects and finite dimensional hom-spaces. A multifusion category

is called a fusion category when the unit object is simple.

Proposition 2.7. ([AN, Prop. 3.11]) Keep the notation above. The

category Rep kτσT of finite dimensional kτσT -modules is a multifusion cate-

gory. It is fusion if and only if V ⇒ P is connected.

§3. Matched pairs of groupoids with connected vertical groupoid

Let D ⇒ P be a connected groupoid. We fix O ∈ P and τP ∈ D(O,P ),

P ∈ P, τO = idO. We denote by D the group D(O); thus D ' D × P2,

with isomorphism given by

D(P,Q) 3 x 7−→ (τPxτ
−1
Q , (P,Q)).
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In other words, we pull back x to an arrow from O to O via the τ ’s:

O

��

τP
))
P

x
		

O τQ
))
Q

Different choices of families τP ∈ D(O,P ), P ∈ P, just amount to different

isomorphisms of groupoids D ' D ×P2.

3.1. Structure of exact factorizations

Let us fix an equivalence relation ≈H on P and a section σ : P/≈H → P
of the canonical projection. Then there is a bijection between

(a) the set of wide subgroupoids H of D with equivalence relation ≈H ,

and

(b) the set of collections ((HU)U∈P/≈H
, (λP )P∈P), where HU is a subgroup

of D, U ∈ P/≈H , and λP ∈ HU\D, P ∈ U, with λσ(U) ∈ HU for any

U ∈ P/≈H .

Namely, from (a) to (b), if U ∈ P/≈H and P ∈ U, then we choose gP ∈
H(σ(U), P ) and set

HU = τσ(U)H(σ(U))τ−1
σ(U), λP = τσ(U)gP τ

−1
P .

The choice of gP does not affect the class of λP in HU\D. By definition,

λσ(U) ∈ HU.

Conversely, if a collection ((HU)U∈P/≈H
, (λP )P∈P) satisfies the above

conditions then the wide subgroupoid H that this collection determines is

given by

H(P,Q) =

{
τ−1
P λ−1

P HUλQτQ, if P ≈H Q, P,Q ∈ U;

∅ if P 6≈H Q.

In other words, cf. the equality λP τP = τσ(U)gP , arrows x in H from P to

Q correspond to arrows x̃ ∈ HU as in this commutative diagram:

O

ex
��

τσ(U)
,,
σ(U)

��

gP
**
P

x
		

O τσ(U)
,,
σ(U) gQ

** Q
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By abuse of notation, we shall say that H is associated to ((HU)U∈P/≈H
,

(λP )P∈P).

We reformulate the description of exact factorizations of a connected

groupoids given in [AN, Th. 2.15] in terms of the preceding discussion. Let

us fix equivalence relations ≈V and ≈H on P and sections ρ : P/≈V → P,

σ : P/≈H → P of the canonical projections.

Theorem 3.1. Let H and V be wide subgroupoids of D associated re-

spectively to collections ((HU)U∈P/≈H
, (λP )P∈P), ((VR)R∈P/≈V

, (µP )P∈P)
as explained above. Then the following are equivalent :

(i) D = VH is an exact factorization.

(ii) (H,V) is a matched pair of groupoids and D ' V ./ H.

(iii) The following conditions hold :

D =
∐

R∈U∩R

VR µRλ
−1
R HU, for all U ∈ P/≈H , R ∈ P/≈V ;(3.1)

µ−1
P VRµP ∩ λ

−1
P HUλP = {1},(3.2)

for all U ∈ P/≈H , R ∈ P/≈V , P ∈ U ∩R.

In the rest of this section we shall study matched pairs of groupoids

whose vertical groupoid is connected. These are exactly those such that the

tensor category Rep kτσT is fusion, see Subsection 2.3.

We fix a vertical subgroupoid V of D determined by a subgroup V of

D and µP ∈ V \D, P ∈ P. Without loss of generality, we can assume that

µP = 1 for all P ∈ P; just change the family (τP ) by (µP τP ).

We shall say that H is an exact factor of the subgroupoid V of D if

D = VH is an exact factorization.

Corollary 3.2. Let H be a wide subgroupoid of D associated to

((HU)U∈P/≈H
, (λP )P∈P). Then the following are equivalent :

(i) H is an exact factor of V.

(ii) The following conditions hold :

D =
∐

R∈U

V λ−1
R HU, for all U ∈ P/≈H ;(3.3)

V ∩ gHUg
−1 = {1}, for all g ∈ D.(3.4)

https://doi.org/10.1017/S0027763000025642 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025642


22 N. ANDRUSKIEWITSCH AND J. M. MOMBELLI

Proof. Condition (3.2) reads now V ∩ λ−1
P HUλP = {1}, for all U ∈

P/≈H , P ∈ s. In presence of (3.3), this is equivalent to (3.4).

Summary 3.3. To construct an explicit example of an exact factoriza-
tion D = VH with V connected, we need:

• A finite group D, a subgroup V of D and a finite non-empty set P.

We fix O ∈ P and define D and V as explained above.

• An equivalence relation ≈H in P.

• A family (HU)U∈P/≈H
of subgroups of D such that

(a) V intersects trivially all conjugates of HU for all U ∈ P/≈H .

(b) There are bijections ϕU : V \D/HU ' U for all U ∈ P/≈H .

We denote σ(U) = ϕU(V HU) ∈ U.

• A section ζ : U → D of the canonical projection D → V \D/HU

composed with ϕU, such that ζσ(U) ∈ HU.

We set λP = ζ−1
P for any P ∈ P; and clearly λσ(U) = ζ−1

σ(U) ∈ HU. Then

H is the wide subgroupoid associated to ((HU)U∈P/≈H
, (λP )P∈P); it is an

exact factor of V by (a) and (b).

Remark 3.4. If D is a finite group, V and H are subgroups of D with
double coset decomposition D =

∐
P∈U

V ζPH, then [D : H] =
∑

P∈U
[V :

V ∩ ζPHζ
−1
P ]; if in addition V ∩ gHg−1 = {1} for all g ∈ D then |D| =

#U|V | |H|. See [AM, p. 76].

We shall next analyze explicit examples of exact factors H of V accord-

ing to the equivalence relation ≈H .

3.2. Case 1. The equivalence relation ≈H is totally discon-

nected

Here ≈H is the identity relation: if P ≈H Q then P = Q for any

P,Q ∈ P. Wide subgroupoids H with this equivalence relation correspond

to families (HP )P∈P of subgroups of D.

Summary 3.5. Let H be as above. Then the following statements are
equivalent:

(i) D = VH is an exact factorization.
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(ii) D = V HP is an exact factorization for any P ∈ P.

To construct an explicit example of an exact factorization D = VH
with V connected and ≈H = id, we need a finite group D, a subgroup V
and a family (HP )P∈P of subgroups of D (thus the index set P is the basis
of the groupoid) such that HP is an exact factor of V for any P ∈ P.

Given a finite group D and a subgroup V , we are thus faced to the

problem of finding all exact factors H of V . We observe that:

(0) Any conjugate of an exact factor of V is again an exact factor of V .

(1) There exist a finite group D, a subgroup V and exact factors H and

H ′ such that H � H ′. For instance, D = S4, V = S3 (the subgroup that

fixes 4), H = 〈(1234)〉 ' Z/(4), H ′ = 〈(24)(13), (34)(12)〉 ' Z/(2) ⊕ Z/(2).

(2) There exist a finite group D, a subgroup V and exact factors H and

H ′ with H ' H ′ but H not conjugate to H ′. For instance, D = Sn, n ≥ 6,

V = An, H = 〈(12)〉, H ′ = 〈(12)(34)(56)〉.

(3) (Schur-Zassenhaus Theorem) If D is a finite group and V C D is a

normal subgroup such that (|V |, [D : V ]) = 1, then V admits exact factors,

which are all conjugate. The known proof of the conjugacy of the exact

factors relies on the Feit-Thompson Theorem (any group of odd order is

solvable).

(4) The list of all exact factorizations of Sn and An is given in [WW].

Let D = VH be an exact factorization with V connected and ≈H = id.

Then, by Proposition 1.10 (i), the Kac exact sequence (2.7) has the form

(3.5)

0 −→ H1(D,k×)
res
−→

⊕

P∈P

H1(HP ,k
×)⊕H1(V,k×) −→ Aut(kT )

−→ H2(D,k×)
res
−→

⊕

P∈P

H2(HP ,k
×)⊕H2(V,k×) −→ Opext(V,H)

−→ H3(D,k×)
res
−→

⊕

P∈P

H3(HP ,k
×)⊕H3(V,k×) −→ · · · .

Example 3.6. Let m ∈ N, m ≥ 5. Let D := Sm, V := Cm =

〈(1 . . . m)〉, P := {1 . . . m}, Hi := S
(i)
m := {σ ∈ Sm : σ(i) = i}, 1 ≤ i ≤ m.

The groups S
(i)
m are conjugate to each other, indeed if τij = (ij) then

τijS
(i)
m τ

−1
ij = S

(j)
m . We have exact factorizations Sm = CmS

(i)
m for any

1 ≤ i ≤ m, hence we have an exact factorization of groupoids D = VH.
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Assume now that k = C. We rely on calculations done in [M2].
We claim that Opext(V,H) = Zm−1

2 . It is known that H2(Cm,k
×) = 0

that H2(Sm,k
×) = Z2; that the restriction map res : H2(Sm,k

×) →
H2(Sm−1,k

×) is bijective [M2, p. 579]; and that res : H3(Sm,k
×) →

H3(Sm−1,k
×) ⊕ H3(Cm,k

×) is an injective map. Hence the Kac exact
sequence (3.5) gives 0 → Z2 → Zm2 → Opext(V,H) → 0 and the claim
follows.

3.3. Case 2. The equivalence relation ≈H is connected

Here both ≈V and ≈H are connected. A wide subgroupoid H in this

case corresponds to a subgroup H of D and elements (λP )P∈P ∈ H\D,

such that λO ∈ H.

Summary 3.7. Let H be a groupoid as above. Then the following
statements are equivalent.

(i) D = VH is an exact factorization.

(ii) D =
∐
r∈P V λ

−1
r H (thus #(V \D/H) = #P) and V ∩ gHg−1 = {1}

for any g ∈ D.

To construct an explicit example of an exact factorization D = VH with
V and H connected, we need a finite group D, two subgroups V and H such
that V ∩ gHg−1 = {1} for any g ∈ D, and a section ζ : V \D/H → D of
the canonical projection D → V \D/H such that ζ(V H) ∈ H. The base of
the groupoids D, V and H is P := V \D/H, and ζP = λ−1

P for any P ∈ P.

Given a finite group D and a subgroup V , we have to find subgroups H

of D such that V intersects trivially all conjugates of H. We observe that:

(1) If the orders |V |, |H| are relatively prime then this condition is

automatically fulfilled.

(2) If V admits an exact factor K and H is any subgroup of K then V

intersects trivially all conjugates of H.

Let D = VH be an exact factorization with V and H connected. Then,

by Proposition 1.10 (i), the Kac exact sequence (2.7) has the form

(3.6)

0 −→ H1(D,k×)
res
−→ H1(H,k×)⊕H1(V,k×) −→ Aut(k T )

−→ H2(D,k×)
res
−→ H2(H,k×)⊕H2(V,k×) −→ Opext(V,H)

−→ H3(D,k×)
res
−→ H3(H,k×)⊕H3(V,k×) −→ · · · .
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Example 3.8. Let m, k, r ∈ N be such that k, r ≤ m and k > m− r.
Let X ⊆ {1, . . . ,m} be a subset of cardinal r. Let D := Sm, V := Ck =
〈(12 . . . k)〉, H := SXm := {σ ∈ Sm : σ(x) = x for all x ∈ X} ' Sm−r. Since

σSXmσ
−1 = S

σ(X)
m for any σ ∈ Sm, then Ck ∩ σSXmσ

−1 = {e} for any σ ∈ Sm.
In this example #P = n(n− 1) · · · (n− r + 1)/k.

Let us assume that we are in conditions of Summary 3.7. The set V H ⊆
D is a subgroup of D if and only if V H = HV . If this is the case, we have an

exact factorization that allows us to consider the group Opext(V,H). The

following example shows that the isomorphism Opext(V,H) ' Opext(V,H)

does not necessarily hold.

Example 3.9. In this example k = C. Let p, q, n ∈ N, where p and q
are relatively prime, and set m = pqn. Let D := Z/(m), V := Z/(p), H :=
Z/(q). Let D, V and H the corresponding connected groupoids associated
to D, V and H respectively, with P = V \D/H of cardinal n.

We claim that Opext(V,H) ' Z/(n). Indeed, since H 2(Z/(p),C×) =
H2(Z/(q),C×) = 0 then Opext(V,H) ' Ker(res : H3(Z/(m),C×) →
H3(Z/(p),C×)⊕H3(Z/(q),C×)) by (3.6). Now, it is known that H3(Z/(r),
C×) ' Z/(r) for any r ∈ N [AM, p. 61]. And it is not difficult to see that
the restriction map res : Z/(m) → Z/(p) ⊕ Z/(q) via these isomorphisms
is the canonical projection, and thus Opext(V,H) ' Z/(n) 6' Opext(V,H)
unless n = 1.

3.4. Case 3. Equivalence relations ≈H with two classes

We assume here that≈H has two equivalence classes: {O}, and P−{O}.
We fix Õ ∈ P − {O}. A wide subgroupoid H in this case corresponds to

a pair of subgroups H1, H2 and a family (λP )P∈P−{O} in D such that

λ eO
∈ H2.

Summary 3.10. Let H be a groupoid as above. The following state-
ments are equivalent.

(i) D = VH is an exact factorization,

(ii) (a) D = V H1 is an exact factorization,

(b) D =
∐
P∈P−{O} V λ

−1
P H2 and V ∩ gH2g

−1 = {1} for any g ∈ D.
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By Proposition 1.10 (i) the Kac exact sequence has the form
(3.7)

0−→H1(D,k×)
res
−→H1(H1,k

×)⊕H1(H2,k
×)⊕H1(V,k×)−→Aut(k T )

−→H2(D,k×)
res
−→H2(H1,k

×)⊕H2(H2,k
×)⊕H2(V,k×)−→Opext(V,H)

−→H3(D,k×)
res
−→H3(H1,k

×)⊕H3(H2,k
×)⊕H3(V,k×)−→ · · · .

Examples in this case are obtained combining the examples in the pre-

vious cases. We note a general way of obtaining collections as in Sum-

mary 3.10. If D = V H1 is an exact factorization and H2 is a subgroup

of H1, then V ∩ gH2g
−1 = {1} for any g ∈ D. Let us discuss an explicit

example.

Example 3.11. Let H2 be any group of order n, considered as a sub-
group of Sn via, say, the left regular action on itself. Set D = Sn+1,
V = 〈(12 . . . n + 1)〉 ' Cn+1, H1 = Sn, an exact factor of V . By (3.7),
we have

Opext(V,H) ∼= H2(H2,k
×)/ Im

(
res : H2(Sn+1,k

×)→ H2(H2,k
×)
)
.

There are also examples which are not of this form.

Example 3.12. Let n ∈ N such that n = rs with r, s 6= 1, r, s ∈ N.
Let D = Sn, V = Sn−1, H1 = 〈(1, . . . , n)〉 and H2 = 〈σ〉, where σ =
(1 . . . r)(r + 1 . . . 2r) · · · (rs − r + 1 . . . rs). Then H1 is an exact factor of
V , V intersects trivially any conjugate of H2 and σ /∈ H1. In this case
#P = s+ 1.
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Argentina
mombelli@mate.uncor.edu

https://doi.org/10.1017/S0027763000025642 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025642

