LINEAR RELATIONS BETWEEN FOURIER COEFFICIENTS OF SPECIAL SIEGEL MODULAR FORMS

WINFRIED KOHNEN

Abstract

In this paper we give certain linear relations between the Fourier coefficients of Siegel modular forms that are obtained from Ikeda lifts.

§1. Introduction

Let n and k be positive integers with $n \equiv k \quad(\bmod 2)$. In [5], T. Ikeda constructed a lifting map which associates to a cuspidal Hecke eigenform f of weight $2 k$ with respect to $\Gamma_{1}:=S L_{2}(\mathbf{Z})$ a cuspidal Hecke eigenform F of weight $k+n$ with respect to the Siegel modular group $\Gamma_{2 n}:=S p_{2 n}(\mathbf{Z}) \subset$ $G L_{4 n}(\mathbf{Z})$ of genus $2 n$. By Ikeda's construction, the Fourier coefficients of F are given in terms of (essentially) squarefree Fourier coefficients of modular forms of half-integral weight and products of special values of modified local singular series polynomials.

The existence of this lifting, in terms of a relation between associated zeta functions, was previously conjectured by Duke-Imamoglu and independently by Ibukiyama, in a somewhat different form.

If $n=1$, the lift comes down to the classical Saito-Kurokawa lift.
In [10], we gave a linear version of Ikeda's lifting map, as a linear map from half-integral weight modular forms to Siegel modular forms of genus $2 n$. If $n=1$, one recovers a formula given by Eichler-Zagier [4] for the Fourier coefficients of the Saito-Kurokawa lifting in terms of the Fourier coefficients of half-integral weight modular forms.

In the classical case $n=1$, as is well-known the space generated by the lifted forms F has a nice description in terms of certain linear relations between Fourier coefficients ("Maass space"), cf. e.g. [4, sect. 6, formula (9)].

[^0]Let T be a positive definite, half-integral, symmetric matrix of size $2 n$ and denote by $D_{T}:=(-1)^{n} \operatorname{det}(2 T)$ its discriminant. The aim of this paper is to show that also in the case $n>1$ there exist linear relations of a similar kind between certain of the Fourier coefficients $a(T)$ of F, for all F, at least if $n \not \equiv 2 \quad(\bmod 4)$. Indeed, this follows from the linear description of Ikeda's lifting map in terms of the coefficients $c(m)(m \in \mathbf{N})$ of halfintegral weight modular forms given in [10], together with the fact the $c(m)$ often can already be recovered from the $a(T)$ for very special T. However, contrary to the case $n=1$ it is hard to imagine that for general $n>1$ these relations can be used to give a linear characterization of the space generated by the F.

In Section 3, we state Ikeda's lifting result and the linear version of it given in [10] in detail, after having recalled several preliminaries in Section 2. In Section 4 we explicitly state the linear relations addressed above in the case $n \equiv 1 \quad(\bmod 4)$ and give a detailled proof. Section 5 contains some remarks in the other cases $n \not \equiv 1 \quad(\bmod 4)$.

Acknowledgements. The author would like to thank the referee for a very useful suggestion.

§2. Preliminaries

We will recall several facts about local singular series polynomials. As references, the reader may consult $[1,6,7]$. We will also recall the definition of a certain number-theoretic function which enters into the formulas for the Ikeda lifting given in [10].

Let $T \in M_{m}(\mathbf{Q})$ be a rational, symmetric, non-degenerate, half-integral matrix of size m.

If m is even, we denote by

$$
D_{T}:=(-1)^{\frac{m}{2}} \operatorname{det}(2 T)
$$

the discriminant of T. Then $D_{T} \equiv 0,1 \quad(\bmod 4)$ and we write $D_{T}=$ $D_{T, 0} f_{T}^{2}$ with $D_{T, 0}$ the corresponding fundamental discriminant and $f_{T} \in \mathbf{N}$.

Let us fix a prime p. Recall that one defines the local singular series of T at p by

$$
b_{p}(T ; s):=\sum_{R} \nu_{p}(R)^{-s} \mathrm{e}_{p}(\operatorname{tr}(T R)) \quad(s \in \mathbf{C})
$$

where R runs over all symmetric (m, m)-matrices with entries in $\mathbf{Q}_{p} / \mathbf{Z}_{p}$ and $\nu_{p}(R)$ is a power of p equal to the product of denominators of elementary
divisors of R. Furthermore, for $x \in \mathbf{Q}_{p}$ we have put $\mathrm{e}_{p}(x):=e^{2 \pi i x^{\prime}}$ where x^{\prime} denotes the fractional part of x.

As is well-known, $b_{p}(T ; s)$ is a product of two polynomials in p^{-s} with coefficients in Z. More precisely, one has

$$
b_{p}(T ; s)=\gamma_{p}\left(T ; p^{-s}\right) F_{p}\left(T ; p^{-s}\right)
$$

where
$\gamma_{p}(T ; X):= \begin{cases}(1-X)\left(1-\left(\frac{D_{T, 0}}{p}\right) p^{m / 2} X\right)^{-1} \prod_{j=1}^{m / 2}\left(1-p^{2 j} X^{2}\right), & \text { if } m \text { is even } \\ (1-X) \prod_{j=1}^{(m-1) / 2}\left(1-p^{2 j} X^{2}\right), & \text { if } m \text { is odd }\end{cases}$
and $F_{p}(T ; X) \in \mathbf{Z}[X]$ has constant term 1.
In the following we will suppose that $m=2 n$ is even. A fundamental result of Katsurada [6] then states that the Laurent polynomial

$$
\begin{equation*}
\tilde{F}_{p}(T ; X):=X^{-\operatorname{ord}_{p} f_{T}} F_{p}\left(T ; p^{-n-1 / 2} X\right) \tag{1}
\end{equation*}
$$

is symmetric, i.e.

$$
\tilde{F}_{p}(T ; X)=\tilde{F}_{p}\left(T ; X^{-1}\right)
$$

(There is also a corresponding functional equation if T is of odd size, but we won't need it. For the functional equation cf. also [2].)

If p does not divide f_{T}, then $F_{p}(T ; X)=\tilde{F}_{p}(T ; X)=1$.
Denote by $V=\left(\mathbf{F}_{p}^{2 n}, q\right)$ the quadratic space over \mathbf{F}_{p} where q is the quadratic form obtained from the quadratic form $x \mapsto T[x]\left(x \in \mathbf{Z}_{p}^{2 n}\right)$ by reducing modulo p. (For matrices A and B of appropriate sizes over a commutative ring we put $A[B]:=B^{t} A B$ as usual.)

Let $R(V)$ be the radical of V, put $s_{p}:=\operatorname{dim} R(V)$ and denote by W an orthogonal complementary subspace of $R(V)$.

According to [7], one defines a polynomial by

$$
\begin{aligned}
& H_{n, p}(T ; X) \\
& \quad:= \begin{cases}1 & \text { if } s_{p}=0 \\
\prod_{j=1}^{\left[\frac{s_{p}-1}{2}\right]}\left(1-p^{2 j-1} X^{2}\right) & \text { if } s_{p}>0, s_{p} \text { odd } \\
\left(1+\lambda_{p}(T) p^{\frac{s_{p}-1}{2}} X\right) \prod_{j=1}^{\left[\frac{s_{p}-1}{2}\right]}\left(1-p^{2 j-1} X^{2}\right) & \text { if } s_{p}>0, s_{p} \text { even }\end{cases}
\end{aligned}
$$

where for s_{p} even we have put

$$
\lambda_{p}(T):= \begin{cases}1 & \text { if } W \text { is a hyperbolic subspace or } s_{p}=2 n \\ -1 & \text { otherwise }\end{cases}
$$

For $\mu \in \mathbf{Z}, \mu \geq 0$ define $\rho_{T}\left(p^{\mu}\right)$ by

$$
\sum_{\mu \geq 0} \rho_{T}\left(p^{\mu}\right) X^{\mu}:= \begin{cases}\left(1-X^{2}\right) H_{n, p}(T ; X), & \text { if } p \mid f_{T} \\ 1, & \text { otherwise }\end{cases}
$$

We extend the function ρ_{T} multiplicatively to the whole of \mathbf{N} by defining

$$
\sum_{a \geq 1} \rho_{T}(a) a^{-s}:=\prod_{p \mid f_{T}}\left(\left(1-p^{-2 s}\right) H_{n, p}\left(T ; p^{-s}\right)\right)
$$

It follows from the definitions that $\sqrt{a} \rho_{T}(a)$ is an integer.
Finally, let

$$
\mathcal{D}(T):=G L_{2 n}(\mathbf{Z}) \backslash\left\{G \in M_{2 n}(\mathbf{Z}) \cap G L_{2 n}(\mathbf{Q}) \mid T\left[G^{-1}\right] \text { half-integral }\right\}
$$

where $G L_{2 n}(\mathbf{Z})$ operates by left-multiplication. Then $\mathcal{D}(T)$ is finite as is easy to see. For $a \in \mathbf{N}$ with $a \mid f_{T}$ put

$$
\begin{equation*}
\phi(a ; T):=\sqrt{a} \sum_{d^{2} \mid a} \sum_{G \in \mathcal{D}(T),|\operatorname{det}(G)|=d} \rho_{T\left[G^{-1}\right]}\left(\frac{a}{d^{2}}\right) . \tag{2}
\end{equation*}
$$

Note that on the right hand side of (2) we have $\left.\frac{a}{d^{2}} \right\rvert\, f_{T\left[G^{-1}\right]}$ and that $\phi(a ; T) \in$ \mathbf{Z} for all a.

§3. Lifting maps

Let f be a normalized cuspidal Hecke eigenform of even integral weight $2 k$ with respect to Γ_{1}. For a prime p, let $\lambda(p)$ and α_{p} be the p-th Fourier coefficient and the Satake p-parameter of f, respectively. Thus

$$
1-\lambda(p) X+p^{2 k-1} X^{2}=\left(1-p^{k-1 / 2} \alpha_{p} X\right)\left(1-p^{k-1 / 2} \alpha_{p}^{-1} X\right)
$$

Note that α_{p} is determined only up to inversion.
Let

$$
g=\sum_{m \geq 1,(-1)^{k} m \equiv 0,1} c(m) e^{2 \pi i m z} \quad(z \in \mathcal{H}=\text { upper half-plane })
$$

be a cuspidal Hecke eigenform of weight $k+\frac{1}{2}$ and level 4 contained in the "plus" space which corresponds to f under the Shimura correspondence [9,12].

Let $n \in \mathbf{N}$ with $n \equiv k \quad(\bmod 2)$. For T a positive definite, symmetric, half-integral matrix of size $2 n$ define

$$
\begin{equation*}
a_{f}(T):=c\left(\left|D_{T, 0}\right|\right) f_{T}^{k-1 / 2} \prod_{p \mid f_{T}} \tilde{F}_{p}\left(T ; \alpha_{p}\right) \tag{3}
\end{equation*}
$$

where we have used the notation explained in Section 2. Note that for n and k of the same parity $(-1)^{k} D_{T, 0}>0$.

Theorem [5]. The function

$$
\begin{aligned}
& F(Z):=\sum_{T>0} a_{f}(T) e^{2 \pi i \operatorname{tr}(T Z)} \\
& \quad\left(Z \in \mathcal{H}_{2 n}=\text { Siegel upper half-space of genus } 2 n\right),
\end{aligned}
$$

where T runs over all positive definite, symmetric, half-integral matrices of size $2 n$, is a cuspidal Siegel-Hecke eigenform of weight $k+n$ with respect to $\Gamma_{2 n}$.

Theorem [10]. With the notation of Section 2, one has

$$
\begin{equation*}
a_{f}(T)=\sum_{a \mid f_{T}} a^{k-1} \phi(a ; T) c\left(\frac{\left|D_{T}\right|}{a^{2}}\right) \tag{4}
\end{equation*}
$$

§4. Linear relations

We keep all notations of the preceding sections.
If T_{1} and T_{2} are quadratic matrices over a commutative ring, we write $T_{1} \oplus T_{2}$ for the diagonal block matrix $\left(\begin{array}{cc}T_{1} & 0 \\ 0 & T_{2}\end{array}\right)$.

Let $n \in \mathbf{N}$ with $n \equiv 1 \quad(\bmod 4)$. Let T_{0} be a positive definite, integral, even, symmetric, unimodular matrix of size $2 n-2$. (Note that $2 n-2 \equiv 0$ $(\bmod 8)$; for example, one can take for T_{0} the matrix of $\frac{n-1}{4}$ copies of the standard E_{8}-lattice.)

For $m \in \mathbf{N}$ with $m \equiv 0,3(\bmod 4)$, let \mathcal{T}_{m} be any positive definite, half-integral, symmetric (2,2)-matrix of discriminant $-m$ whose associated quadratic form represents the number 1. Note that for given m all such forms are equivalent; for \mathcal{T}_{m} one can take for example $\left(\begin{array}{cc}\frac{m}{4} & 0 \\ 0 & 1\end{array}\right)$ or
$\left(\begin{array}{cc}\frac{m+1}{4} & 1 / 2 \\ 1 / 2 & 1\end{array}\right)$ according as $m \equiv 0 \quad(\bmod 4)$ or $m \equiv 3 \quad(\bmod 4)$, respectively.

Theorem. Let $n, k \in \mathbf{N}$ with $n \equiv k \quad(\bmod 2)$. Suppose that $n \equiv 1$ $(\bmod 4)$. Let f be a normalized cuspidal Hecke eigenform of weight $2 k$ with respect to Γ_{1}. Then with the above notation, for each positive definite, symmetric, half-integral matrix T of size $2 n$ the Fourier coefficients of the Ikeda lift F of f given by (3) satisfy the linear relation

$$
a_{f}(T)=\sum_{a \mid f_{T}} a^{k-1} \phi(a ; T) a_{f}\left(\mathcal{T}_{\left|D_{T}\right| / a^{2}} \oplus \frac{1}{2} T_{0}\right)
$$

Proof. Note that by our assumption $D_{T}<0$. In view of (4), it is sufficient to prove that

$$
\begin{equation*}
a_{f}\left(\mathcal{T}_{m} \oplus \frac{1}{2} T_{0}\right)=c(m) \tag{5}
\end{equation*}
$$

for all $m \in \mathbf{N}$ with $m \equiv 0,3 \quad(\bmod 4)$.
We first claim that

$$
\begin{equation*}
\tilde{F}_{p}\left(\mathcal{T} \oplus \frac{1}{2} T_{0} ; X\right)=\tilde{F}_{p}(\mathcal{T} ; X) \tag{6}
\end{equation*}
$$

for any rational, symmetric, non-degenerate, half-integral matrix \mathcal{T} and all p, where for our purposes it is sufficient to prove (6) only for \mathcal{T} of even rank, say $2 r$.

Indeed, for fixed p let L and U be the lattices over \mathbf{Z}_{p} corresponding to \mathcal{T} and $\frac{1}{2} T_{0}$, respectively. Then U is an even unimodular hyperbolic lattice. The set $\mathcal{D}_{p}(\mathcal{T})$ (defined in the same way as $\mathcal{D}(\mathcal{T})$ in Section 3 , but with \mathbf{Z} replaced by \mathbf{Z}_{p}) can be identified with the set of isomorphism classes of \mathbf{Z}_{p}-integral lattices $\tilde{L} \subset L \otimes \mathbf{Q}_{p}$ containing L, and as is well-known the map from $\mathcal{D}_{p}(\mathcal{T})$ to $\mathcal{D}_{p}\left(\mathcal{T} \oplus \frac{1}{2} T_{0}\right)$ induced by $\tilde{L} \mapsto \tilde{L} \oplus U$ is a bijection. In fact, the surjectivity is a consequence of Propos. 5.2 .2 in [8] and the injectivity follows from Lemma 5.3 .1 in [8] (cf. also [11; 82:15, 92:3 and 93.14a]).

On the other hand, by [7, Thm. 2] (compare also [9, Propos. 1]) one has the identity

$$
\begin{aligned}
& \tilde{F}_{p}(\mathcal{T} ; X)= \\
& \quad X^{-\operatorname{ord}_{p} f_{\mathcal{T}}} \sum_{G \in \mathcal{D}_{p}(\mathcal{T})} X^{2 \operatorname{ord}_{p}|\operatorname{det} G|} \cdot\left(1-\left(\frac{D_{\mathcal{T}, 0}}{p}\right) p^{-\frac{1}{2}} X\right) \cdot H_{r, p}\left(\mathcal{T}\left[G^{-1}\right] ; X\right)
\end{aligned}
$$

Hence (6) follows.
From (6), in particular we obtain that

$$
\tilde{F}_{p}\left(\mathcal{T}_{m} \oplus \frac{1}{2} T_{0} ; X\right)=\tilde{F}_{p}\left(\mathcal{T}_{m} ; X\right)
$$

Thus by (3), the proof of (5) is reduced to the case $n=1$, i.e. to showing that

$$
\begin{equation*}
a_{f}\left(\mathcal{T}_{m}\right)=c(m) \tag{7}
\end{equation*}
$$

for all m. This, however, is the situation of the Maass space and (7), of course, is well-known (cf. $[4 ; 5$, sect. $16 ; 9$, sect. 6]). Note that (6) also follows easily from certain recursion formulas for the local singular series polynomials given in [6], cf. in particular [6; Thm. 2.6 (1), proof of Thm. 4.1 and p. 418].

§5. Complements

Suppose that $n \equiv 0(\bmod 4)$ and let T_{0} now be a positive definite, integral, even, symmetric, unimodular matrix of size $2 n-8$. Then one can show in a similar way as above that

$$
a_{f}\left(\mathcal{S}_{m} \oplus \frac{1}{2} T_{0}\right)=c(m) \quad(m \equiv 0,1 \quad(\bmod 4))
$$

where

$$
2 \mathcal{S}_{m}=\left(\begin{array}{cccccccc}
2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{m}{2}
\end{array}\right)
$$

if $m \equiv 0 \quad(\bmod 4)$ and

$$
2 \mathcal{S}_{m}=\left(\begin{array}{cccccccc}
2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & \frac{m+3}{2}
\end{array}\right)
$$

if $m \equiv 1 \quad(\bmod 4)$, respectively. We leave the details to the reader.
Note that the lattice attached to $2 \mathcal{S}_{4}$ is just the E_{8}-lattice and that the matrices \mathcal{S}_{m} are simple analogues in the case of rank 8 of the special matrices $\left(\begin{array}{cc}\frac{m^{\prime}}{4} & 0 \\ 0 & 1\end{array}\right)$ etc. $\left(m^{\prime} \equiv 0,3 \quad(\bmod 4)\right)$ of Section 4.

Thus from (4) we again obtain certain linear relations among the Fourier coefficients $a_{f}(T)$.

To proceed in the general case in a similar way, for each $m \in \mathbf{N}$ with $(-1)^{n} m \equiv 0,1 \quad(\bmod 4)$ one would like to find a positive definite, symmetric, half-integral matrix R_{m} of size $2 n$ which satisfies the following condition:
i) if $m \equiv 0(\bmod 4)$, then

$$
R_{m} \sim(-1)^{n-1} u_{p}\left(\begin{array}{cc}
(-1)^{n-1} m / 4 & 0 \\
0 & 1
\end{array}\right) \oplus\left(\begin{array}{cc}
0 & 1 / 2 \\
1 / 2 & 0
\end{array}\right)^{\oplus(n-1)}
$$

with some $u_{p} \in \mathbf{Z}_{p}^{*}$ for all primes p;
ii) if $(-1)^{n} m \equiv 1 \quad(\bmod 4)$, then

$$
R_{m} \sim(-1)^{n-1} u_{p}\left(\begin{array}{cc}
\left((-1)^{n-1} m+1\right) / 4 & 1 / 2 \\
1 / 2 & 1
\end{array}\right) \oplus\left(\begin{array}{cc}
0 & 1 / 2 \\
1 / 2 & 0
\end{array}\right)^{\oplus(n-1)}
$$

with some $u_{p} \in \mathbf{Z}_{p}^{*}$ for all primes p. Here \sim means equivalence over \mathbf{Z}_{p}.
One can construct such an R_{m} at least unless $n \equiv 2 \quad(\bmod 4)$ and m is a perfect square. Indeed, denote by $(,)_{p}$ the Hilbert symbol relative to \mathbf{Q}_{p}. Clearly the Hasse invariant of the quadratic form $Q_{m, p}$ over \mathbf{Z}_{p} defined by the right-hand side of i) resp. ii) is equal to

$$
\begin{aligned}
c_{p}\left(Q_{m, p}\right) & =(-1,-1)_{p}^{n(n-1) / 2}\left(u_{p},(-1)^{n} m\right)_{p} \\
& = \begin{cases}\left(u_{p},(-1)^{n} m\right)_{p}, & \text { if } p>2 \\
(-1)^{n(n-1) / 2}\left(u_{p},(-1)^{n} m\right)_{p} & \text { if } p=2\end{cases}
\end{aligned}
$$

Suppose that m is not a square. Then we can choose a prime ℓ such that ord ${ }_{\ell} m$ is odd and $u_{\ell} \in \mathbf{Z}_{\ell}^{*}$ such that

$$
\left(u_{\ell},(-1)^{n} m\right)_{\ell}=(-1)^{n(n-1) / 2}
$$

We put $u_{p}=1$ for $p \neq \ell$. Then $c_{p}\left(Q_{m, p}\right)=1$ for almost all p and

$$
\prod_{p} c_{p}\left(Q_{m, p}\right)=1
$$

Hence the existence of R_{m} follows from [3; chap. 6, Thm. 1.3 and chap. 9, Thm. 1.2].

Similarly, if m is a square and n is odd, then we can find $u_{2} \in \mathbf{Z}_{2}^{*}$ such that

$$
\left(u_{2},-1\right)_{2}=(-1)^{(n-1) / 2}
$$

and put $u_{p}=1$ for $p>2$. Finally, if m is a square and $n \equiv 0(\bmod 4)$, we put $u_{p}=1$ for all p.

References

[1] S. Böcherer, Über die Fourierkoeffizienten der Siegelschen Eisensteinreihen, manuscripta math., 45 (1984), 273-288.
[2] S. Böcherer and W. Kohnen, On the functional equation of singular series, Abh. Math. Sem. Univ. Hamburg, 70 (2000), 281-286.
[3] J.W.S. Cassels, Rational quadratic forms, Academic Press, London New York San Francisco, 1978.
[4] M. Eichler and D. Zagier, The theory of Jacobi forms: Progress in Math., vol. 55, Birkhäuser, Boston, 1985.
[5] T. Ikeda, On the lifting of elliptic modular forms to Siegel cusp forms of degree $2 n$, Ann. Math., 154, no. 3 (2001), 641-681.
[6] H. Katsurada, An explicit form for Siegel series, Amer. J. Math., 121 (1999), 415-452.
[7] Y. Kitaoka, Dirichlet series in the theory of Siegel modular forms, Nagoya Math. J., 95 (1984), 73-84.
[8] Arithmetic of quadratic forms: Cambridge Texts in Math., vol 106, Cambridge Univ. Press, Cambridge, 1999.
[9] W. Kohnen, Modular forms of half-integral weight on $\Gamma_{0}(4)$, Math. Ann., 248 (1980), 249-266.
[10] __, Lifting modular forms of half-integral weight to Siegel modular forms of even genus, Math. Ann., 322 (2002), 787-809.
[11] O.T. O'Meara, Introduction to quadratic forms: Grundl. d. Math. Wiss., vol. 117, Springer, Berlin Heidelberg New York, 1963.
[12] G. Shimura, On modular forms of half-integral weight, Ann. of Math., 97 (1973), 440-481.

```
Universität Heidelberg
Mathematisches Institut
INF 288
D-69120 Heidelberg
Germany
winfried@mathi.uni-heidelberg.de
```


[^0]: Received April 24, 2002.
 2000 Mathematics Subject Classification: 11F03, 11F46.

