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Oscillation theorems for
semilinear hyperbolic and
ultrahyperbolic operators

Mamoru Narita

The oscillation property of the semilinear hyperbolic or ultra-

hyperbolic operator I defined by

m
3 Ju
Llul =Au- Y —[a..(x,y)-—-—)+f(x,y,u)
x i.3=1 ayi 1d ayj

is studied. Sufficient conditions are provided for all solutions
of uL{u] £ 0 satisfying certain boundary conditions to be
oscillatory. The basis of our results is the non-existence of

positive solutions of the associated differential inegualities.

Oscillation criteria for linear hyperbolic differential equations have
been obtained by Kahane [1], Kreith [2, 3], Pagan {71, Travis [§], and
Young [9]. More recently, the author and Yoshida [5] established
oscillation theorems for linear ultrahyperbolic operators. The purpose of
this paper is to study the oscillation property of a class of nonlinear
hyperbolic or ultrahyperbolic equations and inequalities. Use is made of
some of the techniques and results developed by Naito and Yoshida [4] and
Noussair and Swanson [6].

Let x = @rl, cees xn) and Yy = (yl, cees y”) denote points in 7

and 4 , respectively. Let H be an unbounded domain in -4 defined by
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H={x=(xl, ...,xn) :O<xi<°°,i =1, ..., n} ,

and let G be a bounded domain in Rm with piecewise smooth boundary.

The partial differential operator to be considered in this paper is

m
- 9 du
Llul =Au- Y 2=la..(x,y) —) + flx, y, u) ,
x i1 ayi i Byj
32 3?2
where A denotes the laplacian in R? 3 that is, A = — 4+ ... + — .
x x 2 2
Bxl 3:1:”

The coefficients aij(x, y) are real-valued functions of class Cl(H x G),

(2, §=1, ..., m) , and flx, y, E) is a real-valued function of class
CO H X G x Rl) . The matrix (aij) is assumed to be symmetric and

positive definite in H X G . The domain DL of L 1is the set of all

real-valued functions of class 02(H X G) n Cl(H X G)

For each u € D, we define the function glz) vy

(1) glz) = 1 jG ula, Py, |k = JG %)

LEMMA 1. Assume that:

(2} flz, y, &) = plz) (&) for all (=z, y) € # x G and for all
£ >0, where p 1is continuous and non-negative in H and

¢ <8 continuous, non-negative, and convex itn (0, ®) ;
(ii) ulx, y) € D, 18 a postitive solution of the inequality

Llul =0 in H x G and satisfies the boundary condition
u=0 on HX23G.

Then the function g(x) given by (1) satisfies the differential inequality

(2) Axg+p(x)¢(g)50,x€H.

Proof. Since Axg(:c) = —t—[ Audy , it follows from Green's formula
G

that
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1 g P qu 1
Aglx) == —[a..(x,y)——)dy-—f flz, y, uldy
7 klgi.3a ayi %] Byj Klg
1 J du 1[
== w dt - = flx, y, uldy ,
K Jyg v kK lg
3 s 3
where I = .ZL_ aij(x, y)vi ng s V= (vl, ceey vm) being the unit
1,J=1 J
exterior normal vector to 3G , and T denotes the measure on 3G . 1In
view of the fact that #u >0 in X G and u =0 on H x 3G , %% must

be non-positive. Therefore, using hypothesis (Z) and Jensen's inequality

applied to ¢(u) over ¢ , we get

b6) = - BEL [ gty
G

IA

-p(x)¢[% JG e, y)dy:} ,

which is the desired inequality (2).

We shall use the notation
Hr=Hn{x€Rn: |z| >»} , »>0 .

DEFINITION. A function u(x, y) € DL which satisfies

(3) wLlul =0 in B xG and u=0 on H x 3G
is said to be oseillatory in H x G if it has a zero in H, x G for every
r>0.

PROPOSITION 1. Every solution of (3) is osecillatory in H x G if in
addition to hypothesis (i) of Lemma 1 the following conditions are
satisfied:

(1) flz, y, ~&) = -flx, y, &) for all (x, y) € H x ¢ and for
all & >0 ;

(ii) the differential inequality (2) has no solution which is
positive in H, for any »r >0 .

Proof. Suppose to the contrary that there exists a solution u(zx, y)
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of (3) which has no zero in H, X G for some r' >0 . If u>0 in

H

o1 X G, then Llul= 0 in H, x G , and by Lemma 1, the function g(x)

defined by (1) is a positive solution of (2) in H_, , contradicting the
hypothesis (7).

Likewise, u cannot be negative in Hr' X G , or else -u would be a
positive solution of {3).

In the case when 7 =1 , the operator L reduces to a hyperbolic

operator and the inequality (2) becomes the ordinary differential

inequality
d2
(4) ;g-+p(x)¢(g)50, £>0 .

Sufficient conditions for the non-existence of eventually positive
solutions of (4) have recently been established by Naito and Yoshida [4]
and Noussair and Swanson [6]. Here we present an oscillation criterion for
the semilinear hyperbolic operator I (n = 1) which follows from

Proposition 1 combined with a result of [4, Theorem 2.1].
THEOREM 1. Assume that the following conditions ave satisfied:

(1) flz, y, &) = plx)d(E) for all (zx, y) € (0, ®) x ¢ and
for all & >0 , where p 1is continuous and non-negative

v

in (0, ) and ¢ is continuous, non-negative, and

convex in (0, ®) ;

(11) A=z, y, -E) = -flz, y, &) for all (=z, y) € (0, ») x @G
and for all & > 0 ;

(III) there exist positive continuous functions ¢ and ¢, in
(0, ®) such that
(Z) o(g) = ¢l(£)¢2(£) for all € >0 ,
(i1) N is non-increasing and ¢, is non-decreasing for

all € >0,

d
(ii1) r—%—)—<w for gome € >0 ,
EZ¢2E
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(iv) r Ep(€)¢l(k£)d£ = forall k>0.

Then every solution of (3) (n =1) <is oscillatory in (0, =) x G .

COROLLARY 1. Comsider the semilinear hyperbolic equation

82 m 32
(5) —2-- Y —7'£+c(:c)uY =0,
ox =1 ayi

where e(x) is a non-negative contimuous fumction in (0, ®) and v > 1
is the quotient of odd integers. Every solution u of (5) satisfying the
boundary condition u =0 on (0, ©») x 3G is oseillatory in (0, =) x ¢

if
r ze(x)de = »

Next we consider the case n = 2 . Letting (r, 0) denote hyper-
spherical coordinates for R? , H can be rewritten as
H={(r,8) :0<r<wo, 9 €0} ,
where © 1is the domain defined by
o=1{8=1(e

., 8 :0<67:<1r/2,1'.=l,...,n-1}.

1* n—l)

The following notation will be used:

s =lzx € :|z| =7} ,

r

H(r) =HnS,,

His, t) ={x € H : 8 < |x| <t} .

The measure on Sr and Sl will be denoted by ¢ and w , respectively.

The unit exterior normal vector to 0H will be denoted by n .
Associated with every function wu € DL , we define a function h(r)

in (0, ®) by the equation

(6) Mﬂ=%L“gm&,
r r

where g(z) is the function given by (1) and o, denotes the area of
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H(r) .

By employing the technique of Noussair and Swanson [6], we obtain the
following principal tool.

LEMMA 2. Assume that the hypotheses (i) and (ii) of Lemma 1 hold
and, moreover, that

(i) plz) =z q(lx|) in H, for gome 1y >0, where q is
0

continuous and non-negative in [r,, =) ;
(1) gﬁz 0 on 03H, , where g is given by (1).
0

Then the function h(r) defined by (6) satisfies the ordinary differential
inequality

Al
(7) % [rn-l %J + 2" g(m)e(n) 0, p= ry .

Proof. Green's formula yields the integral identity

3 n-1 )
(8) f Adx=J 4o - p f 29 gy
Bz sr) 27 B(r) °F 0 gy %7
r d
+[ do[ % (o, o)an
r 0
0
for any r = I'O , where U denotes the measure on 90 . Since the

following identities hold,

£, (ro e

JH(r) Ax_qdo R

£, Ee) - gfg
dr H(I’) or 1 dr df’} >

where W, denotes the area of H(1) , differentiating (8) with respect to

r and using condition (7Z7), we obtain

(9) g

A gdo =2 w, -
JH(I,) 29’ 1 dr dr

On the other hand, applying Jensen's inequality to ¢{(g) over H(r) and

https://doi.org/10.1017/50004972700007802 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700007802

Oscillation theorems 61

using condition (%), we find

(10) w7 lg(r)e(h) < J pd(g)do .

1 q(r)

The conclusion (7) now follows from Lemma 1, (9), and (10). This completes

the proof.

PROPOSITION 2. Let the following conditions hold.

(2) flx, y, €) = ql |z|)e(E) in H, xGx (0, ») for some ry >0,
0

where q 1is continuous and nom-negative in [r,, =) and ¢ is
continuous, non-negative, and convex in (0, «) ,
(ti) Az, y, =£) = -flzx, y, &) for all (x, y) € H, %G and for
0
all £ >0 .
(ii2) The ordinary differential inequality (T) has no positive

solution in [r, ©) for any r = ry -

Then every solution u of (3) which satisfies

(11) g—g - Mz, yJu=0

on aHr X G 18 ogcillatory in H x G , where Mz, y) 18 a non-negative
0

continuwous function on Mr x G .
0

Proof. If u is a solution of (3) which satisfies (11) and is

positive in H, X G for some r, z r, , then ve find from (1) ana (11)
1

l,

Jr Ma, yludy = 0 .
G

that

dy

i

N
s
sl

i
Al

Define the function #h{r) by (6). Then, proceeding as in the proof of
Proposition 1 and using Lemma 2, we can show that h(r) is a positive

solution of (7) in [rl, ®) . But this is a contradiction.
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The above proposition together with the results of Naito and Yoshida
(4, Theorems 2.1 and 2.4] yields the following oscillation criteria for the

semilinear ultrahyperbolic operator L .
THEOREM 2. Let n =2 and assume that:
(i) the hypotheses (i) and (ii) of Propoeition 2 are satisfied;
(i1) there exist positive continuous functions ¢, and ¢, in

(0, ©) s8uch that (i), (ii), and (iii) of Theorem 1 (III)
hold, and

J E(1og F,)q(E)¢l(k log E)& == for all k>0 .

Then every solution of (3) satisfying (11) is oseillatory in Hx G .
THEOREM 3. Let n= 3 and suppose that:
(i) the hypotheses (1) and (ii) of Proposition 2 are satisfied;
(i1) there exist positive continuous functions ¢l, ¢2, ¢>3 s, and
9, in (0, ®) such that

¢(g) 2 ¢,(E)9,(E) for all & >0,

¢, 18 non-increasing and ¢, 18 non-decreasing for all & > 0 ,

0,(E0) 2 ¢,(8)8)(2) for all &, T such that 0 <& <1/t

< o for gome € >0,
E¢3%£)

r s”’lq(mh[ﬂ]da =

"2
Then every solution of (3) satisfying (11) is oscillatory in H X G .
COROLLARY 2. cConsider the semilinear ultrahyperboliec equation

2

™=
Iw

(12)

n

m .2
“L_ 3y 3—g—+c(|x|)uY=0
1 9x. j=1 Byj

(3

Y

where ¢ 1is a non-negative contimuous function in (0, ©) and v > 1 <s
the quotient of odd integers. Every solution u of (12) satisfying (11)
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and u =0 on Hx 3G is oscillatory in Hx G 1if

r \pn(r)c(r)dr = ,

where
r log r if n=2,
b, (r) =
rn-l+y(2-n) if nz 3.
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