THE REPRESENTATION OF (C, k) SUMMABLE SERIES IN FOURIER FORM

BY
G. E. CROSS

1. Introduction. Several non-absolutely convergent integrals have been defined which generalize the Perron integral. The most significant of these integrals from the point of view of application to trigonometric series are the P^{n} - and \mathscr{P}^{n}-integrals of R. D. James [10] and [11]. The theorems relating the P^{n}-integral to trigonometric series state essentially that if the series

$$
\begin{equation*}
a_{0} / 2+\sum\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum a_{n}(x) \tag{1.1}
\end{equation*}
$$

is summable $(C, n-2)$ on $[0,2 \pi]$ to a finite function $f(x)$ and if a slightly weaker condition than ($C, n-2$) summability holds on the conjugate series

$$
\begin{equation*}
\sum\left(a_{n} \sin n x-b_{n} \cos n x\right) \equiv-\sum b_{n}(x) \tag{1.2}
\end{equation*}
$$

then $f(x), f(x) \cos n x, f(x) \sin n x$ are P^{n}-integrable on $[0,2 \pi]$ and the coefficients can be written in Fourier form using the integral.

In the case of the \mathscr{P}^{n}-integral, as in the case of the $C_{n-1} P$-integral of Burkill [4], it is necessary to posit summability ($C, n-2$) of both series (1.1) and (1.2) [6].

In the original formulation of the P^{n}-integral there was an error which has now been corrected in two different ways ([7] and [12]) so that the original theorems by James on trigonometrical series remain valid in terms of the revised integral.

The definition of the P^{n} - and \mathscr{P}^{n}-major and minor functions and the proof of uniqueness of the integrals on an interval $[a, b]$ involve in an essential way the idea of a set of n points including the end points of the interval (we shall call it a "basis") at each point of which it is posited that the major and minor functions vanish.

One of the main theorems in the development of the theory of the P^{n} - and \mathscr{P}^{n}-integrals states that if a function is integrable with respect to a basis $\left\{\alpha_{i}\right\}_{i=1}^{n}$ on an interval $[a, b]$, then it is integrable with respect to any other basis $\left\{\beta_{i}\right\}_{i=1}^{n}$ in [a,b]. Thus if a function f is \mathscr{P}^{n} - or P^{n}-integrable on [a, b] it is integrable with respect to a basis which includes a and b but the other $(n-2)$ points of which are taken arbitrarily close to a or b. Thus the property of integrability does not depend intrinsically on the basis.

Received by the editors July 6, 1977 and, in revised form, October 7, 1977.

Bullen [3] has simplified James' definition by eliminating the concept of a basis from the theory. He replaced the $2 n$ conditions $Q\left(a_{i}\right)=q\left(a_{i}\right)=0, i=$ $1,2, \ldots, n$, on the major and minor functions by the $2 n$ conditions $Q_{(k)}\left(a_{1}\right)=$ $q_{(k)}\left(a_{1}\right)=0,0 \leq k \leq n-1$. The resulting integral is less general than the unsymmetric \mathscr{P}^{n}-integral ([3], Theorem 12(b)) and like the \mathscr{P}^{n}-integral does not give a satisfactory representation theorem for trigonometrical series.

The present paper combines the approaches of [3] and [7] to obtain a symmetric P_{n}^{*}-integral, simpler and more natural than the original P^{n}-integral, in terms of which a strong representation theorem for trigonometrical series still holds. The result is similar to that which holds for convergent series in terms of the $S C P$-integral [5] and for (C, n) summable series in terms of the $S C_{n+1} P$-integral [9] in the sense that the definite integral in the representation takes the form $\int_{\alpha}^{\alpha+2 \pi}$ where α belongs to a set of full measure in $[0,2 \pi]$.
2. Definitions and Preliminaries. Let $F(x)$ be a real valued function defined on the bounded interval $[a, b]$. If there exist constants $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ which depend on x_{0} only and not on h, such that

$$
\begin{equation*}
F\left(x_{0}+h\right)-F\left(x_{0}\right)=\sum_{k=1}^{r} \alpha_{k} \frac{h^{k}}{k!}+o\left(h^{\prime}\right), \quad \text { as } \quad h \rightarrow 0 \tag{2.1}
\end{equation*}
$$

then $\alpha_{k}, 1 \leq k \leq r$, is called the Peano derivative of order k of F at x_{0} and is denoted by $F_{(k)}\left(x_{0}\right)$. If F possesses derivatives $F_{(k)}\left(x_{0}\right), 1 \leq k \leq r-1$, we write

$$
\begin{equation*}
\frac{h^{r}}{r!} \gamma_{r}\left(F ; x_{0}, h\right)=F\left(x_{0}+h\right)-F\left(x_{0}\right)=\sum_{k=1}^{r-1} \frac{h^{k}}{k!} F_{(k)}\left(x_{0}\right) . \tag{2.2}
\end{equation*}
$$

We define

$$
\begin{aligned}
& \bar{F}_{(r)}\left(x_{0}\right)=\limsup _{h \rightarrow 0} \gamma_{r}\left(F ; x_{0}, h\right), \\
& \underline{F}_{(r)}\left(x_{0}\right)=\underset{h \rightarrow 0}{\liminf } \gamma_{r}\left(F ; x_{0}, h\right)
\end{aligned}
$$

By restricting h to be positive (or negative) in (2.1) we can define one-sided Peano derivatives, which we write as $F_{(k)+}\left(x_{0}\right)$ (or $F_{(k)-}\left(x_{0}\right)$).

If there exist constants $\beta_{0}, \beta_{2}, \ldots, \beta_{2 r}$ which depend on x_{0} only, and not on h, such that

$$
\frac{F\left(x_{0}+h\right)+F\left(x_{0}-h\right)}{2}=\sum_{k=0}^{r} \beta_{2 k} \frac{h^{2 k}}{(2 k)!}+o\left(h^{2 r}\right), \quad \text { as } \quad h \rightarrow 0,
$$

then $\beta_{2 k}, 0 \leq k \leq r$ is called the de la Vallee Poussin derivative of order $2 k$ of F at x_{0} and is denoted by $D_{2 k} F\left(x_{0}\right)$.

If F has derivatives $D_{2 k} F\left(x_{0}\right), 0 \leq k \leq r-1$, we write

$$
\frac{h^{2 r}}{(2 r)!} \theta_{2 r}\left(F ; x_{0}, h\right)=\frac{F\left(x_{0}+h\right)+F\left(x_{0}-h\right)}{2}-\sum_{k=0}^{r-1} \frac{h^{2 k}}{(2 k)!} D_{2 k} F\left(x_{0}\right)
$$

and define

$$
\begin{aligned}
& \bar{D}^{2 r} F\left(x_{0}\right)=\limsup _{h \rightarrow 0} \theta_{2 r}\left(F ; x_{0}, h\right) \\
& \underline{D}^{2 r} F\left(x_{0}\right)=\liminf _{h \rightarrow 0} \theta_{2 r}\left(F ; x_{0}, h\right)
\end{aligned}
$$

All the above symbols are defined similarly for odd-numbered indices (see, for example, [10], pp. 163-164).

If $F_{(r)}\left(x_{0}\right)$ exists, so does $D^{(r)} F\left(x_{0}\right)$ and $F_{(r)}\left(x_{0}\right)=D^{(r)} F\left(x_{0}\right)$.
We denote the ordinary derivative of $F(x)$ at x_{0} of order k by $F^{(k)}\left(x_{0}\right)$.
The function F will be said to satisfy condition $A_{n}^{*}(n \geq 2)$ in $[a, b]$ if it is continuous in $[a, b]$, if, for $1 \leq k \leq n-2$, each $F_{(k)}(x)$ exists and is finite in (a, b) and if

$$
\begin{equation*}
\lim _{h \rightarrow 0} h \theta_{n}(f ; x, h)=0 \tag{2.3}
\end{equation*}
$$

for all $x \in(a, b)-E$, where E is countable.
When a function F satisfies condition (2.3) at a point x, F is said to be $n-s m o o t h$ at x.

Theorem 2.1. If F satisfies condition $A_{2 m}^{*}\left(A_{2 m+1}^{*}\right)$ in $[a, b]$, then $F_{(2 k)}(x)=$ $D_{2 k} F(x)\left(F_{(2 k+1)}(x)=D_{(2 k+1)}(x)\right)$ does not have an ordinary discontinuity in (a, b) for $0 \leq k \leq m-1$.

Proof. This is Lemma 8.1 [10].
Note: Condition $A_{2 m}^{*}$ is a stronger form of James' condition $A_{2 m}$, [10], in that it replaces the requirement that $D_{2 k} F(x)$ exist and be finite for $1 \leq k \leq$ $m-1$ by the same condition on the Peano derivatives. Theorem 2.1 then shows that $A_{2 m}^{*}$ also implies James' condition $B_{2 m-2}$, [10].

We shall make extensive use of the theory of n-convex functions in the following. For the definition and properties of n-convex functions we refer the reader to [2].

Theorem 2.2. If F satisfies condition $A_{n}^{*},(n \geq 2)$, in $[a, b]$ and
(a) $\bar{D}^{n} F(x) \geq 0, x \in(a, b)-E,|E|=0$,
(b) $\bar{D}^{n} F(x)>-\infty, x \in(a, b)-S, S$ a scattered set,
(c) $\limsup _{h \rightarrow 0} h \theta_{n}(F ; x, h) \geq 0 \geq \liminf _{h \rightarrow 0} h \theta_{n}(F ; x, h), \quad x \in S$,
then F is n-convex.
Proof. In [2], Theorem 16, Bullen proves a similar result which implies this theorem. In place of condition A_{n}^{*} he uses a condition C_{n} which is just A_{n} together with B_{n-2}, but as was noted above these are implied by A_{n}^{*}.
3. The \boldsymbol{P}_{n}^{*}-integral. The \mathscr{P}_{n}-integral, as originally defined [10] and as revised [3], does not give as strong a theorem on trigonometrical series as the P^{n}-integral because the \mathscr{P}_{n}-major and minor functions are required to possess ($n-1$)st Peano derivatives everywhere on (a, b) or $[a, b]$, the interval of integration, while it is known only that the sum function of the series obtained by formally integrating a ($C, n-2$) summable series term-by-term n times possesses an $(n-1)$ st Peano derivative almost everywhere. We are thus led to a definition of an nth order integral which relaxes the condition on the $(n-1)$ st derivative. It was the same motivation in the case of convergence that led Burkill [5] to modify the definition of the $C P$-integral to obtain the $S C P$ integral.

Defintion 3.1. The functions $Q(x)$ and $q(x)$ are called P_{n}^{*}-major and minor functions, respectively, of $f(x)$ on $[a, b]$ if

$$
\begin{gather*}
Q(x) \text { and } q(x) \text { satisfy condition } A_{n}^{*} \text { on }[a, b] ; \tag{3.1}\\
Q_{(k)}(a+)=q_{(k)}(a+)=0 ; \quad 0 \leq k \leq n-1 ; \tag{3.2}\\
\underline{D}^{n} Q(x) \geq f(x) \geq \bar{D}^{n} q(x), \quad \text { in } \quad[a, b]-E, \quad|E|=0 ; \tag{3.3}\\
\underline{D}^{n} Q(\bar{x})>-\infty, \quad \bar{D}^{n} q(x)<+\infty, \quad x \in[a, b]-S, S \text { a scattered set; } \tag{3.4}
\end{gather*}
$$

$$
\begin{equation*}
\limsup _{h \rightarrow 0} h \theta_{n}(Q ; x, h) \geq 0 \geq \liminf _{h \rightarrow 0} h \theta_{n}(Q ; x, h) \tag{3.5}
\end{equation*}
$$

$$
\limsup _{h \rightarrow 0} h \theta_{n}(q ; x, h) \geq 0 \geq \liminf _{h \rightarrow 0} h \theta_{n}(q ; x, h) \text { for } x \in S
$$

Theorem 3.1. For every pair $Q(x)-q(x)$, satisfying (3.1)-(3.5) the difference $Q(x)-q(x)$ is n-convex in $[a, b]$.

Proof. This is the Lemma of [7].
Theorem 3.2. For every pair $Q(x), q(x)$ satisfying (3.1)-(3.5) the functions $Q_{(r)}(x)-q_{(r)}(x), 0 \leq r \leq n-2,\{Q(x)-q(x)\}_{(n-1)+}$ and $\{Q(x)-q(x)\}_{(n-1)-}$ are monotonic increasing on $[a, b]$. In particular $Q(x)-q(x) \geq 0$.

Proof. Since $M(x) \equiv Q(x)-q(x)$ is n-convex in $[a, b]$ it follows that $M^{(r)}(x)$ exists and is continuous on $[a, b], 1 \leq r \leq n-2, M_{(n-1)-}(x), M_{(n-1)+}(x)$ exist and are monotonic increasing on $[a, b]$, and $M_{(n-1)-}(x)=\left(M^{n-2}(x)\right)_{-}^{\prime}$, $\boldsymbol{M}_{(n-1)+}(x)=\left(M^{n-2}(x)\right)_{+}^{\prime} \quad$ (Theorem 7, [2]). We have then $\boldsymbol{M}_{(n-1)+}(x)=$ $\left(M^{n-2}(x)\right)_{+}^{\prime} \geq\left(M^{(n-2)}(a)\right)_{+}^{\prime}=M_{(n-1)+}(a)=0, x \in[a, b], \quad$ and \quad so $\quad M^{n-2}(x)$ is monotonic increasing in [a,b] (see, e.g. [13], p. 354, Example IV). But then $\left(M^{(n-3)}(x)\right)^{\prime}=M^{(n-2)}(x) \geq M^{(n-2)}(a+)=0$, on $[a, b]$ which shows that $M^{(n-3)}(x)$ is monotonic increasing on $[a, b]$, i.e. $M^{(n-3)}(x) \geq 0$. Continuing in this way we show that the derivatives of $M(x)=Q(x)-q(x)$ have the properties stated in the theorem.

Defintion 3.2. If corresponding to $\varepsilon>0$ there exists a pair $Q(x), q(x)$ satisfying the conditions (3.1)-(3.5) and such that

$$
Q(b-)-q(b-)<\varepsilon
$$

then f is said to be P_{n}^{*}-integrable over [a, b].
Theorem 3.3. If f is P_{n}^{*}-integrable over $[a, b]$ then it is P_{n}^{*}-integrable over $[a, x]$ for each $x \in[a, b]$.

Proof. Obvious.
Theorem 3.4. If f is P_{n}^{*}-integrable over $[a, b]$ there is a function $F(x)$ which is the inf of all major functions of $f(x)$ and the sup of all minor functions.

Proof. This follows in the usual way.
Defintion 3.3. If $f(x)$ is P_{n}^{*}-integrable over $[a, b]$ the P_{n}^{*}-integral of $f(x)$ over $[a, x], x \in[a, b]$, is defined to be $F(x)$ where $F(x)$ is the function of Theorem 3.4. We write

$$
F(x)=P_{n}^{*} \int_{a}^{x} f(t) d t, \quad x \in[a, b] .
$$

The proof of the following theorem is straightforward, (see [3], [7], and [10]).

Theorem 3.5. If $f(x)$ is P_{n}^{*}-integrable and $F(x)$ is the function of Definition 3.3, then
(i) $F(x)$ is continuous on $[a, b]$;
(ii) For every major and minor function $Q(x)$ and $q(x)$ the differences $Q(x)-F(x)$ and $F(x)-q(x)$ are n-convex in $[a, b] ;$
(iii) $F(x)$ possesses derivatives $F_{(k)}(x), 1 \leq k \leq n-2$;
(iv) $F(x)$ is n smooth in (a, b).

We do not have the power of proving integrability on sub-intervals and additivity of the integral on abutting intervals but this is not surprising since additivity on abutting intervals is closely connected with the existence of the ($n-1$)st one-sided derivatives of $F(x)$ and $Q(x)$ (see [8]).

It is easy to prove that the unsymmetric P^{n}-integral of [3] is included in the P_{n}^{*}-integral.

The relationship between the P_{n}^{*}-integral and the symmetric P^{n}-integral of [7] is described in the following theorem:

Theorem 3.6. If $f(x)$ is P_{n}^{*}-integrable on $[a, b]$ then $f(x)$ is P^{n}-integrable on [a, b] with respect to any basis $a=\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}=b$. Moreover, if

$$
F(x)=P_{n}^{*} \int_{a}^{x} f(t) d t
$$

then, for $\alpha_{s} \leq x<\alpha_{s+1}$, we have

$$
\begin{equation*}
(-1)^{s} \int_{\left(\alpha_{i}\right)}^{x} f(t) d_{n} t=F(x)-\sum_{i=1}^{n} \lambda\left(x ; \alpha_{i}\right) F\left(\alpha_{i}\right) \tag{3.6}
\end{equation*}
$$

where

$$
\lambda\left(x ; \alpha_{i}\right)=\prod_{j \neq i} \frac{\left(x-\alpha_{j}\right)}{\left(\alpha_{i}-\alpha_{j}\right)} .
$$

Proof. Let $Q(x), q(x)$ be P_{n}^{*}-major and minor functions, respectively, of $f(x)$ on $[a, b]$. Then

$$
\begin{align*}
\bar{Q}(x) & =Q(x)-\sum_{i=1}^{n} \lambda\left(x ; \alpha_{i}\right) Q\left(\alpha_{i}\right) \tag{3.7}\\
\bar{q}(x) & =q(x)-\sum_{i=1}^{n} \lambda\left(x ; \alpha_{i}\right) q\left(\alpha_{i}\right) \tag{3.8}
\end{align*}
$$

are P^{n}-major and minor functions, respectively, of $f(x)$ on [a, b]. Moreover given $\varepsilon>0, Q(x)$ and $q(x)$ may be chosen so that $\bar{Q}(x)-\bar{q}(x)<\varepsilon, x \in[a, b]$ and then (3.6) follows from (3.7) and (3.8).

In [3] Bullen proves the equivalence of the $C_{n-1} P$-integral [4] and his unsymmetric P^{n}-integral:

Theorem 3.7. (Theorem 16, [3]): f is P^{n}-integrable on $[a, b]$ if and only if it is $C_{n-1} P$-integrable in $[a, b]$. If F is the P^{n}-integral of f then

$$
F_{(n-1)}(x)=C_{n-1} P \int_{a}^{x} f(t) d t
$$

and

$$
F(x)=P \int_{a}^{x} C_{1} P \int_{a}^{x_{1}} C_{2} P \int_{a}^{x_{2}} \cdots C_{n-1} P \int_{a}^{x_{n-1}} f(t) d t d x_{n-1} \cdots d x_{1} .
$$

The unsymmetric integral of [3] thus is an n-fold iterated integral while the symmetric integral of [7] differs from the P_{n}^{*}-integral by a polynomial of degree ($n-1$). The relationship between the integrals in Theorem. 3.6 may be described in a manner which is more relevant to our investigation by rewriting (3.6) in the form

$$
\begin{equation*}
(-1)^{s} \int_{\left(\alpha_{i}\right)}^{x} f(t) d_{n} t=V_{n}\left(F ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, x\right) \cdot \prod_{i=1}^{n}\left(x-\alpha_{i}\right) \tag{3.9}
\end{equation*}
$$

where $V_{n}\left(F ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, x\right)$ is the divided difference of order n of F over the points $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, x$. Thus the definite symmetric P^{n}-integral is, except for a multiplicative constant, the nth divided difference of the P_{n}^{*}-integral which may be thought of as an n-fold integral.

This explains why our Theorem 4.3 gives the representation of the coefficients of a trigonometrical series in terms of a divided difference of the P_{n}^{*}-integral.
4. Trigonometric Series. Following the notation of James [11] we identify the following conditions which may be imposed on series (1.1):

$$
\begin{gather*}
a_{n}=o\left(n^{k}\right), \quad b_{n}=o\left(n^{k}\right), \tag{4.1}\\
A_{n}^{k-1}\left(x_{0}\right)=o\left(n^{k}\right), \tag{4.2}\\
a_{0} / 2+\sum_{n=1}^{\infty} a_{n}\left(x_{0}\right)=f\left(x_{0}\right), \quad(C, k) \tag{4.3}
\end{gather*}
$$

We integrate series (1.1) formally term-by-term to obtain:

$$
\begin{equation*}
\frac{a_{0} x}{2}+\sum_{n=1}^{\infty} \frac{a_{n} \sin n x-b_{n} \cos n x}{n} \equiv \frac{1}{2} a_{0} x-\sum_{n=1}^{\infty} \frac{b_{n}(x)}{n} \equiv \frac{1}{2} a_{0} x-\sum_{n=1}^{\infty} c_{n}(x) \tag{4.4}
\end{equation*}
$$

We shall make use of the following theorem:
Theorem 4.1. (Theorem 3.1, [11]). If condition (4.1) is satisfied, then the series obtained by integrating (1.1) formally term-by-term $k+2$ times converges to a continuous function $F(x)$. If conditions (4.1) and (4.2) are both satisfied, then $D^{k+2-2 r} F\left(x_{0}\right)$ exists for $1 \leq r \leq(k+1) / 2$ and F is $(k+2)$-smooth at x_{0}. If conditions (4.1) and (4.3) both hold, then F is $(k+2)$-smooth at x_{0} and

$$
\begin{equation*}
\frac{a_{0} x_{0}^{2 r}}{2(2 r)!}+(-1)^{r} \sum_{n=1}^{\infty} \frac{a_{n}\left(x_{0}\right)}{n^{2 r}}=D^{k+2-2 r} F\left(x_{0}\right), \quad(C, k-2 r), \tag{4.5}
\end{equation*}
$$

for $0 \leq r \leq(k+1) / 2$.
Theorem 4.2. Supose the series (1.1) is summable (C, k) to a finite function $f(x)$ for all $x \in[0,2 \pi)-E$, where E is at most countable, and let $f(x)=0, x \in E$. If $A_{n}^{(k-1)}(x)=0\left(n^{k}\right)$ for $x \in E$ and $B_{n}^{k-1}(x)=o\left(n^{k}\right)$ for $x \in[0,2 \pi]$ then there exists a set $F \subset[0,2 \pi],|F|=2 \pi$, such that $f(x), f(x) \cos p x, f(x) \sin p x$ are each P_{n}^{*}-integrable on $[\alpha, \alpha+2 \pi], \alpha \in F$.

Proof. The series obtained by integrating (1.1) formally $(k+2)$ times converges uniformly to a continuous function $F(x)$. It follows from Theorem 4.1 and the proof of Theorem 3.2 [11] that $F_{(r)}(x), 0 \leq r \leq k$, exists in $[0,2 \pi], D^{(k+2)} F(x)$ exists and equals $f(x)$ in $[0,2 \pi]-E$, and $F(x)$ is n-smooth at each point of $(0,2 \pi)$. Moreover the set of points where either $\underline{D}^{n} F(x)=-\infty$ or $\bar{D}^{n} F(x)=+\infty$ is a scattered set ([11], Theorem 5.1).

It is well known that the series (4.4) is summable ($C, k-1$) almost everywhere in [$0,2 \pi$]. Let α be a point of the set A_{0} of summability of (4.4). Since the function $F(x)$ is also the function obtained by integrating (4.4) formally $k+1$ times, it follows from Theorem 4.1 that $D^{(k+1)} F(\alpha)$ exists. We
have, for k even, for $\alpha \in A_{0} \bigcap([0,2 \pi]-E)$,

$$
\begin{equation*}
\frac{F(\alpha+h)-F(\alpha-h)}{2}=\sum_{r=0}^{k / 2} D_{2 r+1} F(\alpha) \frac{h^{2 r+1}}{(2 r+1)!}+o\left(h^{k+1}\right) \tag{4.6}
\end{equation*}
$$

and, since $D^{k+2} F(\alpha)$ exists,

$$
\begin{equation*}
\frac{F(\alpha+h)+F(\alpha-h)}{2} \sum_{r=0}^{k+2 / 2} D_{2 r} F(\alpha) \frac{h^{2 r}}{(2 r)!}+o\left(h^{k+2}\right) \tag{4.7}
\end{equation*}
$$

and similar equalities hold when k is odd. Together, (4.6) and (4.7) show that $F_{(k+1)}(\alpha)$ exists which, of course, equals $D^{k+1} F(\alpha)$. Now it is clear that the function defined by

$$
Q(x)=F(x)-\sum_{r=1}^{k+1} F_{(r)}(\alpha) \frac{(x-\alpha)^{r}}{r!}
$$

is both a P_{k+2}^{*}-major and minor function for $f(x)$ on $[\alpha, \alpha+2 \pi]$. Moreover fo $x \in[\alpha, \alpha+2 \pi]$,

$$
P_{k+2}^{*} \int_{\alpha}^{x} f(t) d t=F(x)-\sum_{r=1}^{k+1} F_{(r)}(\alpha) \frac{(x-\alpha)^{r}}{r!} \equiv G_{0}(x) .
$$

As in [11] we can write for $x \in[0,2 \pi]-E$

$$
\begin{equation*}
\sum_{n=0}^{\infty} u_{n}(x)=f(x) \cos p x, \quad(C, k) \tag{4.8}
\end{equation*}
$$

where $u_{n}=o\left(n^{k}\right), U_{n}^{k-1}(x)=o\left(n^{k}\right)$ for all $x, u_{n}(x)$ is the nth term of the series which is the formal product of series (1.1) and $\cos p x$, and $U_{n}^{k-1}(x)$ is the $(k-1)$ st Cesàro mean of the same series.

An application of Theorem 4.1 shows that the series obtained by integrating (4.8) formally term-by-term $k+2$ times converges uniformly to a continuous function $G(x)$ such that

$$
\lim _{h \rightarrow 0} h \theta_{k+2}(G ; x, h)=0,
$$

for all x, and,

$$
\frac{u_{0} x^{2 r}}{2(2 r)!}+(-1)^{r} \sum_{n=1}^{\infty} \frac{u_{n}(x)}{n^{2 r}}=D_{k+2-2 r} G(x), \quad(C, k-2 r)
$$

for $0 \leq r \leq(k+1) / 2$ and $x \in[0,2 \pi]-E$.
Moreover it was shown in [7] that $G_{(k)}(x)$ exists everywhere in [$0,2 \pi$], and it follows, as before, that $G_{(k+1)}(x)$ exists in a set A_{P} of full measure in $[0,2 \pi]$. We have then, since condition (3.4) of Definition 3.1 is obviously satisfied for $G(x)$,

$$
\begin{equation*}
P_{k+2}^{*} \int_{\beta_{P}}^{x} f(t) \cos p t d t=G(x)-\sum_{r=1}^{k+1} G_{(r)}\left(\beta_{P}\right) \frac{\left(x-\beta_{P}\right)^{r}}{r!} \equiv G_{P}(x) \tag{4.9}
\end{equation*}
$$

for $x \in\left[\beta_{P}, \beta_{P}+2 \pi\right], \beta_{P} \in A_{P}$. Similarly, if the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} U_{n}(x)(=f(x) \sin p x) \tag{4.10}
\end{equation*}
$$

is the formal product of series (4.1) with $\sin p x$ and $H(x)$ is the sum of the series obtained by integrating (4.10) formally $(k+2)$ times we have

$$
\begin{equation*}
P_{k+2}^{*} \int_{\gamma_{p}}^{x} f(t) \sin p t d t=H(x)-\sum_{r=1}^{k+1} H_{(r)}\left(\gamma_{P}\right) \frac{\left(x-\gamma_{P}\right)^{r}}{r!} \equiv H_{P}(x), \tag{4.11}
\end{equation*}
$$

for $x \in\left[\gamma_{P}, \gamma_{P}+2 \pi\right], \gamma_{P} \in B_{P}$, where B_{P} is a set full measure on $[0,2 \pi]$. The theorem follows by choosing $F=\bigcap_{P=0}^{\infty}\left(B_{P+1} \cap A_{P}\right)$.

Theorem 4.3. Under the hypothesis of Theorem 4.2 the coefficients of series (1.1) are given by

$$
\begin{align*}
a_{P}=2(k+2)!V_{k+2}\left(G_{P}\right), & P=0,1,2, \ldots, \tag{4.12}\\
b_{P}=2(k+2)!V_{k+2}\left(H_{P}\right), & P=1,2, \ldots, \tag{4.13}
\end{align*}
$$

where $V_{k+2}\left(G_{P}\right)=V_{k+2}\left(G_{P} ; x_{1}, x_{2}, \ldots, x_{k+2}, x_{k+3}\right)$ is the divided difference of G_{P} of order $k+2$ at the $k+3$ points

$$
\begin{aligned}
B_{1} & \equiv\left(x_{1}, x_{2}, \ldots, x_{k+2}, x_{k+3}\right) \\
& \equiv(\alpha-(k+2) \pi, \alpha-k \pi, \ldots, \alpha-2 \pi, \alpha+2 \pi, \ldots, \alpha+k \pi, \alpha+(k+2) \pi, \alpha),
\end{aligned}
$$

or

$$
\begin{aligned}
B_{2}=\left(x_{1}, x_{2}, \ldots, x_{k+2}, x_{k+3}\right) \equiv & (\alpha-(k+1) \pi, \alpha-(k-1) \pi, \ldots, \\
& \alpha-2 \pi, \alpha+2 \pi, \ldots, \alpha+(k+1) \pi, \alpha+(k+3) \pi, \alpha)
\end{aligned}
$$

depending on whether k is even or odd.
Proof. In order to verify (4.12) for $P=0$ we note first that

$$
V_{k+2}\left(G_{0}\right)=V_{k+2}(F)
$$

since any $(k+2)$ divided difference of a polynomial of degree $(k+1)$ is 0 . Next we write

$$
F(x) \equiv G_{1}(x)+\frac{a_{0} x^{k+2}}{2(k+2)!}
$$

where $G_{1}(x)$ is periodic of period 2π. The divided difference of order $(k+2)$ of the function $G_{1}(x)$ at the $(k+3)$ points of B is just the divided difference of the constant $G_{1}(\alpha)$ which is 0 . Since the divided difference of the function x^{k+2} is equal to 1 , we have

$$
V_{k+2}\left(G_{0}\right)=\frac{a_{0}}{2(k+2)!}
$$

G. E. CROSS

Formula (4.12) for $P=1,2, \ldots$ may be verified in exactly the same way since the constant term in (4.8) is $a_{P} / 2$. A similar remark applies to formula (4.13).

Because of Theorem 3.6, the formulae (4.12) and (4.13) may be written in terms of the P^{n}-integral. For example, (4.12) becomes

$$
a_{P}=2(k+2)!V_{k+2}\left(P^{k+2} \int_{\left(\alpha_{i}\right)}^{x} f(t) \cos p t d t\right), \quad P=0,1,2, \ldots
$$

where $\left(\alpha_{i}\right)$ is any basis in [$\alpha, \alpha+2 \pi$]. This follows from (3.6) using the fact again that a divided difference of order $k+2$ of a polynomial of degree $k+1$ is 0.

Bibliography

1. P. S. Bullen, Construction of Primitives of Generalized Derivatives with Applications to Trigonometric Series, Can. J. Math. vol. 13 (1961) pp. 48-58.
2. -, A Criterion for n-Convexity, Pacific J. Math. vol. 36 (1971) pp. 81-89.
3. -, The P^{n}-integral, J. Australian Math. Soc., (2) vol. 14 (1972) pp. 219-236.
4. J. C. Burkill, The Cesàra-Perron Scale of Integration, Proc. London Math Soc. (2) vol 39 (1935) pp. 541-552.
5. -, Integrals and Trigonometric Series, Proc London Math. Soc. (3) vol. 1 (1951) pp. 46-57.
6. George Cross, The Expression of Trigonometrical Series in Fourier Form, Can. J. Math. vol 12 (1960) pp. 694-698.
7. -, The P^{n}-integral, Canad. Math. Bull. vol 18 (1975) pp. 493-497.
8. -, Additivity of the P^{n}-integral, (to appear).
9. -, The $S C_{k+1} P$-integral and Trigonometric Series, (to appear).
10. R. D. James, Generalized nth Primitives, Trans. Amer. Math. Soc. vol 76 (1954) pp. 149-176.
11. -_, Summable Trigonometric Series, Pacific J. Math. vol 6 (1956) pp. 99-110.
12. S. N. Mukhopadhyay, On the Regularity of the P^{n}-integral, Pacific Journal of Math., vol 55 (1974) pp. 233-247.
13. E. C. Titchmarsh, Theory of Functions, Oxford, 1939.

University of Waterloo
Waterloo, Ontario

