CORRECTION TO MY PAPER＂ON THE EXISTENCE OF UNRAMIFIED SEPARABLE INFINITE SOLVABLE
 EXTENSIONS OF FUNCTION FIELDS OVER FINITE FIELDS＇＂IN NAGOYA MATHE－ MATICAL JOURNAL VOL． 13 （1958）

HISASI MORIKAWA

1．1．In the above referred paper we have said that，for the proof of the theorem，it is sufficient to prove lemmas 1 and 2．But it is not correct．A correct proof is given in the followings．

We assume that
$1^{\circ} \quad q \geqslant 11$ ，
$2^{\circ} \quad g_{\kappa}>1$ ，
$3^{\circ} L / K$ is an unramified separable normal extension which is regular over k ，
4°（B）is a subgroup of $J_{L}(, k)$ such that $L(\mathbb{B}) / K$ is normal and $J_{L}(, k) / \mathfrak{G}$ is of type $(\overbrace{l, \ldots, l}^{t})$ ，where l is a prime number，
$5^{\circ} \quad\left[L((3): L]=l^{s} m\right.$ ，where $(l, m)=1$ ．
Instead of lemma 2，we must prove the following lemmas：
Lemma 3．If $G(L(\mathbb{B}) / L)$ is contained in the center of $G(L(\mathbb{B}) / K)$ ，there exists a subgroup ${ }^{(3 \prime}{ }^{\prime}$ in $J_{L}(, k)$ such that i）$L\left(\mathbb{F}^{\prime}\right) / K$ is normal and ii）$[L(\mathbb{B})$ ： $L\left(\left(^{\prime}\right)\right]=l$ ．

Lemma 4．If there exists b in $J_{L(G))}(, k)$ such that $a\left(\varepsilon_{\nu}\right)+\left(\delta_{\left.J_{L(夭)}\right)}-\eta\left(\varepsilon_{\nu}\right)\right)$ $b \in A_{L(\mathbb{G}) / L}(, k)$ for every $\varepsilon_{\nu} \in G(L(\mathbb{B}) / L)$ ，then there exists \mathbb{G}_{1} in $J_{L(\mathbb{G})}(, k)$ such that i）$L(\mathbb{B})\left(\mathfrak{G}_{1}\right) / K$ is normal and ii）$L(\mathbb{B})\left(\mathbb{G}_{1}\right) \equiv \equiv L(\mathbb{B})$ ．

Lemma 5．If $[L(\mathbb{B}): L]=l$ ，there exists b in $J_{L(G)}(, k)$ such that $a(\varepsilon)$ $+\left(\delta_{J_{L(\circlearrowleft)}}-\eta(\varepsilon)\right) b \in A_{L(\circlearrowleft) / L}(, k)$ ，where ε is a generator of $G(L(\mathbb{B}) / L)$ ．

Lemma 6．If $\left[B_{L(G) ; L}(, k):\{0\}\right]$ is not coprime to m ，then there exists \mathfrak{G}_{1} in $J_{L(\mathbb{S})}(, k)$ such that i）$L(\mathbb{B})\left(\mathbb{B}_{1}\right) / K$ is normal and ii）$L(\mathbb{B})\left(\mathbb{B}_{1}\right)$予 $L(\mathbb{C})$ 。

Received July 29， 1958.

Lemma 7. If $\left[B_{L(\mathbb{F}): L}(\quad, k):\{0\}\right]$ is coprime to m and there exists no b in $J_{L(\mathbb{G})}(\quad, k)$ such that $a\left(\varepsilon_{\nu}\right)+\left(\delta_{J_{L(G)}}-\eta\left(\varepsilon_{\nu}\right)\right) b \in A_{L(\mathbb{G}): L L}(, k)$ for every ε_{ν} $\in G(L(\mathbb{G}) / L)$, then there exist subgroups (3' and (S' ${ }^{\prime \prime}$ of $J_{L}(, k)$ such that
 contained in the center of $G\left(L\left(\bigotimes^{\prime}\right) / K\right)$.
2.1. Lemma 3 is clear.

Next we observe a property of $\{a(\sigma)\}$.
Lemma 8. $a\left(\sigma \tau \sigma^{-1}\right)-\eta(\sigma) a(\tau)=a(\sigma)-\eta\left(\sigma \tau \sigma^{-1}\right) a(\sigma)$.
Proof. Since $a(\sigma \tau)=\eta(\sigma) a(\tau)+a(\sigma)$, we have

$$
\begin{aligned}
a\left(\sigma \tau \sigma^{-1}\right)-\eta(\sigma) a(\tau) & =a(\sigma)+\eta(\sigma \tau) a\left(\sigma^{-1}\right) \\
& =a(\sigma)+\eta(\sigma \tau)\left(a(e)-\eta\left(\sigma^{-1}\right) a(\sigma)\right) \\
& =a(\sigma)-\eta\left(\sigma \tau \sigma^{-1}\right) a(\sigma) .
\end{aligned}
$$

2.2. Proof of lemma 4.

By the assumption in the lemma we may assume, after a suitable translation of the origin, that $a\left(\varepsilon_{\nu}\right) \in A_{L(\xi) / L}(\quad, k)$ for every $\varepsilon_{\nu} \in G(L(\xi) / L)$. Then, by virtue of lemma 8 , we observe that

$$
a(\sigma) \in \bigcap_{\varepsilon \nu \in G(L(\Im) / L)}\left(\delta_{J_{L /(}(\Im)}-\eta\left(\varepsilon_{\nu}\right)\right)^{-1}\left(A_{L((\Im) / L}(\quad, k)\right)
$$

We put $\mathbb{B}_{1}=\left(\delta_{J_{L(\mathbb{G})}}-\eta\left(\varepsilon_{\nu}\right)\right)^{-1}\left(A_{L(\mathbb{G}) / L}(\quad, k)\right) \cap J_{L(\mathbb{G})}(\quad, \dot{k})$. Then $\mathfrak{G}_{1}=\eta(\sigma) \mathfrak{G}_{1}$ and $a(\sigma) \in \mathfrak{G}_{1}$ for every σ. Therefore, by virtue of lemma 1 , it is sufficient to prove $\mathbb{G}_{1} \neq J_{L(\oiint)}(, k)$.

The order $\left[\left(\delta_{\left.J_{L(G)}\right)}-\eta\left(\varepsilon_{v}\right)\right)^{-1}\left(A_{L(\mathscr{G}) / L}(, k)\right):\{0\}\right]$ is not greater than

$$
l^{\left.2\left(g_{L(\circlearrowleft)}\right)-g_{L}\right) / l-1}\left[J_{L}(\quad, k): 0\right]
$$

On the other hand $\left[J_{L(\mathbb{G})}(, k):\{0\}\right]=\left[B_{L(()) / L}(, k):\{0\}\right]\left[J_{L}(, k):\{0\}\right]$
 proof of lemma 2, $(q-2 \sqrt{ } q+1)^{l-1}>l^{2}$. Hence $\left[\left(\delta_{J_{L(\mathbb{O})}}-\eta\left(\varepsilon_{\nu}\right)^{-1}\left(A_{L(\mathcal{S}) / L}(, k)\right.\right.\right.$: $\{0\}]_{\ddagger}\left[J_{L(\oiint)}(, k):\{0\}\right]$. This shows that $\mathscr{G}_{1} \neq J_{L_{(}(\Im)}(, k)$.
2.3. In order to prove lemma 5 , we prove the following lemma:

Lemma 9. If $L(\mathbb{S}) / L$ is cyclic, then

$$
\left(\delta_{J_{L}(\xi)}-\eta(\varepsilon)\right) J_{L((\xi))}(\quad, k)=B_{L((\xi) / L}(\quad, k)
$$

Proof．Let b be a point in ${ }^{2}\left(\delta_{J_{L /(}(\xi)}-\eta(\varepsilon)\right)^{-1}(0) \cap J_{L_{1}(\mathcal{G})}(, k)$ and \mathfrak{B} be a divisor of degree zero of $L(\mathfrak{H})$ ．Then $\varphi\left(\mathfrak{B}^{\varepsilon^{-\lambda}}-\mathfrak{B}\right)=\eta\left(\varepsilon^{\nu}\right) \varphi(\mathfrak{B})-\varphi(\mathfrak{B})=0$ ． Therefore there exists a system of elements $\left\{f_{\varepsilon}\right\rangle$ in $L(\mathbb{B})$ such that（ f_{ε} ） $=\mathfrak{B}^{\varepsilon^{\nu}}-\mathfrak{B}$ ．Put $\eta_{\varepsilon \nu,}, \mu=f_{\varepsilon \nu+\mu}\left(f_{\varepsilon \mu}^{\varepsilon \nu}, f_{\varepsilon}^{\nu}\right)^{-1}$ ．Then $\left\{\eta_{\varepsilon \nu}, \varepsilon_{\mu}\right\}$ is a k－valued cocyle． Since k－valued cohomology groups vanish，we may assume that $\left\{f_{\varepsilon} \vee\right\}$ is a $L(\$)$－valued 1 －cocycle．Since $L(\$)$－valued cohomology groups also vanish，we have an element g in $L(\mathbb{B})$ such that $f_{\varepsilon}=g^{\varepsilon-1}$ ．Hence $\left(\mathfrak{B}^{\xi^{-1}}-\mathfrak{B}\right)=\left(g^{\varepsilon-1}\right)^{-1}-(g)$ ． This shows that $\mathfrak{B}-(g)$ is a divisor of degree zero of L ．Hence $b=\varphi(\mathfrak{B})=\varphi(\mathfrak{B}$ －(g) ）belongs to $A_{L(\mathbb{G}) / L}(, k)$ ．Namely $\left(\eta(\varepsilon)-\delta_{J_{L(\mathcal{O})}}\right)^{-1}(0)=A_{L:(豸) / L}(, k)$ ．

On the other hand $J_{L(G)}(, k) / A_{L(\sigma) / L}(, k) \cong B_{L(G): L}(, k)$ ，hence $(\eta(\varepsilon)$ $\left.-\delta_{\left.J_{L(G)}\right)}\right) J_{L(G)}(, k)=B_{L(G) / L}(, k)$ ．

Proof of lemma 5.

We denote by $\rho_{L(\overparen{O}) / L}$ the cotrace mapping of J_{L} into $J_{L(\circlearrowleft)}$ ．Since $\bar{A}_{L(G) / L}$ $(, k) \cong J_{L}(, k), \bar{\pi}_{L(\sigma) / L}\left(J_{L}(, k)\right) / A_{L(G) / L}(, k) \cong G(L(\mathbb{B}) / L)$ ．Hence there exists a point \bar{a} in $\bar{A}_{L(G) / L L}$ such that i）$l \bar{a}=\alpha_{L(G) / L} a(\varepsilon)$ and ii） $\bar{\pi}_{L(G) / L L} \bar{a} \in J_{L}(, k)$ ． Put $a=\rho_{L(\sigma) / L} \bar{\pi}_{L(\sigma) / L} \bar{a}$ ．Then $\alpha_{L /(G) / L} a=l \bar{a}=\alpha_{L(\sigma) / L} a(\varepsilon)$ ．This shows that $a(\varepsilon)$ －a belongs to $B_{L(G) L}(, k)$ ．By virtue of lemma 9，there is a point c in $J_{L(\circledast)}(, k)$ such that $a(\varepsilon)-a=\left(\eta(\varepsilon)-\delta_{\left.J_{L(夭)}\right)}\right) c$ ．Hence $a(\varepsilon)+\left(\delta_{J_{L(\sigma)}}-\eta(\varepsilon)\right)$ $=a \in A_{L(\circledast) / L}(, k)$ ．

2．4．Proof of lemma 6.

Since $\left[G(L((\$) / L):\{e\}]=l^{t}\right.$ ，there exist c_{1} and c_{2} in $J_{L(夭))}(, k)$ such that i）$l^{\lambda} c_{1}=0$ with a λ ，ii）the order of c_{2} is coprime to l and iii）$l^{t} a\left(\varepsilon_{\nu}\right)=\left(\partial_{J_{L(G)}}\right.$ $\left.-\eta\left(\varepsilon_{\nu}\right)\right)\left(l^{t} c_{2}+c_{1}\right)$ for $\varepsilon_{\nu} \in G(L(\mathbb{B}) / L)$ ．This shows that，after a suitable translation of the origin，we may assume that $l^{t+\lambda} a\left(\varepsilon_{\nu}\right)=0$ for every $\varepsilon_{\nu} \in$ $G(L(\mathbb{B}) / L)$ ．

Put $\mathscr{G}_{1}=\left\{a \mid a \in J_{L(\mathbb{B})}(, k), l^{u} a \in A_{L(B) / L}(, k)\right.$ with a $\left.u\right\}$ ．Then $a\left(\varepsilon_{,}\right)$ $\in \mathbb{B}_{1}$ for $\varepsilon_{\nu} \in G(L(B) / L)$ ．On the other hand $G(L(\mathbb{B}) / L)$ is normal in $G(L(\mathbb{B}) / K)$ ，hence by virtue of lemma 8 ，we have

$$
a(\sigma) \in \bigcap_{\varepsilon v \in G(L(\sigma) / L)}\left(\eta(\varepsilon)-\delta_{J L((\mathcal{J})}\right)^{-1}\left(A_{L((\mathcal{F}) / L}(, k)\right) .
$$

On the other hand there exists u such that

$$
\left(l^{u} \delta_{\left.J_{L(\mathcal{G}}\right)}\right)^{-1}\left(A_{L(\xi) / L}(\quad, k) \supset \bigcap_{\varepsilon_{\nu} \in G(L(\xi) / L)}\left(\eta\left(\varepsilon_{\nu}\right)-\delta_{\left.J_{L(G)}\right)}\right)^{-1}\left(A_{L((\xi) / L}(, k)\right) .\right.
$$

This shows that $\mathscr{G}_{1} \in a(\sigma)$. By virtue of the definition of \mathfrak{G}_{1} and the assumption in the lemma, we have $\mathbb{G}_{1}=\eta(\sigma) \mathbb{G}_{1}$ and $\left(\mathfrak{B}_{1} \neq J_{L(G)}(, k)\right.$. Hence by virtue of lemma $1, L(\mathbb{G})\left(\mathbb{G}_{1}\right) / K$ is normal and $L(\mathbb{G})\left(\mathbb{G}_{1}\right) \neq L(\mathbb{B})$.

2.5. Proof of lemma 7.

Let P be the subset of $G(L(\mathbb{G}) / K)$ consisting of all its elements whose order is coprime to l. Then, by the same reason as in the proof of lemma 6, after a suitable translation of the origin, we may assume that $m^{\lambda} a(\sigma)=0$ with a λ for $\sigma \in P$. By virtue of the assumption in the lemma, we have $a(\sigma)$ $\in A_{L((\delta) / L}(, k)$ for $\sigma \in P$.

Let P^{*} be the subgroup generated by P. Then P^{*} is a normal subgroup of $G(L(\mathfrak{G}) / K)$. Since $a(\sigma \tau)=\eta(\sigma) a(\tau)+a(\sigma)$, we observe that $a\left(\sigma^{*}\right) \in A_{L(G) / L}$ $(, k)$ for $\sigma \in P^{*}$. Since $G(L(\mathbb{B}) / L)$ is normal in $G(L(\mathbb{B}) / K), G(L(\mathbb{B}) / L)$ $\cap P^{*}$ is normal in $G(L(\mathbb{G}) / K)$. From the assumption in the lemma $G(L(\mathbb{B}) / L)$ $\equiv G(L(\mathbb{B}) / L) \cap P^{*}$. Let $L\left(\mathbb{B}^{\prime}\right)$ be the subfield corresponding to $P^{*} \cap G(L(\mathbb{B}) / L)$. Put $P^{* *}=P^{*} / G(L(\mathbb{G}) / L) \cap P^{*}$. Then, since $P^{* *} \cap G(L(\mathbb{B}) / L)=\{e\}, P^{* *} G$ $(L(\mathbb{B}) / L)$ is a direct product $P^{* *} \times G(L(\mathbb{B}) / L)$.

On the other hand, we have by virtue of lemma $8, \alpha_{L\left(g^{\prime}\right) / L} a\left(\sigma \varepsilon_{\nu} \sigma^{-1}\right)=\eta(\sigma)$ $\alpha_{L\left(G^{\prime}\right) / L} a\left(\varepsilon_{\nu}\right)$ for $\varepsilon_{\nu} \in G\left(L\left(\mathscr{S}^{\prime}\right) / L\right)$. Since $G\left(L\left(\S^{\prime}\right) / L\right)$ is of type (l, \ldots, l), if we take a base $\left\{\varepsilon_{\mathrm{i}}, \ldots, \varepsilon_{s}\right\}$ of $G(L(\mathbb{S}) / L)$ we get a representation $\{N(\bar{\sigma})\}$ of $G\left(L\left((3)^{\prime}\right) / K\right) / P^{* *}$ in the field with l-elements such that $\left(\alpha_{L\left(G^{\prime}\right) / L} a\left(\varepsilon_{1}\right), \ldots\right.$, $\left.\alpha_{L\left(\sigma^{\prime}\right) / L} a\left(\varepsilon_{S}\right)\right) N(\bar{\sigma})=\left(\eta(\sigma) \alpha_{L\left(\sigma^{\prime}\right) / L} a\left(\varepsilon_{1}\right), \ldots, \overline{\eta(\sigma)} \alpha_{L\left(\sigma^{\prime}\right) / L} a\left(\varepsilon_{S}\right)\right)$, where $\bar{\sigma}$ is the class of σ in $G(L(\mathscr{S}) / K) / P^{* *}$.

Since $G\left(L\left(\left(^{\prime}\right) / K\right) / P^{* *}\right.$ is an l-group, $\{N(\bar{\sigma})\}$ is equivalent to the following representation:

$$
\left\{\left(\begin{array}{ccccc}
1 & & & & \Lambda \sigma \\
& 1 & & & \\
& & \cdot & & \\
0 & & & & \\
& & & & 1
\end{array}\right)\right\}
$$

This shows that there exists a non-trivial subgroup \bar{H} in $\left\{\alpha_{L(\sigma) / L} \boldsymbol{a}\left(\varepsilon_{\nu}\right)\right\}$ which is elementwise fixed by $\eta(\sigma)$. Since $\alpha_{L\left(G^{\prime}\right), L}$ is an onto isomorphism, we have a nontrivial subgroup H which is contained in the center of $G\left(L\left(\mathcal{B}^{\prime}\right) / \cdot K\right)$.

Then, if we denote by $\left(6^{\prime \prime}\right.$ the subgroup of $J_{L}(, k)$ such that $L\left(\mathbb{S}^{\prime \prime}\right)$ corresponds to H, these \mathscr{G}^{\prime} and $\mathscr{B}^{\prime \prime}$ satisfy the conditions in the lemma.

Mathematical Institute
Nagoya University

