On the transcendency of the solutions of a special class of functional equations: Corrigendum

Kurt Mahler

Mr V.E. Hoggatt, Jr, has pointed out an error in the examples of my paper [2]. If F_{m} denotes the $m t h$ Fibonacci number, these examples asserted that

$$
\sum_{n=0}^{\infty}\left(F_{2} n\right)^{-1},=s \quad \text { say }
$$

is transcendental. This is in fact false, for by a theorem of Good [1],

$$
s=(7-\sqrt{5}) / 2 ;
$$

for it happens that

$$
\begin{equation*}
\sum_{n=0}^{\infty} z^{2^{n}}\left(1-z^{2^{n+1}}\right)^{-1}=\frac{z}{1-z} \tag{1}
\end{equation*}
$$

is a rational and not a transcendental function of \boldsymbol{z}, so that Theorem 1 of my paper cannot be applied. The value of s follows from (l) on putting $z=\frac{1-\sqrt{5}}{2}$.

Hence the following changes have to be made in [2].
On p. 390, lines 7 and 10, the case $k=1$ must each time be excluded, and in Theorem 2 the two numbers r and s may not be both be 0 .

Received 11 February 1976.

References

[1] I.J. Good, "A reciprocal series of Fibonacci numbers", Fibonacci Quart. 12 (1974), 346.
[2] Kurt Mahler, "On the transcendency of a special class of functional equations", Bull. Austral. Math. Soc. 13 (1975), 389-410.

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.

