ON COEFFICIENTS OF ARTIN L FUNCTIONS AS DIRICHLET SERIES

ΒY

TAKEO FUNAKURA

ABSTRACT. The paper is motivated by a result of Ankeny [1] above Dirichlet L functions in 1952. We generalize this from Dirichlet L functions to Artin L functions of relative abelian extensions, by complementing the ingenious proof of Ankeny's theorem given by Iwasaki [4]. Moreover, we characterize Dirichlet L functions in the class of all Artin L functions in terms of coefficients as Dirichlet series.

We use Z for the ring of all integers and Q for the field of all rational number. A general character f of a finite group G is defined by

$$f = \sum_{\chi} a(\chi)\chi$$
 $(a(\chi) \in \mathbf{Z}),$

where χ runs over all irreducible characters on *G*. We note that *f* is a character of a representation if and only if all $a(\chi)$ are non-negative integers. Let M/K be a Galois extension of algebraic number fields. The Artin L function for a general character *f* of the Galois group Gal(M/K) is defined by

$$L(s,f,M/K) = \prod_{\chi} L(s,\chi,M/K)^{a(\chi)}.$$

We denote by $\zeta_K(s)$ the Dedekind zeta function of an algebraic number field K.

Motivated by Suetuna [6], Ankeny [1] asserted that: Set $Z(s) = \prod_{j=1}^{n} L(s, \chi_j)$, where $L(s, \chi_j)$ are Dirichlet L functions for primitive Dirichlet characters χ_j . If the coefficients of Z(s) as Dirichlet series are non-negative and real and if at most one of $L(s, \chi_j)$ is the Riemann zeta function $\zeta_{\mathbf{Q}}(s)$ then Z(s) is the Dedekind zeta function for an abelian extension field of \mathbf{Q} .

Iwasaki [4] corrected and simplified Ankeny's proof. We take an interest in Theorem 1 compared with Dedekind's conjecture that for any extension M/K of algebraic number fields, the quotient $\zeta_M(s)/\zeta_K(s)$ is holomorphic. This conjecture is still open. For details, see [3, van der Waall, Holomorphy of quotients of zeta functions]. Now we prove

Received by the editors April 13, 1988 and, in final revised form, February 15, 1989

AMS (1980) Subject Classification Numbers: 11R42.

[©] Canadian Mathematical Society 1988.

ARTIN L FUNCTIONS

THEOREM 1. Let M/K be an abelian extension of algebraic number fields, and let f be a non-zero general character of Gal(M/K) (not necessarily a character of a representation). Suppose that f is non-negative real valued and the quotient $L(s,f,M/K)/\zeta_K(s)$ is holomorphic. Then the Artin L function L(s,f,M/K) is the Dedekind zeta function $\zeta_E(s)$ for an intermediate field E of M/K.

PROOF. We can write

$$f = \sum_{\chi} a(\chi) \chi$$
 $(a(\chi) \in \mathbf{Z}),$

where χ runs over all characters of degree 1 of G = Gal(M/K). Using the inner product \langle , \rangle , we obtain

$$a(\chi) = \langle f, \chi \rangle = (1/g) \sum_{\sigma \in G} f(\sigma) \chi(\sigma^{-1}).$$

where g = [M : K]. In particular

$$a(1) = \langle f, 1 \rangle = (1/g) \sum f(\sigma) > 0,$$

since f is non-zero and non-negative valued. The quotient

$$L(s,f)/\zeta_K(s) = \prod_{\chi \neq 1} L(s,\chi)^{a(\chi)} \zeta_K(s)^{a(1)-1}$$

is holomorphic at s = 1, so that it must hold that a(1) = 1. Also, we have $|a(\chi)| = |\langle \chi, f \rangle| \leq \langle 1, f \rangle = a(1) = 1$. We set $S_{\pm} = \{\chi; a(\chi) = \pm 1\}$. Following [4], we can prove that S_{\pm} is a group. Since f is real valued, we have $\langle f, \chi \rangle = \langle f, Re(x) \rangle$, where *Re* means the real part. If χ belongs to S_{\pm} , then we obtain

$$\sum f(\sigma)(1 - \operatorname{Re}(\chi(\sigma^{-1}))) = ga(1) - ga(\chi) = 0.$$

We see from $Re(\chi(\sigma^{-1})) \leq 1$ and $f(\sigma) \geq 0$ that if $f(\sigma) \neq 0$ then $Re(\chi(\sigma^{-1}) = 1$, that is, $\chi(\sigma) = 1$. Therefore $S_+ = \{\chi; \chi(\sigma) = 1$ for every $\sigma \in G$ with $f(\sigma) \neq 0\}$. This implies that S_+ is a group. Similarly, $S_- = \{\chi; \chi(\sigma) = -1 \text{ for every } \sigma \in G \text{ with } f(\sigma) \neq 0\}$. If S_- is empty then

$$f=\sum_{\chi\in S_*}\chi,$$

which coincides with the permutation character 1_H^G for the subgroup $H = \{\sigma \in G; \chi(\sigma) = 1 \text{ for every } \chi \in S_+\}$ of G. Therefore we get $L(s,f) = \zeta_E(s)$ for the intermediate field E corresponding to H. Suppose now that S_- is not empty. Then by $\chi_-S_- = S_+$ with $\chi_- \in S_-$, the cardinal number of S_+ is equal to that of S_- . Denote $m = [K : \mathbf{Q}]$. From $L(1, \chi) \neq 0, \infty$ and the functional equation of $L(s, \chi)$, we see that

T. FUMAKURA

 $L(s, \chi)$ has a zero of order $q(\chi) + r$ at s = -1 and a zero of order $m - r - q(\chi)$ at s = -2, where r is dependent only upon K. For example, see [3, Martinet, Character theory and Artin L functions]. Since

$$L(s,f)/\zeta_{K}(s) = \prod_{\substack{\chi_{+} \in S_{+} \\ \chi_{+} \neq 1}} L(s,\chi_{+}) / \prod_{\chi_{-} \in S_{-}} L(s,\chi_{-})$$

is holomorphic at s = -1 and also at s = -2, the following inequalities hold:

$$\sum_{\substack{\chi_{+} \in S_{+} \\ \chi_{+} \neq 1}} (q(\chi_{+}) + r) \ge \sum_{\substack{\chi_{-} \in S_{-}}} (q(\chi_{-}) + r)$$
$$\sum_{\substack{\chi_{+} \in S_{+} \\ \chi_{+} \neq 1}} (m - r - q(\chi_{+})) \ge \sum_{\substack{\chi_{-} \in S_{-}}} (m - r - q(\chi_{-})).$$

These yield a contradiction $m(\#S_+ - 1) \ge m\#S_- = m\#S_+$, where # means the cardinal number. The proof is complete.

REMARK 1. The result of Theorem 1 is not true if M/K is not abelian. Namely we have an example: We set $E = \mathbf{Q}(\sqrt{-3})$ and $F = \mathbf{Q}(\sqrt[3]{n})$, where *n* is a square free integer greater than 1. Let *M* be the composite field of *E* and *F*. Then M/\mathbf{Q} is a Galois extension whose Galois group is isomorphic to the symmetric group of degree 3. This group has two non-principal irreducible characters χ and ξ of respective degrees 1 and 2. We know that $L(s, 1, M/\mathbf{Q}) = \zeta_{\mathbf{Q}}(s)$ and $L(s, 1 + \chi + 2\xi, M/\mathbf{Q}) = \zeta_M(s)$. Both $L(s, \chi, M/\mathbf{Q})$ and $L(s, \xi, M/\mathbf{Q})$ are holomorphic since χ is of degree 1 and ξ is monomial. Let *f* be a character of degree 4 defined by $1 + \chi + \xi$. Then *f* is rational and non-negative valued. We have $L(s, f, M/\mathbf{Q}) = \zeta_{\mathbf{Q}}(s)\zeta_M(s)/\zeta_F(s)$. It is easily seen that all of the quotients $L(s, f, M/\mathbf{Q})/\zeta_{\mathbf{Q}}(s), \zeta_M(s)/L(s, f, M/\mathbf{Q})$, and $L(s, f, M/\mathbf{Q})/\xi_F(s)$ are holomorphic. But L(s, f) coincides with no Dedekind zeta function because *f* is not the permutation character 1_H^G for any subgroup *H* of $G = Gal(M/\mathbf{Q})$. Now Gal(M/E)is isomorphic to the cyclic group of order 3. Let η be any non-principal irreducible character of this group. Then we have $L(s, f, M/\mathbf{Q}) = L(s, 1 + \eta, M/E)$, which implies that $L(s, f, M/\mathbf{Q})/\zeta_E(s)$ is holomorphic.

REMARK 2. Let Z(s) be a product of integral powers of the Dirichlet L functions for primitive Dirichlet characters. Assume now that the coefficients of Z(s) as Dirichlet series are rational. Since Z(s) is the Artin L function $L(s, f, K/\mathbf{Q})$ for an abelian extension K/\mathbf{Q} , our assumption implies that the general character f is rational valued. Since $G = Gal(K/\mathbf{Q})$ is abelian, the rational character f can be represented as linear combination with integral (not rational) coefficients in the permutation characters 1_H^G for some subgroups H of G. (If G is not abelian then this is not always true. See Serre [5, Section 13.1].) Namely $Z(s) = L(s, f, K/\mathbf{Q})$ can be represented as product ARTIN L FUNCTIONS

of integral powers of Dedekind zeta functions for some abelian extension fields of \mathbf{Q} . This is a generalization of Suetuna [5]. For, a character of degree 3 of an abelian group is non-negative real valued if and only if the character is rational valued. This is also an answer to Ankeny's remark [1, p. 390] and Iwasaki [4, Remark].

The following theorem gives a characterization of Dirichlet L functions in the class of all Artin L functions.

THEOREM 2. If the coefficients of an Artin L function as Dirichlet series are periodic, then the function is the Dirichlet L function for a primitive Dirichlet character.

PROOF. It is enough to verify the theorem for an Artin L function of a Galois extension over \mathbf{Q} . We put

$$L(s, f, K/\mathbf{Q}) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}.$$

Let N be the primitive period of the coefficients a_n . By the Euler-Fermat theorem, for every prime p not dividing N, we find a positive integer m such that $p^m \equiv 1 \mod N$. By the Dirichlet theorem on primes in arithmetic progressions, we can take distinct primes p_1, p_2, \ldots, p_m with $p_i \equiv p \mod N$. So we have

$$a_p^m = a_{p_1}a_{p_2}\ldots a_{p_m} = a_{p_1p_2\ldots p_m} = a_{p^m} = a_1 = 1.$$

Therefore we obtain $|a_p| = 1$ for almost all primes p. Namely we have $|f(\sigma_p)| = 1$ for almost all prime ideals p, where σ_p means the Frobenius automorphism for p in K. By the Chebotarev density theorem, we get $|f(\sigma)| = 1$ for all $\sigma \in Gal(K)/\mathbb{Q})$. Now we write $f = \sum_{\chi} a(\chi)\chi$ ($a(\chi) \in \mathbb{Z}$), where χ runs over all irreducible characters χ of $G = Gal(K/\mathbb{Q})$. Since we have

$$\sum_{\chi} a(\chi)^2 = \langle f, f \rangle = (1/g) \sum_{\sigma \in G} f(\sigma) f(\sigma^{-1}) = (1/g) \sum_{\sigma \in G} 1 = 1,$$

where $g = [K : \mathbf{Q}]$, we obtain $f = \pm \chi$ for some χ . It follows from $\chi(1) = |f(1)| = 1$ that χ is of degree 1. Thus $L(s, \chi, K/\mathbf{Q})$ coincides with the Dirichlet L function for a primitive Dirichlet character ψ . Since the coefficients of $L(s, -\chi, K/\mathbf{Q}) = L(s, \chi, K/\mathbf{Q})^{-1}$ as Dirichlet series are given by $\mu(m)\psi(m)$, where μ is the Möbius function, the coefficients are not periodic. Hence $f = \chi$, which completes the proof.

REFERENCES

1. N. C. Ankeny, A generalization of a theorem of Suetuna on Dirichlet series, Proc. Japan Acad., 28, 389–395, (1952).

2. E. Artin, Collected papers, Addison-Wesley, 1965.

3. A. Fröhlich, ed. Algebraic Number Fields, Academic Press, London, 1977.

4. K. Iwasaki, Simple proof of a theorem of Ankeny on Dirichlet series, Proc. Japan Acad., 28, 555–557, (1952).

1990]

T. FUMAKURA

J.-P. Serre, Représentations Linéaires de Groupes Finis, (deuxième édition). Hermann, Paris, 1971.
Z. Suetuna, Bemerkung uber das Produkt von L-Funktionen, Tohoku Math. J. 27, 248–257, (1926).

Faculty of Liberal Arts and Science Okayama University of Science 1-1 Ridai-cho, Okayama, 700 Japan