Canad. Math. Bull. Vol. 21 (2), 1978

THE REPRESENTATION OF (C, k) SUMMABLE SERIES IN FOURIER FORM

BY

G. E. CROSS

1. Introduction. Several non-absolutely convergent integrals have been defined which generalize the Perron integral. The most significant of these integrals from the point of view of application to trigonometric series are the P^n - and \mathcal{P}^n -integrals of R. D. James [10] and [11]. The theorems relating the P^n -integral to trigonometric series state essentially that if the series

(1.1)
$$a_0/2 + \sum (a_n \cos nx + b_n \sin nx) \equiv \sum a_n(x)$$

is summable (C, n-2) on $[0, 2\pi]$ to a finite function f(x) and if a slightly weaker condition than (C, n-2) summability holds on the conjugate series

(1.2)
$$\sum (a_n \sin nx - b_n \cos nx) \equiv -\sum b_n(x)$$

then f(x), $f(x)\cos nx$, $f(x)\sin nx$ are P^n -integrable on $[0, 2\pi]$ and the coefficients can be written in Fourier form using the integral.

In the case of the \mathcal{P}^n -integral, as in the case of the $C_{n-1}P$ -integral of Burkill [4], it is necessary to posit summability (C, n-2) of both series (1.1) and (1.2) [6].

In the original formulation of the P^n -integral there was an error which has now been corrected in two different ways ([7] and [12]) so that the original theorems by James on trigonometrical series remain valid in terms of the revised integral.

The definition of the P^n - and \mathcal{P}^n -major and minor functions and the proof of uniqueness of the integrals on an interval [a, b] involve in an essential way the idea of a set of *n* points including the end points of the interval (we shall call it a "basis") at each point of which it is posited that the major and minor functions vanish.

One of the main theorems in the development of the theory of the P^n - and \mathscr{P}^n -integrals states that if a function is integrable with respect to a basis $\{\alpha_i\}_{i=1}^n$ on an interval [a, b], then it is integrable with respect to any other basis $\{\beta_i\}_{i=1}^n$ in [a, b]. Thus if a function f is \mathscr{P}^n - or P^n -integrable on [a, b] it is integrable with respect to a basis which includes a and b but the other (n-2) points of which are taken arbitrarily close to a or b. Thus the property of integrability does not depend intrinsically on the basis.

Received by the editors July 6, 1977 and, in revised form, October 7, 1977.

Bullen [3] has simplified James' definition by eliminating the concept of a basis from the theory. He replaced the 2n conditions $Q(a_i) = q(a_i) = 0$, i = 1, 2, ..., n, on the major and minor functions by the 2n conditions $Q_{(k)}(a_1) = q_{(k)}(a_1) = 0$, $0 \le k \le n-1$. The resulting integral is less general than the unsymmetric \mathcal{P}^n -integral ([3], Theorem 12(b)) and like the \mathcal{P}^n -integral does not give a satisfactory representation theorem for trigonometrical series.

The present paper combines the approaches of [3] and [7] to obtain a symmetric P_n^* -integral, simpler and more natural than the original P^n -integral, in terms of which a strong representation theorem for trigonometrical series still holds. The result is similar to that which holds for convergent series in terms of the *SCP*-integral [5] and for (C, n) summable series in terms of the *SC*_{n+1}*P*-integral [9] in the sense that the definite integral in the representation takes the form $\int_{\alpha}^{\alpha+2\pi}$ where α belongs to a set of full measure in $[0, 2\pi]$.

2. Definitions and Preliminaries. Let F(x) be a real valued function defined on the bounded interval [a, b]. If there exist constants $\alpha_1, \alpha_2, \ldots, \alpha_r$ which depend on x_0 only and not on h, such that

(2.1)
$$F(x_0+h) - F(x_0) = \sum_{k=1}^r \alpha_k \frac{h^k}{k!} + o(h'), \quad \text{as} \quad h \to 0,$$

then α_k , $1 \le k \le r$, is called the Peano derivative of order k of F at x_0 and is denoted by $F_{(k)}(x_0)$. If F possesses derivatives $F_{(k)}(x_0)$, $1 \le k \le r-1$, we write

(2.2)
$$\frac{h^r}{r!} \gamma_r(F; x_0, h) = F(x_0 + h) - F(x_0) = \sum_{k=1}^{r-1} \frac{h^k}{k!} F_{(k)}(x_0).$$

We define

$$\overline{F}_{(r)}(x_0) = \limsup_{h \to 0} \gamma_r(F; x_0, h)$$
$$\underline{F}_{(r)}(x_0) = \liminf_{h \to 0} \gamma_r(F; x_0, h)$$

By restricting h to be positive (or negative) in (2.1) we can define one-sided Peano derivatives, which we write as $F_{(k)+}(x_0)$ (or $F_{(k)-}(x_0)$).

If there exist constants $\beta_0, \beta_2, \ldots, \beta_{2r}$ which depend on x_0 only, and not on *h*, such that

$$\frac{F(x_0+h)+F(x_0-h)}{2} = \sum_{k=0}^r \beta_{2k} \frac{h^{2k}}{(2k)!} + o(h^{2r}), \quad \text{as} \quad h \to 0,$$

then β_{2k} , $0 \le k \le r$ is called the de la Vallee Poussin derivative of order 2k of F at x_0 and is denoted by $D_{2k}F(x_0)$.

If F has derivatives $D_{2k}F(x_0), 0 \le k \le r-1$, we write

$$\frac{h^{2r}}{(2r)!}\,\theta_{2r}(F;\,x_0,\,h) = \frac{F(x_0+h) + F(x_0-h)}{2} - \sum_{k=0}^{r-1} \frac{h^{2k}}{(2k)!}\,D_{2k}F(x_0),$$

https://doi.org/10.4153/CMB-1978-026-1 Published online by Cambridge University Press

[June

and define

$$\overline{D}^{2r}F(x_0) = \limsup_{h \to 0} \theta_{2r}(F; x_0, h)$$
$$\underline{D}^{2r}F(x_0) = \liminf_{h \to 0} \theta_{2r}(F; x_0, h).$$

All the above symbols are defined similarly for odd-numbered indices (see, for example, [10], pp. 163–164).

If $F_{(r)}(x_0)$ exists, so does $D^{(r)}F(x_0)$ and $F_{(r)}(x_0) = D^{(r)}F(x_0)$.

We denote the ordinary derivative of F(x) at x_0 of order k by $F^{(k)}(x_0)$.

The function F will be said to satisfy condition $A_n^*(n \ge 2)$ in [a, b] if it is continuous in [a, b], if, for $1 \le k \le n-2$, each $F_{(k)}(x)$ exists and is finite in (a, b) and if

(2.3)
$$\lim_{h \to 0} h\theta_n(f; x, h) = 0$$

for all $x \in (a, b) - E$, where E is countable.

When a function F satisfies condition (2.3) at a point x, F is said to be n-smooth at x.

THEOREM 2.1. If F satisfies condition $A_{2m}^*(A_{2m+1}^*)$ in [a, b], then $F_{(2k)}(x) = D_{2k}F(x)(F_{(2k+1)}(x) = D_{(2k+1)}(x))$ does not have an ordinary discontinuity in (a, b) for $0 \le k \le m-1$.

Proof. This is Lemma 8.1 [10].

Note: Condition A_{2m}^* is a stronger form of James' condition A_{2m} , [10], in that it replaces the requirement that $D_{2k}F(x)$ exist and be finite for $1 \le k \le m-1$ by the same condition on the Peano derivatives. Theorem 2.1 then shows that A_{2m}^* also implies James' condition B_{2m-2} , [10].

We shall make extensive use of the theory of n-convex functions in the following. For the definition and properties of n-convex functions we refer the reader to [2].

THEOREM 2.2. If F satisfies condition A_n^* , $(n \ge 2)$, in [a, b] and

(a)
$$\bar{D}^n F(x) \ge 0$$
, $x \in (a, b) - E$, $|E| = 0$,

(b) $\overline{D}^n F(x) > -\infty$, $x \in (a, b) - S$, S a scattered set,

(c) $\limsup_{h\to 0} h\theta_n(F; x, h) \ge 0 \ge \liminf_{h\to 0} h\theta_n(F; x, h), \qquad x \in S,$

then F is n-convex.

Proof. In [2], Theorem 16, Bullen proves a similar result which implies this theorem. In place of condition A_n^* he uses a condition C_n which is just A_n together with B_{n-2} , but as was noted above these are implied by A_n^* .

151

1978]

3. The P_n^* -integral. The \mathcal{P}_n -integral, as originally defined [10] and as revised [3], does not give as strong a theorem on trigonometrical series as the P^n -integral because the \mathcal{P}_n -major and minor functions are required to possess (n-1)st Peano derivatives everywhere on (a, b) or [a, b], the interval of integration, while it is known only that the sum function of the series obtained by formally integrating a (C, n-2) summable series term-by-term n times possesses an (n-1)st Peano derivative almost everywhere. We are thus led to a definition of an nth order integral which relaxes the condition on the (n-1)st derivative. It was the same motivation in the case of convergence that led Burkill [5] to modify the definition of the *CP*-integral to obtain the *SCP*-integral.

DEFINITION 3.1. The functions Q(x) and q(x) are called P_n^* -major and minor functions, respectively, of f(x) on [a, b] if

(3.1)
$$Q(x)$$
 and $q(x)$ satisfy condition A_n^* on $[a, b]$;

(3.2)
$$Q_{(k)}(a+) = q_{(k)}(a+) = 0; \quad 0 \le k \le n-1;$$

(3.3)
$$\underline{D}^n Q(x) \ge f(x) \ge \overline{D}^n q(x), \quad \text{in} \quad [a, b] - E, \qquad |E| = 0;$$

(3.4) $\underline{D}^n Q(\bar{x}) > -\infty$, $\overline{D}^n q(x) < +\infty$, $x \in [a, b] - S$, S a scattered set;

$$\limsup_{h \to 0} h\theta_n(Q; x, h) \ge 0 \ge \liminf_{h \to 0} h\theta_n(Q; x, h)$$

(3.5)

$$\limsup_{h\to 0} h\theta_n(q; x, h) \ge 0 \ge \liminf_{h\to 0} h\theta_n(q; x, h) \quad \text{for} \quad x \in S.$$

THEOREM 3.1. For every pair Q(x) - q(x), satisfying (3.1)–(3.5) the difference Q(x) - q(x) is n-convex in [a, b].

Proof. This is the Lemma of [7].

THEOREM 3.2. For every pair Q(x), q(x) satisfying (3.1)–(3.5) the functions $Q_{(r)}(x) - q_{(r)}(x)$, $0 \le r \le n-2$, $\{Q(x) - q(x)\}_{(n-1)+}$ and $\{Q(x) - q(x)\}_{(n-1)-}$ are monotonic increasing on [a, b]. In particular $Q(x) - q(x) \ge 0$.

Proof. Since $M(x) \equiv Q(x) - q(x)$ is *n*-convex in [a, b] it follows that $M^{(r)}(x)$ exists and is continuous on [a, b], $1 \le r \le n-2$, $M_{(n-1)-}(x)$, $M_{(n-1)+}(x)$ exist and are monotonic increasing on [a, b], and $M_{(n-1)-}(x) = (M^{n-2}(x))'_-$, $M_{(n-1)+}(x) = (M^{n-2}(x))'_+$ (Theorem 7, [2]). We have then $M_{(n-1)+}(x) = (M^{n-2}(x))'_+ \ge (M^{(n-2)}(a))'_+ = M_{(n-1)+}(a) = 0$, $x \in [a, b]$, and so $M^{n-2}(x)$ is monotonic increasing in [a, b] (see, e.g. [13], p. 354, Example IV). But then $(M^{(n-3)}(x))' = M^{(n-2)}(x) \ge M^{(n-2)}(a+) = 0$, on [a, b] which shows that $M^{(n-3)}(x)$ is monotonic increasing on [a, b], i.e. $M^{(n-3)}(x) \ge 0$. Continuing in this way we show that the derivatives of M(x) = Q(x) - q(x) have the properties stated in the theorem.

152

June

DEFINITION 3.2. If corresponding to $\varepsilon > 0$ there exists a pair Q(x), q(x) satisfying the conditions (3.1)-(3.5) and such that

$$Q(b-)-q(b-)<\varepsilon,$$

then f is said to be P_n^* -integrable over [a, b].

THEOREM 3.3. If f is P_n^* -integrable over [a, b] then it is P_n^* -integrable over [a, x] for each $x \in [a, b]$.

Proof. Obvious.

THEOREM 3.4. If f is P_n^* -integrable over [a, b] there is a function F(x) which is the inf of all major functions of f(x) and the sup of all minor functions.

Proof. This follows in the usual way.

DEFINITION 3.3. If f(x) is P_n^* -integrable over [a, b] the P_n^* -integral of f(x) over $[a, x], x \in [a, b]$, is defined to be F(x) where F(x) is the function of Theorem 3.4. We write

$$F(x) = P_n^* \int_a^x f(t) dt, \qquad x \in [a, b].$$

The proof of the following theorem is straightforward, (see [3], [7], and [10]).

THEOREM 3.5. If f(x) is P_n^* -integrable and F(x) is the function of Definition 3.3, then

- (i) F(x) is continuous on [a, b];
- (ii) For every major and minor function Q(x) and q(x) the differences Q(x)-F(x) and F(x)-q(x) are n-convex in [a, b];
- (iii) F(x) possesses derivatives $F_{(k)}(x)$, $1 \le k \le n-2$;
- (iv) F(x) is n smooth in (a, b).

We do not have the power of proving integrability on sub-intervals and additivity of the integral on abutting intervals but this is not surprising since additivity on abutting intervals is closely connected with the existence of the (n-1)st one-sided derivatives of F(x) and Q(x) (see [8]).

It is easy to prove that the unsymmetric P^n -integral of [3] is included in the P_n^* -integral.

The relationship between the P_n^* -integral and the symmetric P^n -integral of [7] is described in the following theorem:

THEOREM 3.6. If f(x) is P_n^* -integrable on [a, b] then f(x) is P^n -integrable on [a, b] with respect to any basis $a = \alpha_1 < \alpha_2 < \cdots < \alpha_n = b$. Moreover, if

$$F(x) = P_n^* \int_a^x f(t) \, dt,$$

https://doi.org/10.4153/CMB-1978-026-1 Published online by Cambridge University Press

G. E. CROSS

then, for $\alpha_s \leq x < \alpha_{s+1}$, we have

(3.6)
$$(-1)^{s} \int_{(\alpha_{i})}^{x} f(t) d_{n}t = F(x) - \sum_{i=1}^{n} \lambda(x; \alpha_{i})F(\alpha_{i}),$$

where

$$\lambda(x;\alpha_i) = \prod_{j\neq i} \frac{(x-\alpha_j)}{(\alpha_i-\alpha_j)}.$$

Proof. Let Q(x), q(x) be P_n^* -major and minor functions, respectively, of f(x) on [a, b]. Then

(3.7)
$$\overline{Q}(x) = Q(x) - \sum_{i=1}^{n} \lambda(x; \alpha_i) Q(\alpha_i)$$

(3.8)
$$\bar{q}(x) = q(x) - \sum_{i=1}^{n} \lambda(x; \alpha_i) q(\alpha_i)$$

are P^n -major and minor functions, respectively, of f(x) on [a, b]. Moreover given $\varepsilon > 0$, Q(x) and q(x) may be chosen so that $\overline{Q}(x) - \overline{q}(x) < \varepsilon$, $x \in [a, b]$ and then (3.6) follows from (3.7) and (3.8).

In [3] Bullen proves the equivalence of the $C_{n-1}P$ -integral [4] and his unsymmetric P^n -integral:

THEOREM 3.7. (Theorem 16, [3]): f is P^n -integrable on [a, b] if and only if it is $C_{n-1}P$ -integrable in [a, b]. If F is the P^n -integral of f then

$$F_{(n-1)}(x) = C_{n-1}P\int_{a}^{x} f(t) dt$$

and

$$F(x) = P \int_{a}^{x} C_{1} P \int_{a}^{x_{1}} C_{2} P \int_{a}^{x_{2}} \cdots C_{n-1} P \int_{a}^{x_{n-1}} f(t) dt dx_{n-1} \cdots dx_{1}$$

The unsymmetric integral of [3] thus is an *n*-fold iterated integral while the symmetric integral of [7] differs from the P_n^* -integral by a polynomial of degree (n-1). The relationship between the integrals in Theorem. 3.6 may be described in a manner which is more relevant to our investigation by rewriting (3.6) in the form

(3.9)
$$(-1)^s \int_{(\alpha_i)}^x f(t) d_n t = V_n(F; \alpha_1, \alpha_2, \ldots, \alpha_n, x) \cdot \prod_{i=1}^n (x - \alpha_i),$$

where $V_n(F; \alpha_1, \alpha_2, \ldots, \alpha_n, x)$ is the divided difference of order *n* of *F* over the points $\alpha_1, \alpha_2, \ldots, \alpha_n, x$. Thus the definite symmetric P^n -integral is, except for a multiplicative constant, the *n*th divided difference of the P_n^* -integral which may be thought of as an *n*-fold integral.

https://doi.org/10.4153/CMB-1978-026-1 Published online by Cambridge University Press

[June

154

This explains why our Theorem 4.3 gives the representation of the coefficients of a trigonometrical series in terms of a divided difference of the P_{*}^{*} -integral.

4. Trigonometric Series. Following the notation of James [11] we identify the following conditions which may be imposed on series (1.1):

(4.1)
$$a_n = o(n^k), \qquad b_n = o(n^k),$$

(4.2)
$$A_n^{k-1}(x_0) = o(n^k),$$

(4.3)
$$a_0/2 + \sum_{n=1}^{\infty} a_n(x_0) = f(x_0), \quad (C, k).$$

We integrate series (1.1) formally term-by-term to obtain:

$$(4.4) \quad \frac{a_0 x}{2} + \sum_{n=1}^{\infty} \frac{a_n \sin nx - b_n \cos nx}{n} \equiv \frac{1}{2} a_0 x - \sum_{n=1}^{\infty} \frac{b_n(x)}{n} \equiv \frac{1}{2} a_0 x - \sum_{n=1}^{\infty} c_n(x).$$

We shall make use of the following theorem:

THEOREM 4.1. (Theorem 3.1, [11]). If condition (4.1) is satisfied, then the series obtained by integrating (1.1) formally term-by-term k+2 times converges to a continuous function F(x). If conditions (4.1) and (4.2) are both satisfied, then $D^{k+2-2r}F(x_0)$ exists for $1 \le r \le (k+1)/2$ and F is (k+2)-smooth at x_0 . If conditions (4.1) and (4.3) both hold, then F is (k+2)-smooth at x_0 and

(4.5)
$$\frac{a_0 x_0^{2r}}{2(2r)!} + (-1)^r \sum_{n=1}^{\infty} \frac{a_n(x_0)}{n^{2r}} = D^{k+2-2r} F(x_0), \qquad (C, k-2r),$$

for $0 \le r \le (k+1)/2$.

THEOREM 4.2. Suppose the series (1.1) is summable (C, k) to a finite function f(x) for all $x \in [0, 2\pi) - E$, where E is at most countable, and let $f(x) = 0, x \in E$. If $A_n^{(k-1)}(x) = o(n^k)$ for $x \in E$ and $B_n^{k-1}(x) = o(n^k)$ for $x \in [0, 2\pi]$ then there exists a set $F \subset [0, 2\pi]$, $|F| = 2\pi$, such that f(x), $f(x)\cos px$, $f(x)\sin px$ are each P_n^* -integrable on $[\alpha, \alpha + 2\pi]$, $\alpha \in F$.

Proof. The series obtained by integrating (1.1) formally (k+2) times converges uniformly to a continuous function F(x). It follows from Theorem 4.1 and the proof of Theorem 3.2 [11] that $F_{(r)}(x), 0 \le r \le k$, exists in $[0, 2\pi], D^{(k+2)}F(x)$ exists and equals f(x) in $[0, 2\pi] - E$, and F(x) is *n*-smooth at each point of $(0, 2\pi)$. Moreover the set of points where either $\underline{D}^n F(x) = -\infty$ or $\overline{D}^n F(x) = +\infty$ is a scattered set ([11], Theorem 5.1).

It is well known that the series (4.4) is summable (C, k-1) almost everywhere in $[0, 2\pi]$. Let α be a point of the set A_0 of summability of (4.4). Since the function F(x) is also the function obtained by integrating (4.4) formally k+1 times, it follows from Theorem 4.1 that $D^{(k+1)}F(\alpha)$ exists. We

https://doi.org/10.4153/CMB-1978-026-1 Published online by Cambridge University Press

G. E. CROSS

have, for k even, for $\alpha \in A_0 \cap ([0, 2\pi] - E)$,

(4.6)
$$\frac{F(\alpha+h)-F(\alpha-h)}{2} = \sum_{r=0}^{k/2} D_{2r+1}F(\alpha)\frac{h^{2r+1}}{(2r+1)!} + o(h^{k+1})$$

and, since $D^{k+2}F(\alpha)$ exists,

(4.7)
$$\frac{F(\alpha+h)+F(\alpha-h)}{2}\sum_{r=0}^{k+2/2}D_{2r}F(\alpha)\frac{h^{2r}}{(2r)!}+o(h^{k+2}),$$

and similar equalities hold when k is odd. Together, (4.6) and (4.7) show that $F_{(k+1)}(\alpha)$ exists which, of course, equals $D^{k+1}F(\alpha)$. Now it is clear that the function defined by

$$Q(x) = F(x) - \sum_{r=1}^{k+1} F_{(r)}(\alpha) \frac{(x-\alpha)^r}{r!}$$

is both a P_{k+2}^* -major and minor function for f(x) on $[\alpha, \alpha + 2\pi]$. Moreover fo $x \in [\alpha, \alpha + 2\pi]$,

$$P_{k+2}^* \int_{\alpha}^{x} f(t) dt = F(x) - \sum_{r=1}^{k+1} F_{(r)}(\alpha) \frac{(x-\alpha)^r}{r!} \equiv G_0(x).$$

As in [11] we can write for $x \in [0, 2\pi] - E$

(4.8)
$$\sum_{n=0}^{\infty} u_n(x) = f(x) \cos px, \quad (C, k),$$

where $u_n = o(n^k)$, $U_n^{k-1}(x) = o(n^k)$ for all x, $u_n(x)$ is the *n*th term of the series which is the formal product of series (1.1) and $\cos px$, and $U_n^{k-1}(x)$ is the (k-1)st Cesàro mean of the same series.

An application of Theorem 4.1 shows that the series obtained by integrating (4.8) formally term-by-term k+2 times converges uniformly to a continuous function G(x) such that

$$\lim_{h\to 0} h\theta_{k+2}(G; x, h) = 0,$$

for all x, and,

$$\frac{u_0 x^{2r}}{2(2r)!} + (-1)^r \sum_{n=1}^{\infty} \frac{u_n(x)}{n^{2r}} = D_{k+2-2r} G(x), \qquad (C, k-2r),$$

for $0 \le r \le (k+1)/2$ and $x \in [0, 2\pi] - E$.

Moreover it was shown in [7] that $G_{(k)}(x)$ exists everywhere in $[0, 2\pi]$, and it follows, as before, that $G_{(k+1)}(x)$ exists in a set A_P of full measure in $[0, 2\pi]$. We have then, since condition (3.4) of Definition 3.1 is obviously satisfied for G(x),

(4.9)
$$P_{k+2}^* \int_{\beta_P}^x f(t) \cos pt \, dt = G(x) - \sum_{r=1}^{k+1} G_{(r)}(\beta_P) \frac{(x-\beta_P)^r}{r!} \equiv G_P(x),$$

https://doi.org/10.4153/CMB-1978-026-1 Published online by Cambridge University Press

[June

for $x \in [\beta_P, \beta_P + 2\pi]$, $\beta_P \in A_P$. Similarly, if the series

(4.10)
$$\sum_{n=0}^{\infty} U_n(x) (= f(x) \sin px)$$

is the formal product of series (4.1) with sin px and H(x) is the sum of the series obtained by integrating (4.10) formally (k+2) times we have

(4.11)
$$P_{k+2}^{*} \int_{\gamma_{p}}^{x} f(t) \sin pt \, dt = H(x) - \sum_{r=1}^{k+1} H_{(r)}(\gamma_{p}) \frac{(x-\gamma_{p})^{r}}{r!} \equiv H_{p}(x),$$

for $x \in [\gamma_P, \gamma_P + 2\pi]$, $\gamma_P \in B_P$, where B_P is a set full measure on $[0, 2\pi]$. The theorem follows by choosing $F = \bigcap_{P=0}^{\infty} (B_{P+1} \cap A_P)$.

THEOREM 4.3. Under the hypothesis of Theorem 4.2 the coefficients of series (1.1) are given by

(4.12)
$$a_P = 2(k+2)! V_{k+2}(G_P), P = 0, 1, 2, \dots,$$

(4.13)
$$b_P = 2(k+2)! V_{k+2}(H_P), P = 1, 2, ...,$$

where $V_{k+2}(G_P) = V_{k+2}(G_P; x_1, x_2, ..., x_{k+2}, x_{k+3})$ is the divided difference of G_P of order k+2 at the k+3 points

$$B_1 \equiv (x_1, x_2, \ldots, x_{k+2}, x_{k+3}),$$

$$\equiv (\alpha - (k+2)\pi, \alpha - k\pi, \ldots, \alpha - 2\pi, \alpha + 2\pi, \ldots, \alpha + k\pi, \alpha + (k+2)\pi, \alpha),$$

or

$$B_2 = (x_1, x_2, \dots, x_{k+2}, x_{k+3}) \equiv (\alpha - (k+1)\pi, \alpha - (k-1)\pi, \dots, \alpha - 2\pi, \alpha + 2\pi, \dots, \alpha + (k+1)\pi, \alpha + (k+3)\pi, \alpha)$$

depending on whether k is even or odd.

Proof. In order to verify (4.12) for P = 0 we note first that

$$V_{k+2}(G_0) = V_{k+2}(F)$$

since any (k+2) divided difference of a polynomial of degree (k+1) is 0. Next we write

$$F(x) \equiv G_1(x) + \frac{a_0 x^{k+2}}{2(k+2)!}$$

where $G_1(x)$ is periodic of period 2π . The divided difference of order (k+2) of the function $G_1(x)$ at the (k+3) points of B is just the divided difference of the constant $G_1(\alpha)$ which is 0. Since the divided difference of the function x^{k+2} is equal to 1, we have

$$V_{k+2}(G_0) = \frac{a_0}{2(k+2)!}$$

https://doi.org/10.4153/CMB-1978-026-1 Published online by Cambridge University Press

1978]

G. E. CROSS

Formula (4.12) for P = 1, 2, ... may be verified in exactly the same way since the constant term in (4.8) is $a_P/2$. A similar remark applies to formula (4.13).

Because of Theorem 3.6, the formulae (4.12) and (4.13) may be written in terms of the P^n -integral. For example, (4.12) becomes

$$a_P = 2(k+2)! V_{k+2} \left(P^{k+2} \int_{(\alpha_i)}^x f(t) \cos pt \, dt \right), \qquad P = 0, 1, 2, \dots$$

where (α_i) is any basis in $[\alpha, \alpha + 2\pi]$. This follows from (3.6) using the fact again that a divided difference of order k+2 of a polynomial of degree k+1 is 0.

BIBLIOGRAPHY

1. P. S. Bullen, Construction of Primitives of Generalized Derivatives with Applications to Trigonometric Series, Can. J. Math. vol. 13 (1961) pp. 48-58.

2. —, A Criterion for n-Convexity, Pacific J. Math. vol. 36 (1971) pp. 81-89.

3. —, The Pⁿ-integral, J. Australian Math. Soc., (2) vol. 14 (1972) pp. 219–236.

4. J. C. Burkill, The Cesàra-Perron Scale of Integration, Proc. London Math Soc. (2) vol 39 (1935) pp. 541-552.

5. —, Integrals and Trigonometric Series, Proc London Math. Soc. (3) vol. 1 (1951) pp. 46–57.

6. George Cross, The Expression of Trigonometrical Series in Fourier Form, Can. J. Math. vol 12 (1960) pp. 694-698.

7. —, The Pⁿ-integral, Canad. Math. Bull. vol 18 (1975) pp. 493–497.

8. —, Additivity of the P^n -integral, (to appear).

9. —, The $SC_{k+1}P$ -integral and Trigonometric Series, (to appear).

10. R. D. James, Generalized nth Primitives, Trans. Amer. Math. Soc. vol 76 (1954) pp. 149-176.

11. —, Summable Trigonometric Series, Pacific J. Math. vol 6 (1956) pp. 99-110.

12. S. N. Mukhopadhyay, On the Regularity of the P^n -integral, Pacific Journal of Math., vol 55 (1974) pp. 233-247.

13. E. C. Titchmarsh, Theory of Functions, Oxford, 1939.

UNIVERSITY OF WATERLOO WATERLOO, ONTARIO

158