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Pseudo-autonomous linear systems

W.A. Coppel

Pseudo-autonomous linear differential equations are defined. A

linear differential equation with bounded coefficient matrix is

pseudo-autonomous if and only if it is almost reducible. A

linear differential equation with recurrent coefficient matrix is

pseudo-autonomous if and only if it has pure point spectrum'

Let X(t) be the fundamental matrix for the linear differential

equation

(1) x' = A(t)x

such that X{0) = I , where the n x n coefficient matrix A{t) is

continuous on the whole line -°° < t < °° . The equation (l) will be said

to be pseudo-autonomous if there exist real numbers X , ..., X and

supplementary projections P,, — , P such that for each e > 0 there is

a constant K > 0 satisfying

-1/X{t)P.X x ( s )
3

X.(t-s) | t-s |

for -00 < s, t < °° , and j = 1, ..., m .

It follows that, for any non-trivial solution x(t) of (1),

P-x(O) = a;(0) implies
3

lim t'1 l o g | x ( t ) | = X. .

Hence the numbers X . and the projections P . are uniquely determined.
0 3

Moreover, the Lyapunov characteristic exponents of (1) are X , ..., X
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with multiplicity t r P , . . . , tr P respectively.

If (l) is pseudo-autonomous then by [2, Lemma 2], i t is kinematically

similar to a block diagonal system

y \ = B ( t ) y U = 1 , . . . , m)
d d d

whose fundamental matrices Y .(t) satisfy
3

3 3

for -°° < s , t < °° , and j = 1 , . . . , m . Moreover, i f j4(t) i s bounded

then B.{t), . . . , B ( t ) are also bounded.
1 777

Pseudo-autonomous equations are closely connected to the almost

reducible equations of Bylov [']. In fact, if (l) is almost reducible then

by [7, Corollary 2, p. 3^] there exist real numbers X , ..., X and
1 777

positive integers n., , n with sum n such that, for every e > 0 ,

(l) is kinematically similar to an equation

z' = [C+D{t)]z ,

where C = diag[X I , ..., X J ] and \D(t) | 2 e for -°° < t < <*> . Since

by the proof of [2, Theorem 2] we can assume further that
D(t) = diag[z? (£), ..., D (£)] , it follows that (l) is pseudo-autonomous.

Conversely, if (l) is pseudo-autonomous and its coefficient matrix

A(t) is bounded then it is almost reducible. To see this it is sufficient

to show that if an equation

y' = B{t)y

with bounded coefficient matrix B(t) has a fundamental matrix

satisfying

/|r(*)jr1{a)| 5 L ^ I * - 3 ! ,

then it is almost reducible to 0 . We have
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and hence, by Liouvil le 's formula,

R tr B{i)di 5 log M + ne|t-s| .

Thus

-1 f£
lim its) R tr B ( T ) 4 T = 0 ,
i J s

and the result follows from [7, Theorem 7]-

Assume now that the coefficient matrix Ait) is bounded and uniformly

continuous. Then by Ascoli's Theorem any sequence [h } of real numbers

contains a subsequence \k } such that

A{t) = lim A[t+k )
v

exists uniformly on compact intervals. The collection of all equations

(2) x' = A{t)x

is called the hull of the equation (l). The fundamental matrix X(t) of

(2) such that X(0) = J is given by

X(t) = lim x[t+k )x~1(k ) .
V

Suppose (l) is pseudo-autonomous. Then, by restricting attention in

the first instance to a subsequence, x(k )P .X [k ) ->• P . , where
v 3 ^ 3

P , ..., P are supplementary projections. It follows that

3

for -oo < s, t < °° , and j = 1, , m . Thus every equation (2) in the

hull of (l) is also pseudo-autonomous, with the same numbers X. and
d

similar projections P . . Hence all equations in the hull of a pseudo-
3

autonomous equation have the same characteristic exponents, counting

multiplicities. Moreover, if (2) has a non-trivial solution xit) such

that e \xit)\ is bounded on -°° < t < °° for some real X , then
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X = X. for some j . In fact, j is the greatest integer k for which
0

PjZ(O) f 0 . Therefore a pseudo-autonomous equation has pure point

spectrum, in the terminology of Sacker and Sell [6].

If A(t) is recurrent and (l) has pure point spectrum then conversely

(1) is pseudo-autonomous, by Sacker and Sell [6, Theorem 2].

Suppose finally that A(t) is almost periodic and all equations (2)

in the hull of (l) have the same characteristic exponents, counting

multiplicities. Then the sum of the characteristic exponents is the same

for all equations (2). It follows that if some equation (2) is regular, in

the sense of Lyapunov, then every equation (2) is regular, since tr A(t)

has the same mean value as tr A{t) . But according to Mi I Iionscikov [4,

Theorem 3D, at least one equation in the hull is regular. Hence all

equations in the hull of (l) are regular. Therefore (l) is almost

reducible, by Mi I Iionscikov [3, Theorem 1 and Lemma] (cf. the proof of

Theorem 2).

The preceding results establish in particular the

THEOREM. If the coefficient matrix A(t) is almost periodic then the

following assertions are equivalent:

(i) the equation (l) is pseudo-autonomous;

(ii) the equation (l) is almost reducible;

(Hi) the equation (l) has pure point spectrum;

(iv) all equations in the hull of (l) have the same

characteristic exponents.

Mi I Iionscikov [5] has given an example of an equation (l) which is not

almost reducible, even though A(t) is quasi-periodic. In conjunction

with the theorem, this disproves Sacker and Se I I's conjecture that every

almost periodic linear differential system has pure point spectrum.
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