CORRECTION TO MY PAPER "ON THE EXISTENCE OF UNRAMIFIED SEPARABLE INFINITE SOLVABLE EXTENSIONS OF FUNCTION FIELDS OVER FINITE FIELDS" IN NAGOYA MATHE-MATICAL JOURNAL VOL. 13 (1958)

HISASI MORIKAWA

1.1. In the above referred paper we have said that, for the proof of the theorem, it is sufficient to prove lemmas 1 and 2. But it is not correct. A correct proof is given in the followings.

We assume that

 $1^{\circ} q \ge 11$,

 $2^{\circ} g_{\kappa} > 1$,

 3° L/K is an unramified separable normal extension which is regular over k,

 4° (S is a subgroup of $J_{L}(, k)$ such that L(S)/K is normal and $J_{L}(, k)/S$ is of type (l, \ldots, l) , where l is a prime number,

5° $[L(\mathfrak{G}): L] = l^{s}m$, where (l, m) = 1.

Instead of lemma 2, we must prove the following lemmas:

LEMMA 3. If $G(L(\mathfrak{G})/L)$ is contained in the center of $G(L(\mathfrak{G})/K)$, there exists a subgroup \mathfrak{G}' in $J_L(\ , k)$ such that i) $L(\mathfrak{G}')/K$ is normal and ii) $[L(\mathfrak{G}): L(\mathfrak{G}')] = l$.

LEMMA 4. If there exists b in $J_{L(\mathfrak{G})}(\ , k)$ such that $a(\varepsilon_{\nu}) + (\delta_{J_{L(\mathfrak{G})}} - \eta(\varepsilon_{\nu}))$ $b \in A_{L(\mathfrak{G})/L}(\ , k)$ for every $\varepsilon_{\nu} \in G(L(\mathfrak{G})/L)$, then there exists \mathfrak{G}_{1} in $J_{L(\mathfrak{G})}(\ , k)$ such that i) $L(\mathfrak{G})(\mathfrak{G}_{1})/K$ is normal and ii) $L(\mathfrak{G})(\mathfrak{G}_{1}) \cong L(\mathfrak{G})$.

LEMMA 5. If $[L(\mathfrak{G}): L] = l$, there exists b in $J_{L(\mathfrak{G})}(\ , k)$ such that $a(\varepsilon) + (\delta_{J_{L(\mathfrak{G})}} - \eta(\varepsilon))b \in A_{L(\mathfrak{G})/L}(\ , k)$, where ε is a generator of $G(L(\mathfrak{G})/L)$.

LEMMA 6. If $[B_{L(\mathfrak{G})/L}(\mathbf{a}, \mathbf{k}): \{0\}]$ is not coprime to m, then there exists \mathfrak{G}_1 in $J_{L(\mathfrak{G})}(\mathbf{a}, \mathbf{k})$ such that i) $L(\mathfrak{G})(\mathfrak{G}_1)/K$ is normal and ii) $L(\mathfrak{G})(\mathfrak{G}_1)$ $\cong L(\mathfrak{G}).$

Received July 29, 1958.

LEMMA 7. If $[B_{L(\mathfrak{G})/L}(\ , k): \{0\}]$ is coprime to m and there exists no bin $J_{L(\mathfrak{G})}(\ , k)$ such that $a(\varepsilon_v) + (\delta_{J_{L}(\mathfrak{G})} - \eta(\varepsilon_v))b \in A_{L(\mathfrak{G})/L}(\ , k)$ for every $\varepsilon_v \in G(L(\mathfrak{G})/L)$, then there exist subgroups \mathfrak{G}' and \mathfrak{G}'' of $J_L(\ , k)$ such that i) $L(\mathfrak{G}')/K$ and $L(\mathfrak{G}'')/K$ are normal, ii) $\mathfrak{G}' \cong \mathfrak{G}''$ and iii) $G(L(\mathfrak{G}')/L(\mathfrak{G}''))$ is contained in the center of $G(L(\mathfrak{G}')/K)$.

2.1. Lemma 3 is clear.

Next we observe a property of $\{a(\sigma)\}$.

LEMMA 8.
$$a(\sigma\tau\sigma^{-1}) - \eta(\sigma)a(\tau) = a(\sigma) - \eta(\sigma\tau\sigma^{-1})a(\sigma).$$

Proof. Since $a(\sigma\tau) = \eta(\sigma)a(\tau) + a(\sigma)$, we have

$$\begin{aligned} a(\sigma\tau\sigma^{-1}) - \eta(\sigma)a(\tau) &= a(\sigma) + \eta(\sigma\tau)a(\sigma^{-1}) \\ &= a(\sigma) + \eta(\sigma\tau) \ (a(e) - \eta(\sigma^{-1})a(\sigma)) \\ &= a(\sigma) - \eta(\sigma\tau\sigma^{-1})a(\sigma). \end{aligned}$$

2.2. Proof of lemma 4.

By the assumption in the lemma we may assume, after a suitable translation of the origin, that $a(\varepsilon_v) \in A_{L(\mathfrak{G})/L}($, k) for every $\varepsilon_v \in G(L(\mathfrak{G})/L)$. Then, by virtue of lemma 8, we observe that

$$a(\sigma) \in \bigcap_{\varepsilon_{\nu} \in G(L(\mathfrak{G})/L)} (\delta_{J_{L}(\mathfrak{G})} - \eta(\varepsilon_{\nu}))^{-1} (A_{L(\mathfrak{G})/L}(\ , k)).$$

We put $\mathfrak{G}_1 = (\delta_{J_{L}(\mathfrak{G})} - \eta(\varepsilon_v))^{-1}(A_{L(\mathfrak{G})/L}(\mathbf{k})) \cap J_{L(\mathfrak{G})}(\mathbf{k})$. Then $\mathfrak{G}_1 = \eta(\sigma)\mathfrak{G}_1$ and $a(\sigma) \in \mathfrak{G}_1$ for every σ . Therefore, by virtue of lemma 1, it is sufficient to prove $\mathfrak{G}_1 \neq J_{L(\mathfrak{G})}(\mathbf{k})$.

The order $[(\delta_{J_L(\mathfrak{G})} - \eta(\varepsilon_v))^{-1}(A_{L(\mathfrak{G})/L}(\ , k)): \{0\}]$ is not greater than $l^{2(g_L(\mathfrak{G})^{-g_L})/l-1}[J_L(\ , k): 0].$

On the other hand $[J_{L(\mathfrak{G})}(\ ,\ k):\ \{0\}] = [B_{L(\mathfrak{G})/L}(\ ,\ k):\ \{0\}] [J_{L}(\ ,\ k):\ \{0\}]$ and $[B_{L(\mathfrak{G})/L}(\ ,\ k):\ \{0\}] \ge (q-2\sqrt{q}+1)^{\mathfrak{G}_{L}(\mathfrak{G})-\mathfrak{G}_{L}}$. By the reason stated in the proof of lemma 2, $(q-2\sqrt{q}+1)^{l-1} > l^2$. Hence $[(\delta_{J_{L}(\mathfrak{G})} - \eta(\varepsilon_{\nu})^{-1}(A_{L(\mathfrak{G})/L}(\ ,\ k)):\ \{0\}] \le [J_{L(\mathfrak{G})}(\ ,\ k):\ \{0\}]$. This shows that $\mathfrak{G}_{1} \ne J_{L(\mathfrak{G})}(\ ,\ k)$.

2.3. In order to prove lemma 5, we prove the following lemma:

LEMMA 9. If $L(\mathfrak{G})/L$ is cyclic, then

$$(\delta_{J_L(\mathfrak{G})} - \eta(\varepsilon)) J_{L(\mathfrak{G})}(-, k) = B_{L(\mathfrak{G})/L}(-, k).$$

Proof. Let b be a point in $(\partial_{J_{L}(\mathfrak{G})} - \eta(\varepsilon))^{-1}(0) \cap J_{L,\mathfrak{G}}(-, k)$ and \mathfrak{B} be a divisor of degree zero of $L(\mathfrak{G})$. Then $\varphi(\mathfrak{B}^{\varepsilon^{-\nu}} - \mathfrak{B}) = \eta(\varepsilon^{\nu})\varphi(\mathfrak{B}) - \varphi(\mathfrak{B}) = 0$. Therefore there exists a system of elements $\{f_{\varepsilon^{\nu}}\}$ in $L(\mathfrak{G})$ such that $(f_{\varepsilon^{\nu}}) = \mathfrak{B}^{\varepsilon^{\nu}} - \mathfrak{B}$. Put $\eta_{\varepsilon^{\nu}, \varepsilon^{\mu}} = f_{\varepsilon^{\nu+\mu}}(f_{\varepsilon^{\mu}}^{\varepsilon^{\nu}}f_{\varepsilon^{\nu}})^{-1}$. Then $\{\eta_{\varepsilon^{\nu}, \varepsilon^{\mu}}\}$ is a k-valued cocyle. Since k-valued cohomology groups vanish, we may assume that $\{f_{\varepsilon^{\nu}}\}$ is a $L(\mathfrak{G})$ -valued 1-cocycle. Since $L(\mathfrak{G})$ -valued cohomology groups also vanish, we have an element g in $L(\mathfrak{G})$ such that $f_{\varepsilon} = g^{\varepsilon^{-1}}$. Hence $(\mathfrak{B}^{\varepsilon^{-1}} - \mathfrak{B}) = (g^{\varepsilon^{-1}})^{-1} - (g)$. This shows that $\mathfrak{B} - (g)$ is a divisor of degree zero of L. Hence $b = \varphi(\mathfrak{B}) = \varphi(\mathfrak{B} - (g))$ belongs to $A_{L(\mathfrak{G})/L}(-, k)$. Namely $(\eta(\varepsilon) - \partial_{J_{L(\mathfrak{G})}})^{-1}(0) = A_{L(\mathfrak{G})/L}(-, k)$.

On the other hand $J_{L(\mathfrak{G})}(-,k)/A_{L(\mathfrak{G})/L}(-,k) \cong B_{L(\mathfrak{G})/L}(-,k)$, hence $(\eta(\varepsilon) - \delta_{J_{L(\mathfrak{G})}})J_{L(\mathfrak{G})}(-,k) = B_{L(\mathfrak{G})/L}(-,k)$.

Proof of lemma 5.

We denote by $\rho_{L(\mathfrak{G})/L}$ the cotrace mapping of J_L into $J_{L(\mathfrak{G})}$. Since $\overline{A}_{L(\mathfrak{G})/L}$ $(, k) \cong J_L(, k)$, $\overline{\pi}_{L(\mathfrak{G})/L}(J_L(, k))/A_{L(\mathfrak{G})/L}(, k) \cong G(L(\mathfrak{G})/L)$. Hence there exists a point \overline{a} in $\overline{A}_{L(\mathfrak{G})/L}$ such that i) $l\overline{a} = \alpha_{L(\mathfrak{G})/L}a(\varepsilon)$ and ii) $\overline{\pi}_{L(\mathfrak{G})/L}\overline{a} \in J_L(, k)$. Put $a = \rho_{L(\mathfrak{G})/L}\overline{\pi}_{L(\mathfrak{G})/L}\overline{a}$. Then $\alpha_{L(\mathfrak{G})/L}a = l\overline{a} = \alpha_{L(\mathfrak{G})/L}a(\varepsilon)$. This shows that $a(\varepsilon)$ -a belongs to $B_{L(\mathfrak{G})L}(, k)$. By virtue of lemma 9, there is a point c in $J_{L(\mathfrak{G})}(, k)$ such that $a(\varepsilon) - a = (\eta(\varepsilon) - \delta_{J_{L(\mathfrak{G})}})c$. Hence $a(\varepsilon) + (\delta_{J_{L(\mathfrak{G})}} - \eta(\varepsilon))$ $= a \in A_{L(\mathfrak{G})/L}(, k)$.

2.4. Proof of lemma 6.

Since $[G(L(\mathfrak{G})/L): \{e\}] = l^t$, there exist c_1 and c_2 in $J_{L(\mathfrak{G})}(\ , k)$ such that i) $l^{\lambda}c_1 = 0$ with a λ , ii) the order of c_2 is coprime to l and iii) $l^t a(\varepsilon_{\nu}) = (\partial_{J_L(\mathfrak{G})} - \eta(\varepsilon_{\nu}))$ $(l^t c_2 + c_1)$ for $\varepsilon_{\nu} \in G(L(\mathfrak{G})/L)$. This shows that, after a suitable translation of the origin, we may assume that $l^{t+\lambda} a(\varepsilon_{\nu}) = 0$ for every $\varepsilon_{\nu} \in G(L(\mathfrak{G})/L)$.

Put $\mathfrak{G}_1 = \{a \mid a \in J_{L(\mathfrak{G})}(\ , k), l^u a \in A_{L(\mathfrak{G})/L}(\ , k) \text{ with a } u\}$. Then $a(\varepsilon_{\nu}) \in \mathfrak{G}_1$ for $\varepsilon_{\nu} \in G(L(\mathfrak{G})/L)$. On the other hand $G(L(\mathfrak{G})/L)$ is normal in $G(L(\mathfrak{G})/K)$, hence by virtue of lemma 8, we have

$$a(\sigma) \in \bigcap_{\varepsilon_{\nu} \in \mathcal{G}(L(\mathfrak{G})/L)} (\eta(\varepsilon_{\nu}) - \delta_{JL(\mathfrak{G})})^{-1} (A_{L(\mathfrak{G})/L}(\ , k)).$$

On the other hand there exists u such that

$$(l^{u}\delta_{J_{L(\mathfrak{Y})}})^{-1}(A_{L(\mathfrak{Y})/L}(\ ,\ k)) \supset \bigcap_{\mathfrak{e}_{\gamma} \in G(L(\mathfrak{Y})/L)}(\eta(\mathfrak{e}_{\gamma}) - \delta_{J_{L}(\mathfrak{Y})})^{-1}(A_{L(\mathfrak{Y})/L}(\ ,\ k)).$$

HISASI MORIKAWA

This shows that $\mathfrak{G}_1 \in \mathfrak{a}(\sigma)$. By virtue of the definition of \mathfrak{G}_1 and the assumption in the lemma, we have $\mathfrak{G}_1 = \eta(\sigma)\mathfrak{G}_1$ and $\mathfrak{G}_1 \doteq J_{L(\mathfrak{G})}(\ , k)$. Hence by virtue of lemma 1, $L(\mathfrak{G})$ $(\mathfrak{G}_1)/K$ is normal and $L(\mathfrak{G})$ $(\mathfrak{G}_1) \neq L(\mathfrak{G})$.

2.5. Proof of lemma 7.

Let P be the subset of $G(L(\mathfrak{G})/K)$ consisting of all its elements whose order is coprime to I. Then, by the same reason as in the proof of lemma 6, after a suitable translation of the origin, we may assume that $m^{\lambda}a(\sigma) = 0$ with a λ for $\sigma \in P$. By virtue of the assumption in the lemma, we have $a(\sigma) \in A_{L(\mathfrak{G})/L}(\ , k)$ for $\sigma \in P$.

Let P^* be the subgroup generated by P. Then P^* is a normal subgroup of $G(L(\mathfrak{G})/K)$. Since $a(\sigma\tau) = \eta(\sigma)a(\tau) + a(\sigma)$, we observe that $a(\sigma^*) \in A_{L(\mathfrak{G})/L}$ (, k) for $\sigma^* \in P^*$. Since $G(L(\mathfrak{G})/L)$ is normal in $G(L(\mathfrak{G})/K)$, $G(L(\mathfrak{G})/L)$ $\cap P^*$ is normal in $G(L(\mathfrak{G})/K)$. From the assumption in the lemma $G(L(\mathfrak{G})/L)$ $\equiv G(L(\mathfrak{G})/L) \cap P^*$. Let $L(\mathfrak{G}')$ be the subfield corresponding to $P^* \cap G(L(\mathfrak{G})/L)$. Put $P^{**} = P^*/G(L(\mathfrak{G})/L) \cap P^*$. Then, since $P^{**} \cap G(L(\mathfrak{G})/L) = \{e\}$, $P^{**}G(L(\mathfrak{G})/L)$ is a direct product $P^{**} \times G(L(\mathfrak{G})/L)$.

On the other hand, we have by virtue of lemma 8, $\alpha_{L(g')/L}a(\sigma\varepsilon_{\nu}\sigma^{-1}) = \eta(\sigma)$ $\alpha_{L(\mathfrak{G}')/L}a(\varepsilon_{\nu})$ for $\varepsilon_{\nu} \in G(L(\mathfrak{G}')/L)$. Since $G(L(\mathfrak{G}')/L)$ is of type (l, \ldots, l) , if we take a base $\{\varepsilon_{i}, \ldots, \varepsilon_{s}\}$ of $G(L(\mathfrak{G})/L)$ we get a representation $\{N(\overline{\sigma})\}$ of $G(L(\mathfrak{G}')/K)/P^{**}$ in the field with *l*-elements such that $(\alpha_{L(\mathfrak{G}')/L}a(\varepsilon_{1}), \ldots, \alpha_{L(\mathfrak{G}')/L}a(\varepsilon_{s}))N(\overline{\sigma}) = (\eta(\overline{\sigma}) \alpha_{L(\mathfrak{G}')/L}a(\varepsilon_{1}), \ldots, \overline{\eta(\sigma)} \alpha_{L(\mathfrak{G}')/L}a(\varepsilon_{s}))$, where $\overline{\sigma}$ is the class of σ in $G(L(\mathfrak{G})/K)/P^{**}$.

Since $G(L(\mathfrak{G}')/K)/P^{**}$ is an *l*-group, $\{N(\overline{\sigma})\}$ is equivalent to the following representation:

$$\left\{ \begin{pmatrix} 1 & & \Lambda \sigma \\ 1 & & \\ & \cdot & \\ 0 & & \cdot \\ 0 & & \cdot \\ & & & 1 \end{pmatrix} \right\}$$

This shows that there exists a non-trivial subgroup \overline{H} in $\{\alpha_{L(\mathfrak{G})/L} a(\varepsilon_{\nu})\}$ which is elementwise fixed by $\eta(\sigma)$. Since $\alpha_{L(\mathfrak{G}')/L}$ is an onto isomorphism, we have a nontrivial subgroup H which is contained in the center of $G(L(\mathfrak{G}')/K)$. Then, if we denote by \mathfrak{G}'' the subgroup of $J_L(\cdot, k)$ such that $L(\mathfrak{G}'')$ corresponds to H, these \mathfrak{G}' and \mathfrak{G}'' satisfy the conditions in the lemma.

Mathematical Institute Nagoya University