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1. Introduction. Quadratic forms associated with graphs were introduced over a century
ago by Jordan [4]. We are concerned with the optimisation of such quadratic forms,
following Motzkin and Straus [5], and we use the setting of categories and functors to
express the nice interplay between the algebra and the graph theory. Applications to inter-
change graphs are also obtained.

G denotes a simple graph with vertex set V(G) = {vlt..., vn}, edge set E(G) and
complement G. As usual, Kn denotes the complete n-graph and Kn rk a complete
A>partite graph.

With G is associated a real quadratic form

FG(xu ...,xn) = (l/2)x'Gx, x = (xu ..., xn) e Rn,

where G denotes the adjacency matrix of the graph G. Thus the coefficient of xtXj in the quad-
ratic form is 1 if the vertices vt and Vj are adjacent, denoted vt ~ Vj (i.e. joined by an edge
[vh Vj]eE(G)), and 0 if not. We put in the coefficient 1/2 rather than use each edge twice.

n

The standard simplex a = a"'1 c W given by {(xu..., xn)eW: x^O, £ x,= l}
i = 1

has vertices indexed by those of the graph G : (0 , . . . , 0, xr = 1, 0 , . . . , 0)<->vr. Let
f(G) = max .Fc(x). The clique number co(G) of G is the order k of the largest complete sub-

XE<T

graph Kk c G. We denote by D(G) the subgraph (J K{ of G, i.e. the union of all such

maximal cliques of (fixed) order k = co(G).
Evaluation of/(G) was obtained by Motzkin and Straus [5]. Their Theorems 1 and 2

can be summarised as follows.

THEOREM 1.1.

(ii) /(G) is attained at an interior point of a if and only if G is a complete multipartite
graph.

It follows that complete graphs are characterised by/.

COROLLARY 1.2. IfGhasn vertices, then

We shall denote by n(G) the region of the simplex where the maximum is attained, i.e.

Glasgow Math. J. 18 (1977) 79-85.

https://doi.org/10.1017/S0017089500003062 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003062


80 DEREK A. WALLER

n(G) = {xecr : ̂ ( x ) =/(( / )}• Our main object is to investigate the structure of such regions,
and their relationships to the graphs with which they are associated.

2. The optimising cell-complex. The case (o(G) — 1 is disposed of separately.

PROPOSITION 2.1. co(G) = 1 <*E(G) = 0oG = Knof(G) = 0 and
Henceforth in this section suppose E(G) 4= 0 for all graphs.
We label the vertices of o according to the indexing above, and let /,, i2, ..., ir denote

the barycentre of the face of a spanned by the vertices labelled iu i2,..-, ir. As preparation
for the study of n{G), we observe that it follows from Theorems 1.1 and 1.2 that only it-cliques
of G of order k = co(G) can contribute t o / ( C ) ; thus if D(G) is isomorphic to D(H), then
f{G) = / ( # ) , and so KG) = n(H).

To be more precise, and to see in what way the A>cliques contribute to /((G), we obtain
a few lemmas showing the special role played by complete A>partite graphs. Firstly, in the
case k = 2, we obtain a characterisation.

LEMMA 2.2. FG factorises {as distinct real linear factors) if and only if G is complete
bipartite.

Proof. The rank (resp. index) of a quadratic form is the number of non-zero (resp.
negative) elements in an equivalent diagonal form. A real quadratic form factorises as
distinct real linear factors if and only if it has rank 2 and index 1, equivalently if and only if
the corresponding matrix has one positive and one negative eigenvalue.

The sum of the eigenvalues of a simple graph G is equal to the trace of G, which is zero.
Thus FG factorises if and only if G has eigenvalues {±k, 0 [ « - 2 times]}. It is well known
(see for example [6, §5]) that this is true if and only if G is a complete bipartite graph.

It is now easy to show for a complete bipartite graph G = Krn-r that the maximising
region is the mutual intersection of cr""1 and two hyperplanes.

LEMMA 2.3.

i = 1 > = r + 1

Proof. Taking the vertex-sets of the two " parts " to be {vlt..., vr}, {vr+ lt..., vn},
FG factorises as (;q + . . . +xr)(xr + 1 + . . . +*„)• Maximising this product subject to xt ^ 0,

r n

Yx,- = 1 is clearly obtained by £ xt = 1/2 = £ xh (giving/(G) = 1/4 in Theorem 1.1).
> = i > = r + i

EXAMPLES. This result provides some simple examples of ii(G). Let Pn (resp %>„) denote
the path-graph (resp. circuit) with n vertices (labelled in order). Then

(i) n(P3) is a 1-simplex, whose end-points are the barycentres 1.2 and 2.3 of the standard
2-simplex with vertices 1, 2 and 3;

(ii) #(#4) is a solid square;
(iii) the star-graph K1>n has ti{K1>n) as a (solid) (n-l)-simplex.

Lemma 2.3 generalises to complete fc-partite graphs as follows.
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LEMMA 2.4. n(Kn rk) is the mutual intersection of a and a collection of k hyperplanes
sq = \jk,q — 1 , . . . , k, where sq is the sum £ *; corresponding to the vertices in the gth " part "

QfKr, , „•

Proof. We have a>(Kn rk) = k. An obvious grouping of terms gives FG(x) = £ spsq.
p * n

This expression is the quadratic form of the complete graph Kk, and so Corollary 1.2 gives
the maximum f(G) = (k— l)l(2k), which is attained when sq=\jk (which ensures that
Y,x,= l),q = 1, ..., k, and the result follows.

i

REMARK 2.5. The set /j(A"ri,..., rk) has the structure of a polyhedron whose vertices
correspond to the Ar-cliques K{ of Kri Pfc. It is clear from Lemma 2.4 that the polyhedron

k

is t h e u n d e r l y i n g s p a c e o f a p r o d u c t o f s i m p l e x e s : Yl a'"1-
q= 1

The next theorem shows that for an arbitrary graph G, the set /.i(G) is a polyhedron with
a natural facial structure as a product of simplicial complexes. We shall refer to the polyhedra
with this facial structure as cell-complexes, defined as follows:

A cell c is a finite product of (closed euclidean) simplexes. The cell c2 is a face of the cell c,,
n n

denoted c2 < c,, if ct = FT a", c2 = \\ TSI with TS| a (simplex-) face of on for each /.
i = l i= 1

A cell-complex A" is a set of cells such that

(i) c, eK, c2< c, =>c2eK,
(ii) for all c,, c2eK, c{nc2 is a well-defined cell 17°*'' which is a face of both c, and c2.

i

THEOREM 2.6. 7/" co(G) = /c ( > 1), iv/7A D(G) = (J 1C ,̂ /Aen n(G) <= a"" ' //a^ ?Ae structure
JeJ

of a cell-complex defined as follows:

(i) i> w a vertex of the cell-complex if and only ifv is the bary centre il... ik of the face of a
whose vertices correspond to the vertices of some k-clique K{ cz D(G);

k

(ii) the vertices {vJ}JeJ' span a cell \\ <jr'~l if and only if the corresponding subgraph
i = 1

[j K{ is a complete k-partite subgraph Kri r t in G.
JeJf

Proof, (i) For each complete subgraph K{ <= G, the required maximum {k—\)j{2k) (as
in Theorem 1.1) is attained at the vector xJ with coordinates

f 1/fc, if i>; is one of the (k) vertices of K{

'' [0, otherwise.

Such xJ is one of the required barycentres, and (i) follows.
(ii) Since (by Corollary 1.2) only A>cliques of G can contribute to the required maximum

F(G) = (k- \)l(2k), we can confine attention to D(G) = \J K{.

For each " subunion " [j KJ
k which constitutes a complete /:-partite graph, we can

JJ'
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k

apply Lemma 2.4 and obtain a contribution to n(G) of a cell J~[ ar"~i. It follows from
4= i

Theorem 1.1 that the maximum/(G) can be attained in no other way.
The required incidence conditions of these cells follows from the respective incidences

of the corresponding complete £>partite subgraphs of G, and the result follows.

EXAMPLES. n(Kn) = a0; n{Pn) = i>n_ t; ji(#n) =
<€n,n> 4.

If G is a Mobius ladder graph [2] with at least 8 vertices, then fi(G) is a Mobius band. If G
is a prism A"2 x #„, n > 4, then JI(G) is a cylinder.

We can characterise graphs G with n(G) contractible as follows.

PROPOSITION 2.7. / / a>{G) = k, then /i(G) is contractible if and only if G contains no
sequence K[,..., Kr

k, r ^ 5 ofk-cliques with

Ks
knK'k = Kt-^ls-t] = lmodr.

Proof. If G does contain r such maximal cliques then we obtain r corresponding vertices
vlt ...,vr in fi(G). Each adjacent pair of these maximal cliques constitutes a complete k-
partite graph K2, i 1; and so, by Theorem 2.6, the corresponding pair of vertices in /z(G)
span a 1-simplex. Thus {vu . . . , vr] is the vertex-set of an r-circuit (r ^ 5), which cannot be
contracted in the polyhedron.

Conversely if /i(G) contains such an r-circuit, then it must have been derived from a
" cyclic sequence " of r maximal cliques.

COROLLARY 2.8. If the graph G is a tree, then the polyhedron n(G) is contractible.
Thus the construction n(G) mirrors some of the geometry of the graph G. This can

be made more precise as follows.

3. The functor ju. The cell-complexes defined above form a category (£ in which a mor-
phism is a map a : K-> L whose restriction to each cell is a product of simplicial maps:

n \ / n \ n

P/AO/'HO/'-
Thus d is a " combinatorial category " in that it is of primary importance which vertices
span simplexes; however a morphism does determine a continuous map of the underlying
polyhedra, simply by extending linearly.

The m-ary operation of join * of graphs (see for example Harary [3, p. 21]) is very useful
in studying the maximisation of the quadratic form FG, since this operation * is compatible
with all of the above mappings co, D and n.

PROPOSITION 3.1. For any graphs Gt,

/ m \ m

(i)co( * G,.)= £ co(Gt),
\i = 1 / i = 1

(ii)i)( * G()= * D(Gd,
\i = 1 / i = 1
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(iii) if p(G) denotes the set of complete a>(G)-partite subgraphs in G, then

/ m \ f '"pi * GA = \ * </,-:
\ ; = 1 / [i = 1

( m \ m

* G,) = nProof Kr*Ks = Kr+S. Clearly the join of a set of graphs is a clique if and only if each
of those graphs is a clique. Furthermore, the joins of the maximal cliques of graphs

m

G,,..., Gm are precisely the maximal cliques of the join *Gi. The proposition follows
1 = 1

easily.

COROLLARY 3.2.

KK „)= I1K'-1).
i = 1

For example n of the octahedron K2 2 2 is a cube.

COROLLARY 3.3. \i(G*Kr) = \i(G)for any graph G and for any complete graph Kr.
We may now express the functorial property of this construction p. By a morphism

g : G -* H of graphs is meant a map g: V(G) -» V(H) which preserves adjacency, i.e. if
[vh Vj]eE(G), then [g(Vj), g{vj)]eE{H). Thus an edge cannot be collapsed to a vertex.

The following lemma is obvious but very useful.

LEMMA 3.4. Let g : G -* H be a morphism of graphs. Then

(i) if Kk is any k-clique in G, then g(Kk) is a k-clique in H;
(ii) if Kri rk is any complete k-partite subgraph of G, then its image under g is a

complete k-partite subgraph KSl 5kofff.

Applying the lemma to the case k = a>(G), it becomes natural to consider the category
^§raphk of (finite) graphs with clique number a(G) = k, and their morphisms.

THEOREM 3.5. For each natural number k, // gives a covariant functor \i: ^raphk -* G.

Proof. Again the A" = 1 case is trivial. For k > 1, we assign the cell-complex /i(C) to
G, as in Theorem 2.6. If g : G -»H is a morphism of the category <&raphk, then by Lemma
3.4(i), we obtain a well-defined induced map /.i(g) from the vertices of fi(G) to those of n(H).
Furthermore, Lemma 3.4(ii) ensures that fi(g) sends cells to cells in the appropriate way.

To verify that /i is a functor, we observe that if l c denotes the identity morphism on the
graph G, then H(\G) 1S equal to the identity morphism on n(G) in C, and finally that if also
h:H->J'm $raphk, then /i(/;. g) = n(h). n(g) : fi(G) -> /<(./) in G.

COROLLARY 3.6. If g is an automorphism of the graph G, then fi(g) is an automorphism
of the cell-complex fx{G).
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Proof. Let g': G -> G be the inverse morphism of g. By Theorem 3.5 we have
M#') • Kd) = tiff' • 9) = Mlc) = W ) - It follows that n(g') is the inverse of n(g) in G.

4. Minimisation of the quadratic form of a graph. We mention, for completeness, the
minimising of our quadratic form x'Gx on the simplex a. In analogy to the above, we define

x) and fi(G) = {xea : Fc(x) =

This time the results are simple.

PROPOSITION 4.1.

(i) For any graph G, j(G) = 0.
(ii) /7(G) consists of those faces of a whose vertices correspond to an edgeless subgraph

Km ofG.
(iii) n(G) is a simplicial complex, whose l-skeleton is a graph isomorphic to the comple-

ment graph G.

Proof, (i) FG(x) = 0 for every vertex xea, since all coordinates xt except one are zero;
(ii) FG(x) = 0 if and only if every term xtXj is zero. This corresponds to points x of

any simplex-face whose vertices correspond to those of an edgeless subgraph of G;
(iii) follows immediately.

COROLLARY 4.2. The automorphism group of G is isomorphic to the (simplicial) auto-
morphism group ofJL(G).

Proof. We have an isomorphism Aut G = Aut G, since a permutation of V(G) preserves
non-adjacency of vertices if and only if it preserves adjacency of vertices. The result follows.

5. Interchange Graphs. The mth interchange graph Im(G) of the graph G is the graph
whose vertices are indexed by the («j+l)-cliques of G, two vertices being adjacent if the
corresponding (m + l)-cliques intersect in an w-clique.

In a recent paper [1], C. R. Cook considers the (m— l)th interchange graph of the regular
complete w-partite graph Kn „ and obtains characterisations of graphs of this form.

More generally, it is natural to consider the " maximal" interchange graph of any
graph G, i.e. I(G) = Ia(G)-i(G)- F ° r any graph G, we can easily relate its associated graph
I(G) to the cell-complex n(G).

THEOREM 5.1. For any graph G, the l-dimensional skeleton of n(G) is a graph isomorphic
to I(G).

Proof. The vertices of /i(G) (and hence of its l-skeleton), correspond to A:-cliques in G,
k = co(G), and hence to vertices of I(G). From Theorem 2.6(ii), two vertices of n(G) are
adjacent if and only if the corresponding subgraph Ki u K\ of G is complete fc-partite, i.e.
equal to K2> i,..., 1. But this is precisely the condition that K\ u K\ s Kk. u which is necessary
and sufficient for adjacency of the two vertices in I(G).
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COROLLARY 5.2. If G has edges but no triangles (i.e. co(G) = 2), then the line graph of G
is the l-skeleton of n(G).

Some structural properties of 1(G) now follow immediately. In particular, Proposition
3.1(iv) above implies that I transforms joins of graphs to (cartesian) products of graphs.
Recall that this product Gt x G2 has vertex-set V{G^) x V(G2), with adjacency (~) given by
(vit v2) ~ (»/, v2) whenever [v1 = v[ and v2 ~ v2] or [vt ~ v[ and v2 = v2].

PROPOSITION 5.3.

( m \ m

* G-) = X 7(0;).
1 = 1 / i = 1

Proof. Proposition 3.1(iv) gives the result because the product graph is the l-skeleton
of the corresponding product-complex.

Note that this result is valid for case <a(G,) = 1, which is of importance as it gives:
COROLLARY 5.4.

KKri J = x Kri.
i = 1
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