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Pseudo-autonomous linear systems

W.A. Coppel

Pseudo-autonomous linear differential equations are defined. A
linear differential equation with bounded coefficient matrix is
pseudo-autonomous if and only if it is qlmost reducible. A
linear differential equation with recurrent coefficient matrix is

pseudo-autonomous if and only if it has pure point spectrum.

Let x(¢) be the fundamental matrix for the linear differential

equation

(1) 2! = Alt)x

such that X(0) = I , where the n X n coefficient matrix A(t) is

continuous on the whole line ~» < ¢ < o© . The equation (1) will be said
to be pseudo-autonomous if there exist real numbers Al, cees Xm and
supplementary projections Pl, ey Pm such that for each € > 0 +there is

a constant Ks > 0 satisfying

A.(t-s

)
X(t)PjX_l(s) SKe J eelt—sl

for -2 <g, t<®  ,and =1, ..., m.

It follows that, for any non-trivial solution x(t) of (1),
ij(o) = x(0) implies
. -1
lim t - loglx(t)| = A, .
trteo J
Hence the numbers Aj and the projections Pj are uniquely determined.
Moreover, the Lyapunov characteristic exponents of (1) are Al, cens Am
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with multiplicity +tr Pl’ eess tr Eh respectively.

If (1) is pseudo-autonomous then by [2, Lemma 2], it is kinematically

similar to a block diagonal system

=B (. (§=1, ...,
Y3 J( )y!7 (J m)

whose fundamental matrices Yj(t) satisfy

A.(t-s)
-1 g e|t-s|
\Yj(t)yj (8)| = Lee e

for -~ <g, t<o ,and j=1, ..., m . Moreover, if A4A(t) is bounded

then Bl(t), cies Bm(t) are also bounded.

Pseudo-autonomous egquations are closely connected to the aqlmost
reducible equations of Bylov [1]. In fact, if (1) is almost reducible then

by [1, Corollary 2, p. 34L4] there exist real numbers Al’ vees Am and

positive integers = n. with sum #»n such that, for every € > 0 ,

13 eees
(1) is kinematically similar to an equation

z' = [Cc+D(E)]z ,
where ( = diag[klIn, cees AmIn] and |D(¢)| S e for —w < ¢ <w. Since
by the proof of [2, Theorem 2] we can assume further that
D(t) = diag[Dl(t), cees Dm(t)] , it follows that (1) is pseudo-autonomous.

Conversely, if (1) is pseudo-autonomous and its coefficient matrix
A(t) is bounded then it is almost reducible. To see this it is sufficient

to show that if an equation
y' = B(t)y

with bounded coefficient matrix B(t) has a fundamental matrix Y(%)

satisfying

Are)r )| = L€e€|t"3| ,

then it is almost reducible to 0 . We have

|aet &(t)Y_l(s)I =< Méenelt-sl
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and hence, by Liouville's formula,

t
’R J tr B(1)dt| = log M_+ nelt-g| .
s

Thus
-1 t
lim (z-8) J R tr B{t)dt = 0 ,
t-g>® s
and the result follows from [], Theorem T].

Assume now that the coefficient matrix A(¢) <s bounded and uniformly

continuous. Then by Ascoli's Theorem any sequence {hv} of real numbers

contains a subsequence {kv} such that

A(2) = lim A (t+k )
Voo

exists uniformly on compact intervals. The collection of all equations
(2) z' = A(¢)x
is called the hull of the equation (1). The fundamental matrix X(t) of

(2) such that X(0) = I is given by

(¢) = 1im x(ewk ) (k)

Yo
Suppose (1) is pseudo-autonomous. Then, by restricting attention in
the first instance to a subsequence, X(kv)PjX—l[kv) > ﬁj , Where

~

%l’ ey Ph are supplementary projections. It follows that

A(t-s

- )
x(t)PjX‘l(s) <ke? lt-s]

for »<g, t<w  ,and jg=1, ..., m . Thus every equation (2) in the

hull of (1) is also pseudo-autonomous, with the same numbers Aj and
similar projections ﬁj . Hence all eqguations in the hull of a pseudo-

autonomous equation have the same characteristic exponents, counting

multiplicities. Moreover, if (2) has a non-trivial solution xz(#) such

that e-xt|5(t)] is bounded on -% < £ < ® for some real A , then
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A= Aj for some j . In fact, j is the greatest integer %k for which

Ek%(o) # 0 . Therefore a pseudo-autonomous equation has pure point
spectrum, in the terminology of Sacker and Sell [6].

If A(t) is recurrent and (1) has pure point spectrum then conversely

(1) is pseudo-autonomous, by Sacker and Sell [4, Theorem 2].

Suppose finally that A(f) <s almost periodic and all equations (2)
in the hull of (1) have the same characteristic exponents, counting
multiplicities. Then the sum of the characteristic exponents is the same
for all equations (2). It follows that if some equation (2) is regular, in
the sense of Lyapunov, then every equation (2) is regular, since tr Z(t)
has the same mean value as tr A(%) . But according to MillionsCikov [4,
Theorem 3], at least one equation in the hull is regular. Hence all
equations in the hull of (1) are regular. Therefore (1) is almost
reducible, by MillionsCikov [3, Theorem 1 and Lemma] {c¢f. the proof of
Theorem 2).

The preceding results establish in particular the

THEOREM, If the coefficient matrix A(t) <& almost periodic then the
following assertions are equivalent:

(i) the equation (1) is pseudo-autonomous;
(i1) the equation (1) ig almost reducible;
(iii) the equation (1) has pure point spectrum;

(iv) all equations in the hull of (1) have the same

characteristic exponents.

Millionscikov [5] has given an example of an equation (1) which is not
almost reducible, even though A(t) <s quasi-periodie. In conjunction
with the theorem, this disproves Sacker and Sell's conjecture that every

almost periodic linear differential system has pure point spectrum.

’
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