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Nicolas’ π(x) < li(θ(x)) Equivalence

1.1 Introduction

To begin this introduction, we give a summary of results for two inequalities
which are closely related to the inequality of Jean-Louis Nicolas, which is the
subject of this chapter. Numerical evaluation up to modest values of x gives
π(x) < li(x). It was thought by many in the early part of the twentieth century
that this might always be the case. Given the prime number theorem (PNT)
estimate

π(x) = li(x) + O
(
x exp

(
−c

√
log x

))
,

Nicolas’ inequality would have provided a useful simplification. However, in
1914 Littlewood showed, using a method developed by Landau, that li(x) −
π(x) changed sign infinitely often as x → ∞ [116, chapter V]. Littlewood’s
research student Skewes set about finding the first number for which li(x) <
π(x). In 1933, assuming RH, Skewes showed that such a number would not
be greater than

10101034

.

He continued to work on this problem and by 1955 had shown, uncondition-
ally, that the number would need to be no greater than the astronomical

101010964

.

Many number theorists were fascinated by this problem and progressively
reduced the proved upper bound, or found an interval in which there was
at least one zero crossing for li(x) − π(x). They included Lehman (1966), te
Riele (1987), Bays and Hudson (2000), Chao and Plymen (2010), Saouter
and Demichel (2014), Zegowitz (2010), and Stoll (2011).

For the initial interval of positivity, J. B. Rosser and L. Schoenfeld (1962)
[206] showed that π(x) < li(x) continued to hold at least up until 108. R. Brent
(1975) [24] improved this to 8 × 1010, T. Kotnic (2008) [129] to 1014, D. J.
Platt and T. S. Trudgian (2016) [188] to 1.39× 1017, and J. Büthe (2017) [39]
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2 Nicolas’ π(x) < li(θ(x)) Equivalence

to 1019. We note Littlewood’s theorem of 1914 reveals there is an infinite
number of crossings [116, theorem 35]. It takes the form

li(x) − π(x) = Ω±

( √
x logloglog x

log x

)
.

Michael Rubinstein and Peter Sarnak in 1994 [208] showed that the loga-
rithmic density of positive integers for which li(x) < π(x) exists and is about
2.6 × 10−7 of all integers.

The difference x − θ(x) has a similar set of behaviours, although not as
extensively studied as li(x) − π(x). The method of Landau, when applied to
x − ψ(x), because

ψ(x) = θ(x) + θ(x1/2) + O(x1/3+ϵ),

can be used to show x − θ(x) changes sign infinitely often as x→ ∞. Indeed,
more precisely [116, theorem 33]

x − θ(x) = Ω±
(
x1/2−ϵ

)
.

Regarding the initial interval, Schoenfeld (1976) showed that θ(x) < x up
to 1011, Dusart (2010) to 8 × 1011, and Platt and Trudgian in Theorem B.2
(2015) that there is an

x ∈ [ex0−h, ex0+h], x0 = 727.951332655, h = 1.3 × 10−8,

for which x < θ(x).

It came as a surprise to the author that the “irregularities of distribution”
([116, chapter V]) exhibited by the three functions π(x), li(x) and θ(x) would
give rise to an RH equivalence. Indeed, that the functions might conspire to-
gether to give an inequality closely related to θ(x) < x and π(x) < li(x), which
was true on an unbounded interval if RH was true, but alternated between true
and false infinitely if RH was false. This result was published by Jean-Louis
Nicolas in 2017 [172] and has the statement

RH ⇐⇒ π(x) < li(θ(x)), x ≥ 11.

The proof is set out in this chapter as Theorem 1.17. Consistent with
π(x) < li(x) and θ(x) < x the proof in the RH is false case, gives not just
one counterexample but an infinite set xn of counterexamples with xn → ∞.
In the RH is true case li(θ(x)) − π(x) is not only positive but has limit value
infinity. This can be derived from a different equivalence of Nicolas, stated in
an end note to the chapter.

To prove his result Nicolas defines the difference A(x) = li(θ(x))−π(x) and
splits it into two parts using the function Π(x). The definitions follow:
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1.1 Introduction 3

Π(x) :=
∑
p j≤x

1
j
=

⌊ log x
log 2

⌋∑
j=1

π(x1/ j)
j

,

A1(x) := li(ψ(x)) − Π(x),
A2(x) := li(θ(x)) − li(ψ(x)) + Π(x) − π(x),
A(x) := li(θ(x)) − π(x) = A1(x) + A2(x).

The intricate detailed relationships between the lemmas required to prove
the theorem are described in Figure 1.1. Note the important role played by
the imported results set out in Appendix B.

L1.1

L1.7

L1.2 L1.6

L1.8

L1.4

B.2

L1.9

L1.13

L1.11L1.14

T1.16

T1.17

L1.10

L1.15

L1.3

B.1 B.3

L1.5

L1.12

Figure 1.1 Dependencies for Theorem 1.17.

We don’t develop the fascinating consequences of Nicolas’ theorem, such
as if we assume RH is true we get

θ(x) < x =⇒ π(x) < li(x).

Because of this, the first crossing point for x and θ(x), under RH, must come
before that of π(x) and li(x), and the reverse is true for the second one. Any
density which exists for π(x) − li(x) must be no greater than that for θ(x) − x.

In Section 1.2 we estimate li(x), in Section 1.3 the function A1(x), in Sec-
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4 Nicolas’ π(x) < li(θ(x)) Equivalence

tion 1.4 A2(x), and in Section 1.5 the function A(x), all assuming RH is true.
Where it is needed, we use the equivalence of Schoenfeld given in Volume
One and quoted in this volume in Appendix B. Then for the case RH is false
we first prove part of Guy Robin’s result, Theorem 1.16 which is

A(x) = Ω−(xα), 0 < α < Θ,

where Θ := sup{β : ζ(β + iγ) = 0} > 1
2 , which is all we need. This is then

used to easily complete the proof of the equivalence, which is a little weaker
than the result of Nicolas.

1.2 Estimating the Logarithmic Integral

First, we define the logarithmic integral valid for all x > 1 using the Cauchy
principal value:

li(x) := lim
ϵ→0+

∫ 1−ϵ

0

dt
log t

+

∫ x

1+ϵ

dt
log t

,

so

li(x) := li(2) +
∫ x

2

dt
log t

,

with li(2) = 1.045163780117....
For x→ ∞ we have the asymptotic expansions for the logarithmic integral

valid for all N ∈ N:

li(x) =
N∑

j=1

( j − 1)!x
(log x) j + O

(
x

(log x)N+1

)

=
x

log x
+ O

(
x

(log x)2

)
=

x
log x

+
x

(log x)2 + O
(

x
(log x)3

)
.

To see this note that by splitting the integral at
√

x we get for n ∈ N∫ x

0

1
(log x)n dx = O

(
x

(log x)n

)
.

The expansion follows using integration by parts. In Figure 1.2 we show
li(x) around its singularity, and in Figure 1.3 we give li(x) and its asymptotic
approximation

x
log x

+
x

(log x)2 +
2x

(log x)3 ,
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1.2 Estimating the Logarithmic Integral 5
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Figure 1.2 A plot of li(x) for 0 ≤ x ≤ 8.

li(x)
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x
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Figure 1.3 A plot of li(x) and an approximation for 2 ≤ x ≤ 200.

which for at least x ≥ 20 is less than li(x).
We note that the finite sum approximations are increasing with the number

of terms and all terms, even the error for x sufficiently large, are positive for
x ≥ 2.

We use in the sequel the following functions relating to the difference be-
tween li(x) and its asymptotic expansions. We need only go to the second
order:

L1(x) := li(x) −
x

log x
,
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6 Nicolas’ π(x) < li(θ(x)) Equivalence

L2(x) := li(x) −
x

log x
−

x
(log x)2 ,

F1(x) :=
(log x)2 li(x) − x(log x)

x
= L1(x)

(log x)2

x
,

F2(x) :=
(log x)3 li(x) − x(log x)2 − x(log x)

x
= L2(x)

(log x)3

x
.

With these definitions we will see that F1(x) and F2(x) are bounded and have
well-defined asymptotic limits.

Lemma 1.1 The function F1(x) has the following and no other zeros or
critical points on [1,∞):

(i) limx→1+ F1(x) = 0.
(ii) An absolute minimum at x3 = 1.85... with value −0.488.
(iii) A positive zero at x0 = 3.8464....
(iv) An absolute maximum at x4 = 94.6... with value 1.784....
(v) limx→∞ F1(x) = 1.
In addition
(vi) For all x > 1 we have li(x) < 3x/4.

Proof (1) First, note that for x > 1 we have the Taylor expansion

li(x) = loglog x + γ0 +

∞∑
n=1

(log x)n

n · n!
.

Since the sum is O((x − 1)ex−1), we can write as x → 1+, li(x) = loglog x +
γ0 + o(1). Thus, using l’Hôspital’s rule to derive

lim
x→1+

(log x) loglog x = lim
y→0+

y log y = lim
y→0+

log y
1/y

= − lim
y→0+

y = 0,

we get

lim
x→1+

F1(x) =
1
x

(
(log x)2(loglog x + γ0 + o(1)) − x log x

)
= lim

x→1+

(log x)
x

(log x) loglog x = 0.

This proves (i).

(2) We now define three related functions which will enable the properties of
F1(x) to be deduced:

f1(x) :=
x2

log x
F′1(x),
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1.2 Estimating the Logarithmic Integral 7

= 2 li(x) + x −
x

log x
− log(x) li(x),

f2(x) := x f ′1(x),

= −

(
li(x) −

x
log x

−
x

(log x)2

)
= −L2(x) = −F2(x)

x
(log x)3 ,

f3(x) := f ′2(x) = −
2

(log x)3 .

Figures 1.4 and 1.5 indicate how the first two functions behave.

20 40 60 80 100
x

-1

1

2

3

4
f1(x)

Figure 1.4 A plot of f1(x) for 2 ≤ x ≤ 100.

Note that since x > 1, f2(x) and f ′1(x) have the same sign, and that f3(x),
hence f ′2(x), is strictly negative. Thus, f2(x) is decreasing. Also the limit of
f2(x) at 1+ is +∞ and at∞ is −∞. Therefore f2(x) has a unique zero in (1,∞)
which we compute as x2 = 10.3973.... See Figure 1.5.

(3) We also derive

lim
x→∞

F1(x) = lim
x→∞

(log x)2
(

x
(log x) +

x
(log x)2 + O

(
x

(log x)3

))
− x(log x)

x

= lim
x→∞

x + O(x/(log x))
x

= 1.

This proves (v).
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8 Nicolas’ π(x) < li(θ(x)) Equivalence
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f2(x)

Figure 1.5 A plot of f2(x) for 1 ≤ x ≤ 20.

(4) A computation shows f1(x) has precisely two zeros on (1,∞), at x3 =

1.85... and x4 = 94.6.... Hence F1(x) has two corresponding critical points.
Thus, we can say, moving from left to right, F1(1) = 0, then F1(x) de-
creases to its minimum F1(x3), then increases to its maximum F1(x4), passing
through a zero which we compute as x0 = 3.846467717..., and then descends
to its asymptotic limit 1 at∞. Thus, we have (ii) and (iv). See Figures 1.6 and
1.7.
(5) Because

d
dx

(
li(x)

x

)
= −

F1(x)
x(log x)2

is positive for 1 < x < x0 and negative for x0 < x, li(x)/x has a maximum at
x0, and so we can write for all x > 1

li(x)
x
≤

li(x0)
x0
≤ 0.743 <

3
4
,

so li(x) < 3x/4. This proves (vi).

(6) In addition note that in the range x > x3 we have F1(x) > 1 so

li(x) −
x

log x
= L1(x) = F1(x)

x
(log x)2 >

x
(log x)2

and so
li(x) >

x
log x

+
x

(log x)2 , x > x3.

□
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1.2 Estimating the Logarithmic Integral 9
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Figure 1.6 A plot of F1(x) for 1 ≤ x ≤ 11.

0 200 400 600 800 1000
x

1.2

1.4

1.6

1.8
F1(x)

Figure 1.7 A plot of F1(x) for 11 ≤ x ≤ 1000.

The function F2(x) behaves, qualitatively, in the same manner as F1(x).
This gives rise to the possible use of higher-order approximations, Fn(x), if
needed.
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10 Nicolas’ π(x) < li(θ(x)) Equivalence

Lemma 1.2 The function F2(x) has the following and no other zeros or
critical points:

(i) limx→1+ F2(x) = 0.
(ii) An absolute minimum at x3 = 3.38... with value −1.369496....
(iii) A positive zero at x0 = 10.39....
(iv) An absolute maximum at x4 = 380.15... with value 4.040415....
(v) limx→∞ F2(x) = 2.

Proof The proof is similar to that of Lemma 1.1. In this case we define

f1(x) :=
x2F′2(x)

(log x)2 ,

f2(x) := x f ′1(x),

f3(x) := f ′2(x) = −
6

(log x)4 < 0,

and proceed using the same steps as in that lemma. The function F2(x) is
plotted in Figures 1.8 and 1.9. □

0 5 10 15 20
x

-1.5

-1.0

-0.5

0.5

1.0

1.5
F2(x)

Figure 1.8 A plot of F2(x) for 1 ≤ x ≤ 20.
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1.3 The Function A1(x) 11
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Figure 1.9 A plot of F2(x) for 20 ≤ x ≤ 106.

1.3 The Function A1(x)

Sums over ρ = β + iγ are assumed to be over all of the non-trivial zeros
of ζ(s). We define A1(x) := li(ψ(x)) − Π(x) where Π(x) :=

∑κ
j=1

π(x1/ j)
j with

κ :=
⌊
log x/ log 2

⌋
. The symbol Λ(x) is the von Mangoldt function, set to zero

if x is not a prime power.
We also define

ψ̃(x) := ψ(x) − 1
2Λ(x),

Π̃(x) :=
Π(x)

2(log x)2 −
1
2Λ(x),

and use the explicit formulas (which can be derived for example from [30,
theorem 9.5]) valid for x > 1

ψ̃(x) = x −
∑
ρ

xρ

ρ
− log(2π) − 1

2 log
(
1 − 1

x2

)
, (1.1)

Π̃(x) = li(x) −
∑
ρ

li(xρ) − log 2 +
∫ ∞

x

1
t(t2 − 1)(log t)

dt. (1.2)
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12 Nicolas’ π(x) < li(θ(x)) Equivalence

Lemma 1.3 Assume RH is true. For x ≥ 599 we have

θ(x) − x
log x

−
9(log x)2

104 ≤ li(θ(x)) − li(x) ≤
θ(x) − x

log x
,

and the same inequalities are valid if we replace θ(x) by ψ(x).

Proof Let x ≥ 599. By Theorem B.1 we have |θ(x) − x| ≤
√

x(log x)2/(8π).
In addition (log x)2/

√
x is decreasing for x ≥ 599, so

θ(x)
x
≥

1
x

(
x −
√

x(log x)2

8π

)
≥ 1−

(log 599)2

8π
√

599
> 0.93350 =: b =⇒ θ(x) > bx.

(1.3)
Let h > 1 − x and note that li′(x) = 1/ log(x) and li′′(x) = −1/(x(log x)2). By
Taylor’s theorem, for some ξ with ξ > min(x, x + h), we can write

li(x + h) = li(x) +
h

log x
−

h2

2ξ(log ξ)2 . (1.4)

Now let h = θ(x) − x so h + x = θ(x) ≥ θ(599) > 1 and ξ > bx. Thus, we can
write, noting that log b < 0,

ξ(log ξ)2 ≥ bx(log(bx))2

= bx(log x)2
(
1 +

log b
log x

)2

≥ bx(log x)2
(
1 +

log b
log 599

)2

≥ 0.91353x(log x)2.

Using this bound and Theorem B.1 again we get

0 ≤
h2

2ξ(log ξ)2 ≤
x(log x)4

128π2ξ(log ξ)2 ≤
(log x)2

0.91353 × 128π2 <
9(log x)2

104 .

Using these bounds in (1.4), neglecting the final term to get the upper bound,
gives

θ(x) − x
log x

−
9(log x)2

104 ≤ li(θ(x)) − li(x) ≤
θ(x) − x

log x
,

which completes the proof. □

We have the definitions: γ0 is Euler’s constant and

A1(x) := li(ψ(x)) − Π(x) where Π(x) :=
κ∑

j=1

π(x1/ j)
j

.
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1.3 The Function A1(x) 13

Sums over ρ = β + iγ are assumed to be over all of the non-trivial zeros of
ζ(s). We use the explicit so-called Landau formulas

ψ̃(x) = x −
∑
ρ

xρ

ρ
− log(2π) − 1

2 log
(
1 − 1

x2

)
= ψ(x) − 1

2Λ(x),

Π̃(x) = li(x) −
∑
ρ

li(xρ) − log 2 +
∫ ∞

x

1
t(t2 − 1)(log t)

dt = Π(x) −
Λ(x)

2 log x
,

where Nicolas replaces the summand li(xρ), using [137, section 88], with

li(xρ) =
∫ ∞

0

xρ−t

ρ − t
dt.

(Note the sum is over all zeros so Landau’s ±iπ cancel.) In [137, section 5]
we see the definition for w = u + iv

li(ew) :=
∫ w

−∞+vi

es

s
ds ± iπ, v , 0.

Hence using the substitutions ρ = β+ iγ then y = ρ−z and finally s = y+ log x
we get ∫ ∞

0

xρ−t

ρ − t
dt =

∫ ρ

−∞+γi

xy

y
dy =

∫ ρ log x

−∞+γi log x

es

s
ds = li(xρ) ∓ i.

Note the sum is over all zeros so Landau’s ±iπ cancel.

Lemma 1.4 Assume RH is true. Then for x ≥ 599 we have

A1(x) =
∑
ρ

xρ

ρ2(log x)2 + J(x),

where the error term J(x) satisfies

−
9

104 (log x)2 −
1

150

√
x

(log x)3 ≤ J(x) ≤
1

150

√
x

(log x)3 + log(2).

Proof (1) First, note that by RH for all ρ = 1/2+iγ we have |ρ|2 = ρ(1−ρ) =
1
4 + γ

2, and the imaginary part of the first zero of ζ(s) has absolute value
greater than 14.134. Thus,∑

ρ

1
γ2 =

∑
ρ

1 + 1/(4γ2)
1
4 + γ

2
≤

∑
ρ

1 + 1/(4 × 14.1342)
1
4 + γ

2
≤

800
799

∑
ρ

1
ρ(1 − ρ)

.

In addition we have (see for example [29, lemma 2.10(b)])∑
ρ

1
ρ(1 − ρ)

= 2 + γ0 − log(4π) = 0.0461914... (1.5)

https://doi.org/10.1017/9781009384780.002 Published online by Cambridge University Pressavailable at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009384780.002
Downloaded from https://www.cambridge.org/core. IP address: 18.188.10.48, on 28 Jun 2024 at 11:41:06, subject to the Cambridge Core terms of use,

https://doi.org/10.1017/9781009384780.002
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009384780.002
https://www.cambridge.org/core


14 Nicolas’ π(x) < li(θ(x)) Equivalence

Combining these we get∑
ρ

1
|γ|3
≤

1
14.134

∑
ρ

1
|γ|2
≤ 0.0032722 <

1
300

.

(2) Next, integrating the left-hand side of xρ−t/(ρ − t) by parts twice we get∫ ∞

0

xρ−t

ρ − t
dt =

xρ

ρ(log x)
+

xρ

ρ2(log x)2 +
2

(log x)2

∫ ∞

0

xρ−t

(ρ − t)3 dt.

We also have the bound∣∣∣∣∣∣
∫ ∞

0

xρ−t

(ρ − t)3 dt

∣∣∣∣∣∣ ≤ 1
|ℑρ|3

∫ ∞

0
x1/2−t dt =

1
|ℑρ|3

√
x

(log x)
.

Therefore, if the error term is

K(x) :=
∑
ρ

2
(log x)2

∫ ∞

0

xρ−t

(ρ − t)3 dt,

then using the bound derived in Step (1) we get

|K(x)| ≤
2
√

x
(log x)3

∑
ρ

1
|ℑρ|3

≤

√
x

150(log x)3 .

Thus,∑
ρ

∫ ∞

0

xρ−t

ρ − t
dt =

∑
ρ

xρ

ρ log x
+

∑
ρ

xρ

ρ2(log x)2 +K(x), |K(x)| ≤
√

x
150(log x)3 .

(3) By the derivation of Lemma 1.3, replacing h = θ(x)− x with h = ψ(x)− x,
and noting for the equation corresponding to (1.3) that ψ(x)/x ≥ θ(x)/x, we
get

ψ(x) − x
log x

−
9(log x)2

104 ≤ li(ψ(x)) − li(x) ≤
ψ(x) − x

log x
.

(4) In this step, maybe the most intricate, we rearrange the expression for
A1(x). First, note we have

li(ψ(x)) = li(x) +
ψ(x) − x

log x
+ J1(x),

= li(x) +
ψ̃(x) − x + 1

2Λ(x)
log x

+ J1(x).

By Step (3) we have for x ≥ 599, −(9/104)(log x)2 ≤ J1(x) ≤ 0. Thus, if we
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1.3 The Function A1(x) 15

define

J2(x) := log 2 −
log(2π)

log x
and

J3(x) := −
log(1 − 1/x2)

2 log x
−

∫ ∞

x

1
t(t2 − 1)(log t)

dt,

and use the explicit formulas for ψ̃(x) and Landau’s form for Π̃(x), we can
write

A1(x) = li(ψ(x)) − Π(x)

= li(x) +
1

log x

−∑
ρ

xρ

ρ
− log(2π) − 1

2 log
(
1 − 1

x2

)
+
Λ(x)

2


+ J1(x) − li(x) +

∑
ρ

∫ ∞

0

xρ−t

ρ − t
dt −

∫ ∞

x

1
t(t2 − 1)(log t)

dt + log 2 −
Λ(x)

2(log x)

=
∑
ρ

∫ ∞

0

xρ−t

ρ − t
dt −

1
log x

∑
ρ

xρ

ρ
+ J1(x) + J2(x) + J3(x)

Hence we can write, recalling the definition of K(x) from Step (2),

A1(x) =
∑
ρ

xρ

ρ2(log x)2 + J(x) where J(x) := K(x) + J1(x) + J2(x) + J3(x).

(5) In this penultimate step we will bound J1(x) + J2(x). From the definition
in Step (4) we can write, with x ≥ 599,

J3(x) =
∫ ∞

x

1
t(t2 − 1)

(
1

log x
−

1
log t

)
dt ≥ 0,

so

J3(x) ≤
1

log x

∫ ∞

x

1
t(t2 − 1)

dt

=
log(1 + 1/(x2 − 1))

2 log x
≤

1
2(x2 − 1) log x

<
log(2π)

log x
.

Therefore 0 < J2(x) + J3(x) < log 2.

(6) Combining the result of Step (5) with the results from Steps (1)–(4), we
get

−
9

104 (log x)2 −
1

150

√
x

(log x)3 ≤ J(x) ≤
1

150

√
x

(log x)3 + log(2),
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16 Nicolas’ π(x) < li(θ(x)) Equivalence
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B(y)

Figure 1.10 A plot of B(y) for 2 ≤ y ≤ 80.

which completes the proof. □

1.4 The Functions B(x) and A2(x)

Now for y ≥ 2 let

B(y) := π(y) −
θ(y)
log y

=
∑
p≤y

(
1 −

log p
log y

)
.

Figure 1.10 is a plot of B(y) for 2 ≤ y ≤ 7 showing its continuity and increas-
ing nature. Figure 1.11 is a plot of B(x) for 2 ≤ x ≤ 100 showing its square
root order of increase. Also recall the definitions

A2(x) := li(θ(x)) − li(ψ(x)) + Π(x) − π(x),

Π(x) :=
κ∑

j=1

π(x1/ j)
j

.

Lemma 1.5 Assume RH is true. For x ≥ 599, if we define κ :=
⌊
log x/ log 2

⌋
,

then

A2(x) =
κ∑

j=2

B(x1/ j)
j
+ U(x),
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1.4 The Functions B(x) and A2(x) 17
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5 y

7

Figure 1.11 A plot of B(y) and 5
√

y/7 for 2 ≤ y ≤ 100.

where |U(x)| ≤ 9(log x)2/104.

Proof Applying the method of Lemma 1.3, but replacing θ(x) by ψ(x), and
then subtracting the results of the θ(x) and ψ(x) forms, gives the estimates

ψ(x) − θ(x)
log x

−
9(log x)2

104 ≤ li(ψ(x)) − li(θ(x)) ≤
ψ(x) − θ(x)

log x
+

9(log x)2

104 .

Thus,

li(ψ(x)) − li(θ(x)) =
ψ(x) − θ(x)

log x
+ U(x), |U(x)| ≤

9(log x)2

104 .

Inserting this in the definition of A2(x), and then using the definitions of ψ(x),
Π(x) and B(y) gives

A2(x) =
κ∑

j=2

(
π(x1/ j)

j
−
θ(x1/ j)
log x

)
+ U(x) =

κ∑
j=2

B(x1/ j)
j
+ U(x).

This completes the proof. □

Recall the definitions:

L1(t) := li(t) −
t

log t
,

B(x) := π(x) −
θ(x)
log x

.
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18 Nicolas’ π(x) < li(θ(x)) Equivalence

Lemma 1.6 If 8.3 = y0 ≤ y ≤ 1.39 × 1017 we have B(y) ≤ L1(y). If y ≥ 599
and RH is true then

B(y) ≤ L1(y) +
√

y
4π

.

Proof (1) By Abel’s theorem [3, theorem 4.2] we have

π(y) =
θ(y)
log y

+

∫ y

2

θ(t)
t(log t)2 dt.

Thus,

B(y) =
∫ y

2

θ(t)
t(log t)2 dt

=

∫ y0

2

θ(t)
t(log t)2 dt +

∫ y

y0

θ(t)
t(log t)2 dt

= B(y0) +
∫ y

y0

θ(t)
t(log t)2 dt.

(1.6)

By Theorem B.2 we have θ(x) < x for 0 < x ≤ 1.39 × 1017, and for n ∈
N, x > 1, using induction and integration by parts, we have∫

dx
(log x)n =

1
(n − 1)!

li(x) −
n−1∑
j=1

( j − 1)!x
(log x) j

 .
Thus, for y ≤ 1.39 × 1017 we get∫ y

y0

θ(t)
t(log t)2 dt ≤

∫ y

y0

dt
(log t)2 = li(y) − li(y0) +

y0

log y0
−

y
log y

,

so
B(y) ≤ L1(y) + B(y0) − L1(y0) ≤ L1(y) − 0.0012 < L1(y).

(2) Now use y1 = 599 instead of y0 in Equation (1.6) and define

T (y, y1) :=
∫ y

y1

θ(t) − t
t(log t)2 dt,

to get
B(y) = B(y1) − L1(y1) + L1(y) + T (y, y1).

By Theorem B.1 we get

|T (y, y1)| ≤
∫ y

y1

√
t(log t)2

8πt(log t)2 dt =
√

y −
√

y1

4π
.
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1.4 The Functions B(x) and A2(x) 19

Therefore, since B(y1) − L1(y1) −
√

y1/(4π) < 0, we get

B(y) ≤ L1(y) +
√

y
4π
+ B(y1) − L1(y1) −

√
y1

4π
< L1(y) +

√
y

4π
.

This completes the proof. □

Recall the definitions:

F̃1(t) =

1.785, t ≤ 95,

F1(t) = (log x)2 li(t)−t(log x)
t , t > 95,

F̃2(t) =

4.05, t ≤ 381,

F2(t) = (log x)3 li(t)−t(log x)2−t(log x)
t , t > 381,

L1(t) := li(t) −
t

log t
,

F1(x) :=
L1(x)(log x)2

t
,

B(x) := π(x) −
θ(x)
log x

,

κ :=
⌊
log x
log 2

⌋
,

κ2 :=
⌊
log x
log a

⌋
,

ϵ(y) := χ(1.39×1015,∞)(y), the characteristic function.

In addition we set a = 10.4 and let κ1 be any integer in the range 3 ≤ κ1 < κ2.

Lemma 1.7 Let RH be true and x ≥ 108. Then with the given definitions
and parameter settings we have

κ∑
j=2

B(x1/ j)
j
≤

2
√

x
(log x)2 +

4
√

x
(log x)3 F̃2(

√
x)

+

κ1∑
j=3

jx1/ j

(log x)2 F̃1(x1/ j) +
7.23κ3

1 x1/κ1

(log x)3 + 2.35 + 0.94
√

x
(log x)5 .

Proof (1) To begin the proof we split an upper bound for the sum on the left
into five separate sums. First, we note that by Lemma 1.6 for y ≥ 8.3 we have
B(y) ≤ L1(y) + 0.25ϵ(y)

√
y/π, and for 2 ≤ j ≤ κ2 we get

a = xlog a/ log x ≤ x1/κ2 ≤ x1/ j.
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20 Nicolas’ π(x) < li(θ(x)) Equivalence

Thus, for these values of j we have

B(x1/ j) ≤ L1(x1/ j) + ϵ(x1/ j)
x1/(2 j)

4π
.

Thus, if we define

T1 := 1
2 L1(

√
x),

T2 :=
κ1∑
j=3

L1(x1/ j)
j

,

T3 :=
κ2∑

j=κ1+1

L1(x1/ j)
j

,

T4 :=
κ∑

j=κ2+1

B(x1/ j)
j

,

T5 :=
κ2∑
j=2

ϵ(x1/ j)
x1/(2 j)

4π j
,

we get
κ∑

j=2

B(x1/ j)
j
≤

5∑
i=1

Ti.

In Step (2) we bound T1 and T2. In (3) we bound T3, in (4) T4 and in (5) T5.

(2) Since for t > 1

L1(t) =
tF1(t)
(log t)2 ≤

tF̃1(t)
(log t)2 and L2(t) =

tF2(t)
(log t)3 ≤

tF̃2(t)
(log t)3 ,

we get

T1 =
1
2 L2(

√
x) +

√
x

2(log
√

x)2 =
2
√

x
(log x)2 +

4
√

xF2(
√

x)
(log x)3 ≤

2
√

x
(log x)2 +

4
√

xF̃2(
√

x)
(log x)3

and

T2 =

κ1∑
j=3

jx1/ j

(log x)2 F1(x1/ j) ≤
κ1∑
j=3

jx1/ j

(log x)2 F̃1(x1/ j).

(3) For t ≥ 1, using Lemma 1.1, the maximum value of F1(t) is F1(x4), and
we get

L1(t) ≤ 1.785
t

(log t)2 =⇒ T3 ≤
1.785

(log x)2

κ∑
j=κ2+1

jx1/ j.
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1.4 The Functions B(x) and A2(x) 21

Since x > 1, in the range 0 < t ≤ log x the function t → tx1/t is strictly
positive and decreasing. Hence we can write using the change of variables
ut = x,

T3 ≤ 1.785(L2(x1/κ1) − L2(a)) ≤ 1.785
(
4.05

x1/κ1

(log x1/κ1)3 − L2(a)
)
.

Next, by Lemma 1.2 we have L2(10.4) > 0, so setting a = 10.4 by the result
of Step (3) we get

T3 ≤ 1.785

4.05
κ3

1 x1/κ1

(log x)3 − L2(10.4)

 ≤ 7.23
7.23κ3

1 x1/κ1

(log x)3 .

(4) We next derive a bound for T4. First, note that

j ≥ κ2 + 1 > (log x)/ log a =⇒ x1/ j < a.

Thus, because the function y → B(y) is increasing, for the given values of j
we get

B(x1/ j) ≤ B(a) = B(10.4) < 1.72.

Therefore, from the definition of T4 in Step (1)

T4 ≤ 1.72
κ∑

κ2+1

1
j

≤ 1.72
∫ κ2−1

κ1

dt
t

= 1.72
(
log

(
log x
log 2

)
− log

(
log(x/a)

log a

))
= 1.72

(
log

(
log a
log 2

)
+ log

(
log(x)

log(x/a)

))
≤ 1.72

(
log

(
log a
log 2

)
+

(
log(x)

log(x/a)
− 1

))
= 1.72

(
log

(
log a
log 2

)
+

log a
log(x/a)

)
≤ 1.72

(
log

(
log a
log 2

)
+

log a
log(108/a)

)
≤ 2.3445.

(5) Finally, we bound T5 as defined in Step (1). If we set

S :=
κ2∑
j=2

x1/(2 j)

j
,
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22 Nicolas’ π(x) < li(θ(x)) Equivalence

then we claim for a ≥ 2.11 and x ≥ a3 we get S ≤ 1.25x1/4. To see this
note that with the given constraint on x the function t → x1/(2t) is positive and
decreasing for t > 0. Thus, using the change of variables u2t = x, and using
Lemma 1.1(vii) that for all t > 1 we have li(t) < 3t/4, and that li(

√
a) > 0 to

get the final inequality, we get

S = 1
2 x1/4 +

∑κ2
j=3

x1/(2 j)

j

≤ 1
2 x1/4 +

∫ log x
log a

2
x1/(2t)

t dt

= 1
2 x1/4 +

∫ x1/4
√

a
du

log u

≤ 1
2 x1/4 + li(x1/4) − li(

√
a)

≤
5
4

x1/4 − li(
√

a) <
5
4

x1/4.

This completes the proof of the claim. Next, because ϵ(t) is increasing and
vanishes when t ≤ 1017 we can write

T5 ≤ ϵ(
√

x)
κ2∑
j=2

x1/(2 j)

4π j

≤
5ϵ(
√

x)
16π

x1/4

=
5ϵ(
√

x)
16π

√
x

(log x)5

(log x)5

x1/4

<
5ϵ(
√

x)
16π

√
x

(log x)5

(log 1034)5

1034/4

< 0.94
√

x
(log x)5 .

Combining the bounds from each of the steps completes the proof. □

1.5 Asymptotic and Explicit Bounds for the Function A(x)

We next derive a lower bound for A(x). Recall the definitions,

Π(x) :=
∑
p j≤x

1
j
=

⌊ log x
log 2

⌋∑
j=1

π(x1/ j),
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1.5 Asymptotic and Explicit Bounds for the Function A(x) 23

A1(x) := li(ψ(x)) − Π(x),
A2(x) := li(θ(x)) − li(ψ(x)) + Π(x) − π(x),
A(x) := li(θ(x)) − π(x) = A1(x) + A2(x),

L1(x) := li(x) −
t

log t
,

L2(x) := L1(x) −
t

(log t)2 ,

∆ :=
∑
ρ

1
|ρ|2

,

B(x) := π(x) −
θ(x)
log x

=
∑
p≤x

(
1 −

log p
log x

)
.

We use the bounds we have derived for A1(x) and A2(x) to derive a lower
bound for A(x).

Lemma 1.8 Assume RH is true. For all x ≥ 9 × 106 we have

A(x) ≥
√

x
(log x)2

(
2 − ∆ +

1
log x

(
7.993 −

(log x)3

8πx1/4 −
18(log x)5

104 √x

))
.

Proof (1) First, we bound the function A2(x). Using Lemma 1.5, for x ≥ 599
we get

A2(x) ≥ 1
2 B(
√

x) − 9(log x)2

104 .

We have x ≥ 29032. Thus, by Lemma 1.6, which gives for y ≥ 2903, because
each B(x1/ j) ≥ 0, the bound

B(y) ≥ L1(y) −
√

y
4π

,

and, using Lemma 1.2(v) to get L2(t) > 2t/(log t)3 for t > 292, to derive the
third line, we have

A2(x) ≥ 1
2

(
L1(
√

x) − x1/4

4π

)
−

9(log x)2

104

= 1
2

( √
x

(log
√

x)2 + L2(
√

x) − x1/4

4π

)
−

9(log x)2

104

≥ 1
2

( √
x

(log
√

x)2 +
2
√

x
(log

√
x)3 −

x1/4

4π

)
−

9(log x)2

104

=

√
x

(log x)2

(
2 +

8
log x

−
(log x)2

8πx1/4 −
9(log x)4

104 √x

)
.
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24 Nicolas’ π(x) < li(θ(x)) Equivalence

(2) Next, we bound A1(x) using Lemma 1.4 to get

A1(x) ≥ −

∣∣∣∣∣∣∣∑ρ xρ

ρ2(log x)2

∣∣∣∣∣∣∣ − 9
104 (log x)2 −

1
150

√
x

(log x)3 .

Therefore, using Step (1), RH, and A(x) = A1(x) + A2(x), we get

A(x) ≥
√

x
(log x)2

2 −∑
ρ

1
|ρ|2
+

8 − 1/150
log x

−
(log x)2

8πx1/4 −
18(log x)4

104 √x

 .
Substituting ∆ for the sum completes the proof. □

The following result, Lemma 1.9, shows that even though A(x) appears ini-
tially to be nondecreasing, this reasonable assumption is false uncondition-
ally for an infinite number of integer values. Let Q(p) be the largest prime
strictly smaller than the prime p ≥ 3, namely we have three consecutive
primes Q(p) < p < P(p).

Lemma 1.9 A(x) is nondecreasing in the range 1 ≤ x ≤ 1.39 × 1017.
However there are infinitely many primes p for which A(p) < A(Q(p)) is
true.

Proof (1) Let p ∈ (3, 1.3 × 1017). Then, using Theorem B.2 to get the final
bound,

A(p) − A(Q(p)) = li(θ(p)) − li(θ(Q(p)) − 1

=

∫ θ(p)

Q(p)

dt
log t

− 1

>
θ(p) − θ(Q(p))

log θ(p)
− 1

=
log p

log θ(p)
− 1 > 0.

(2) By Littlewood’s theorem (see for example Volume One [29, theorem
4.13]) there is a constant C > 0 and an infinite increasing sequence xn with
limit value infinity such that for all n ∈ N we have

θ(xn) ≥ xn +C
√

xn logloglog(xn).

Note that we can replace ψ(x) by θ(x) in Littlewood’s theorem because, by
the prime number theorem, we have

ψ(x) = θ(x) +
√

x + o(
√

x).

Let p ≤ xn be the largest such prime and assume xn, p are sufficiently large
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1.5 Asymptotic and Explicit Bounds for the Function A(x) 25

so that

θ(p) = θ(xn) ≥ xn +C
√

xn logloglog xn > p + log p =⇒ θ(p) − log p > p.

Then, using the first part of the derivation in Step (1), we get

A(p) − A(Q(p)) <
log p

log θ(Q(p))
− 1 =

log p
log(θ(p) − log p)

− 1 < 0.

This completes the proof. □

Lemma 1.10 gives some simple indicative bounds for A(x) in finite ranges.
These are a prelude to Theorem 1.12 which gives asymptotic upper and lower
bounds, and then Lemma 1.13 which gives absolute bounds, all depending on
RH. If RH is false all of the infinite range bounds fail – this is the subject of
Theorem 1.17, which depends on the result of Guy Robin, Theorem 1.16.

Lemma 1.10 (1) If x ∈ [11, 1.39 × 1017] we have A(x) > 0.

(2) Let x ∈ [2, 104]. Then

A(x) ≤ 5.0644
√

x
(log x)2 .

(3) For x ∈ [37, 89] we have

A(x) ≥
√

x
(log x)2 (2 − ∆) .

Proof (1) This follows from A(11) = 0.1301... and Lemma 1.9.

(2) On the domain [1,∞) the function φ(x) = (log x)2/
√

x has a maximum at
x = e4 with value 16/e2. Because A(x) is nondecreasing when x < 59 we get

A(x)(log x)2
√

x
≤

16A(53)
e2 ≤ 2.502.

If p ≥ 59 and p ≤ x < P(p) then, since the maximum of A(p)(log p)2/
√

(p)
for p ∈ [59, 104] is at p = 3643, we get

A(x)(log x)2
√

x
=

A(p)(log x)2
√

x
≤

A(p)(log p)2
√

(p)
≤ 5.0644,

which gives (2).

(3) Using the function φ(x) again, for 1 < a < b, a lower bound for φ on
[a, b] is min(φ(a), φ(b)). If the prime p ∈ [11, 83] then by Step (1) we have
A(p) > 0 and for p ≤ x < P(p) we can write

A(x)(log x)2
√

x
=

A(p)(log x)2
√

x
≥ A(p) min(φ(p), φ(P(p))).
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26 Nicolas’ π(x) < li(θ(x)) Equivalence

A computation shows that for 37 ≤ p ≤ 83 we have

A(p) min(φ(p), φ(P(p))) > 2 − ∆.

This completes the proof. □

Recall that we have ∆ =
∑
ρ 1/|ρ|2, and that we have defined κ =⌊

log(x)/ log(2)
⌋
.

Lemma 1.11 Assume RH is true. Then for x ≥ 108 we have the upper bound

A(x) ≤
√

x
(log x)2

(
2 + ∆ +

25.212
log x

)
.

Proof By Lemma 1.4 for x ≥ 599 we have

A1(x) ≤ ∆
√

x
(log x)2 +

1
150

√
x

(log x)3 + 0.7.

By Lemma 1.5 we also have

A2(x) ≤
κ∑

j=2

B(x1/ j)
j
+

9(log x)2

104 .

Lemma 1.7 gives an upper bound for the sum in this bound. Combining these
estimates we get an upper bound for A(x) = A1(x) + A2(x). We write the
bound in the form

A(x) ≤
√

x
(log x)2

(
2 + ∆ +

R(κ1, x)
log x

)
,

where

R(κ1, x) := 4F̃2(
√

x) +
1

150
+ 3.05

(log x)3
√

x
+

κ1∑
j=3

jF̃1(x1/ j)(log x)
x1/2−1/ j

+ 7.23
κ3

1

x1/2−1/κ1
+

0.94
(log x)2 +

9
104

(log x)5
√

x
.

(1.7)

Note that as a function of x, R(κ1, x), for x ≥ 108, has all terms nonincreasing
and positive. Evaluating with κ1 = 5, we get

R(5, x) ≤ R(5, 108) ≤ 25.2119... ≤ 25.212,

which completes the proof. □
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1.5 Asymptotic and Explicit Bounds for the Function A(x) 27

Theorem 1.12 Assume RH is true. Then for x→ ∞ we have
√

x
(log x)2

(
2 − ∆ +

7.993 + o(1)
log x

)
≤ A(x) ≤

√
x

(log x)2

(
2 + ∆ +

8.007 + o(1)
log x

)
.

Proof Lemma 1.8 gives the lower bound. To get the upper bound note that

lim
x→∞

F̃1(x) = 1 and lim
x→∞

F̃2(x) = 2,

so considering the expression for R(κ1, x) from Lemma 1.11, namely (1.7),
we get

lim
x→∞

R(3, x) = 8 +
1

150
,

which gives the upper bound, completing the proof. □

Lemma 1.13 Assume RH is true. Then
(1) For all x ≥ 2 we have

A(x) ≤
√

x
(log x)2

(
2 + ∆ +

27.727
log x

)
.

(2) For all x ≥ 84.11 we have

A(x) ≥
√

x
(log x)2

(
2 − ∆ +

5.12
log x

)
.

Proof (1) If x ≥ 108, the result follows from Lemma 1.11. If 409 ≤ x < 108,
since e6 < 409, then if we define

f (x) := log(x)
(
A(x)

(log x)2
√

x
− 2 − ∆

)
and

fp(x) := log(x)
(
A(p)

(log x)2
√

x
− 2 − ∆

)
,

for x ∈ [p, P(p)) the function fp is decreasing, so f (x) ≤ f (p). In addition,
evaluating

max
{
f (x) : 409 ≤ x ≤ 108

}
= max

{
f (p) : 409 ≤ p ≤ 108

}
= f (33647) ≤ 27.727.

If 2 ≤ x < 409, by Lemma 1.9 A(x) is non-decreasing, so

A(x) ≤ A(Q(409)) = A(401) ≤ 2.52,
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28 Nicolas’ π(x) < li(θ(x)) Equivalence

and as before
(log x)2
√

x
≤

16
e2 .

Thus,

f (x) ≤ log(409)
(
2.52

16
e2 − 2 − ∆

)
< 20.51,

completing the proof of (1).

(2) Let

h(x) :=
√

x
(log x)2

(
2 − ∆ +

5.12
log x

)
.

For x ≥ 108 we have A(x) ≥ h(x) by Lemma 1.8. Also define for any prime p
with e6 < 409 ≤ p < 108, a function

kp(x) := log(x)
(
A(p)

(log x)2
√

x
− (2 − ∆)

)
.

If p ≤ x < P(p) then A(x) = A(p) and as the sum of two decreasing functions
in this range kp(x) is also decreasing and so

kp(x) ≥ k̃p(p) = lim
x→P(p), x<P(p)

kp(x) = log P(p)

A(p)
(log P(p))2√

P(p)
− 2 + ∆

 .
Evaluating numerically

min
409≤p<108

k̃p(p) = k̃409(409) ≥ 15.3734,

so for 409 ≤ x < 108 we have kp(x) ≥ 15.3734. Therefore in that range also
A(x) > h(x).

Finally, for 89 ≤ p ≤ P(401) = 409 we check numerically that A(p) >
max(h(p), h(P(p))) so A(x) > h(x) in [89, 409] also. This completes the proof.

□

1.6 A Big Omega Theorem of Robin

First, we recall some definitions for x > 0:

ψ(x) :=
∑

j∈N, p j≤x

log p,
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1.6 A Big Omega Theorem of Robin 29

Π(x) :=
∑
j∈N

π(x1/ j)
j
=

∑
p j≤x

1
j
,

li(x) :=
∫ x

0

dt
log t

.

We derive a set of Mellin transforms of functions which we use.

Lemma 1.14 Letℜs > 1. Then

(1) s
∫ ∞

2

ψ(x)
xs+1 dx = −

ζ′(s)
ζ(s)

,

(2) s
∫ ∞

2

π(x)
xs+1 dx =

∑
p∈P

1
ps ,

(3) s
∫ ∞

2

Π(x)
xs+1 dx = log ζ(s),

(4) s
∫ ∞

2

li(x)
xs+1 dx = − log(s − 1) + g(s),

where g(s) is an entire function.

Proof (1) Since the Dirichlet series for ζ(s) converges absolutely when
ℜs > 1 and also

1
ζ(s)
=

∞∑
n=1

µ(n)
ns and

∑
d|n

Λ(d) = log n,

using the Dirichlet product we can derive

−ζ′(s) =
∞∑

n=1

log n
ns =

∞∑
n=1

∑
d|nΛ(d)

ns

=

 ∞∑
n=1

1
ns

  ∞∑
n=1

Λ(n)
ns

 = ζ(s)
∞∑

n=1

Λ(n)
ns .

Because ψ(x) =
∑

n≤xΛ(n), ψ(x) ≪ x, and ψ(x)/xs → 0 as x → ∞, using
Abel’s theorem [3, theorem 4.2], we get

∞∑
n=1

Λ(n)
ns = s

∫ ∞

1

ψ(x)
xs+1 dx.
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30 Nicolas’ π(x) < li(θ(x)) Equivalence

Therefore, because ζ(s) , 0 for σ > 1, dividing we have

−
ζ′(s)
ζ(s)

= s
∫ ∞

1

ψ(x)
xs+1 dx.

(2) Let pn be the nth prime with p1 = 2. Then, bounding the difference be-
tween the left-hand side and the partial sum of terms on the right and then
letting their number tend to infinity to get the first line, and using partial sum-
mation to get the last line, we have

s
∫ ∞

1

π(x)
xs+1 dx =

∑
n∈N

∫ pn+1

pn

sn
xs+1 dx

=
∑
n∈N

n
(
−x−s

∣∣∣pn+1

pn

)
=

∑
n∈N

n
(

1
ps

n
−

1
ps

n+1

)
=

∑
p

1
ps .

(3) Taking logarithms of the Euler product representation for ζ(s), using ab-
solute convergence of the inner sum to get the fourth equality and (2) to get
the third, with κ :=

⌊
log x/ log 2

⌋
we have

log ζ(s) = −
∑

p

log
(
1 −

1
ps

)
=

∑
p∈P
j∈N

1
jp js

=
∑
j∈N

1
j

∑
p

1
p js


=

∑
j∈N

s
∫ ∞

2

π(y)
y js+1 dy

= s
κ∑

j=1

1
j

∫ ∞

1

π(x1/ j)
xs+ j dx

= s
∞∑
1

∑κ
j=1

π(x1/ j)
j

xs+1 dx

= s
∫ ∞

1

Π(x)
xs+1 dx.
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1.6 A Big Omega Theorem of Robin 31

(4) Because | li(x)| ≤ x, for x ≥ 2 the integral∫ e

2

li(x)
xs+1 dx

is an entire function of s. Thus, we are able to simplify the working by shifting
the lower limit of the integral of identity (4) to e, and then use integration by
parts to get

s
∫ ∞

e

li(x)
xs+1 dx = −

li(x)
xs

∣∣∣∣∣∞
e
+

∫ ∞

e

1
xs log x

dx.

Next, make the substitution xs−1 = eu. Because the second integral in the
second line of what follows is constant and the third entire, we get∫ ∞

e

1
xs log x

dx =
∫ ∞

s−1

e−u

u
du

=

∫ 1

s−1

du
u
+

∫ ∞

1

e−u

u
du +

∫ 1

s−1

e−u − 1
u

du

= − log(s − 1) + g1(s),

where g1(s) is entire. Therefore, there is an entire function g(s) such that

s
∫ ∞

2

li(x)
xs+1 dx = − log(s − 1) + g(s).

This completes the proof. □

Big omega is used to describe irregularities exhibited by a given function
as x becomes unbounded. We say for g(x) > 0 that f (x) = Ω+(g(x)) if there is
a sequence xn → ∞ and constant c > 0 such that f (xn) > cg(xn) for all n ∈ N.
We say for g(x) > 0 that f (x) = Ω−(g(x)) if there is a sequence yn → ∞

and constant c > 0 such that f (yn) < −cg(xn) for all n ∈ N. Finally, we say
f (x) = Ω(g(x)) if there is a sequence xn → ∞ and constant c > 0 such that
| f (xn)| > cg(xn) for all n ∈ N.

Lemma 1.15 (Landau)[29, theorem 4.12] Let s ∈ C and let f (x) :
[1,∞) → R be measurable and bounded on all bounded intervals. Suppose
that

F(s) :=
∫ ∞

1
f (x)

dx
xs

has a finite abscissa of convergence σc so F(s) ∈ C ifℜs > σc.
(a) If there exists an a ∈ R such that f (x) is non-negative or non-positive

for x ≥ a, the integral F(s) for σ = ℜs > σc has a singularity at s = σc and
F(s) converges in a half plane such that it is holomorphic for σ > σc but not
in any half plane σ > σc − ϵ for any ϵ > 0.
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32 Nicolas’ π(x) < li(θ(x)) Equivalence

(b) If F(s) is holomorphic at s = σc, then f (x) changes sign at all points in
an infinite set xn with xn → ∞. We also have for every ϵ > 0

f (x) = Ω±
(
xσc−ϵ

)
.

Recall Θ = sup{ℜρ : ζ(ρ) = 0}, and note that if RH is false there is an α
with 1

2 < α ≤ Θ ≤ 1.

Theorem 1.16 (Robin)[203, lemma 2]
If RH is false, then or all α with 0 < α < Θ, we have as x→ ∞

A(x) = li(θ(x)) − π(x) = Ω−(xα).

Proof (1) In what follows, h(s) denotes a function holomorphic onℜs > 0
which is not always the same in every instance. First, we define

D(x) := li(x) − Π(x) +
ψ(x) − x

log x
and J(s) :=

∫ ∞

2
D(x)

log x
xs+1 dx.

Using Lemma 1.14, forℜs > 1, since (xs)′ = xs log x, we have

J(s) =
d
ds

(
log(s − 1)

s
+

log ζ(s)
s

)
−

1
s
ζ′(s)
ζ(s)

−
1

s − 1
+ h(s)

= −
1
s2 log ((s − 1)ζ(s)) −

1
s
+ h(s).

The numerator of the first term on the right-hand side is holomorphic in a
neighbourhood of s = 1. Define

K(s) =
∫ ∞

2

xα log x
xs+1 dx =

1
(s − α)2 + h(s),

where 1
2 < α < Θ and consider the difference

fα(s) := J(s) − K(s) =
∫ ∞

2

D(x) log x − xα log x
xs+1 dx.

Let σc be the abscissa of convergence of the Dirichlet integral defining fα(s).
This integral defines a single-valued branch of fα(s) which is holomorphic in
the right half plane ℜs > σc. Therefore this half plane does not contain a
zero of ζ(s), and so all zeros must satisfyℜρ ≤ σc, giving Θ ≤ σc.

In addition, because (s−1)ζ(s) is entire and strictly positive on (0, 1], it has
no singularities on (α, 1] ⊂ R, and thus fα(s) has no singularities on (α, 1]
either. Therefore

α < Θ ≤ σc,
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1.6 A Big Omega Theorem of Robin 33

so s = σc is a regular point of fα(s). Thus, by Lemma 1.15,

D(x) log x − xα log x

changes sign on a sequence xn → ∞. In other words D(x) = Ω±(xα).

(2) Recall the definition A1(x) := li(ψ(x)) − Π(x) and let S (x) := x − ψ(x).
Then using Equation (1.4) from the proof of Lemma 1.3 (which does not
assume RH), we get

A1(x) = D(x) + O
(

S (x)2

x(log x)2

)
.

If Θ < 1 then, since |x − ψ(x)| ≪ xΘ log x this estimate gives A1(x) = D(x) +
O

(
x2Θ−1(log x)2

)
, and we can choose α so 2Θ − 1 < α < 1. In this case the

lemma follows from the result of Step (1). If however Θ = 1, from Equation
(1.4) again, we can derive the inequality A1(x) < D(x), which by the result of
Step (1) implies A1(x) = Ω−(xα).

(3) In this final step we show that A2(x) is suitably small. We have

|A2(x)| ≤ | li(ψ(x)) − li(θ(x))| + |Π(x) − π(x)|.

Using Chebyschev’s estimate we have π(x) ≪ x/ log x. Thus,

Π(x) − π(x) =
κ∑

j=2

π(x1/ j)
j
≪
√

x log x.

Also, using Equation (1.4) again with

h = ψ(x) − θ(x) =
κ∑

j=2

θ(x1/ j) ≪
√

x log x,

for x sufficiently large we get

| li(ψ(x)) − li(θ(x))| ≪
h

log x
≪
√

x.

Therefore |A2(x)| ≪
√

x log x so, by the result of Step (2), we have

A(x) = A1(x) + A2(x) = Ω−(xα),

which completes the proof. □

Theorem 1.17 (Nicolas)
The Riemann hypothesis is equivalent to the relation A(x) > 0 for all x ≥

11.
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34 Nicolas’ π(x) < li(θ(x)) Equivalence

Proof If RH is true, then by Lemmas 1.10(1) and 1.13(2) we get A(x) > 0
for all x ≥ 11.

If RH is false, by Robin’s result, Theorem 1.16, there exists α > 1
2 such

that

lim inf
x→∞

A(x)
xα

< 0,

so A(xn) < 0 for an infinite number of xn with limit-value infinity. Thus,
A(x) > 0 for x ≥ 11 is false. Therefore RH is equivalent to the statement
A(x) > 0 for all x ≥ 11, and the proof is complete. □

1.7 End Note

Nicolas [172, theorem 1.1] also demonstrated a number of alternative equiv-
alents to RH based on the function A(x), which are relatively straightforward
to demonstrate. Let

∆ :=
∑
ρ

1
ρ(1 − ρ)

(see for example [29, lemma 2.10(b)]). Then each of the following properties
regarding A(x) is equivalent to RH:
(1)

lim sup
x→∞

A(x)(log x)2
√

x
≤ 2 + ∆,

(2)

lim inf
x→∞

A(x)(log x)2
√

x
≤ 2 − ∆,

(3)
A(x)(log x)2
√

x
≥ 2 − ∆, x ≥ 37,

(4)
A(x)(log x)2
√

x
≤

A(x0)(log x0)2
√

x0
, x ≥ 2, x0 = 3643.
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