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TRACE CLASSELEMENTSAND CROSS-SECTIONSIN
KAC-MOODY GROUPS

GERD BRUCHERT

ABSTRACT. Let G be an affine Kac-Moody group, 7. . ... mr, g its fundamental
irreducible representations and xo, . . . » Xr, Xs their characters. We determine the set
of al group elements x such that all 7;(x) act as trace class operators, i.e., such that
Xi(X) exists, then prove that the x; are class functions. Thus, x = (xo.-- .- Xrs Xs)
factorsto an adjoint quotient  for G. Inasecond part, following Steinberg, we definea
cross-section C for the potential regular classesin G. We prove that the restriction x|c
behaves well algebraically. Moreover, we obtain an action of ¢* on C, which leads to
afunctional identity for x|c which shows that x|c is quasi-homogeneous.

Introduction. Thiswork isonthe adjoint quotient of affine Kac-Moody groups. The
adjoint quotient is of relevance in singularity theory, because there is a correspondence
between simple singularities and simple linear algebraic groups [S1] which extends
to a correspondence between simple elliptic and cusp singularities and Kac-Moody
groups [S3]. To elucidate this correspondence, one can use a group theoretic approach.
We will give a short summary of the finite dimensional case[St1, St2].

Let G be asimply connected, semisimple linear algebraic group. G acts on itself by
the adjoint action (conjugation)

GxG—G, g-x:=Adg)(x :=gxg >

The quotient G/ Ad as well as the associated morphism (of varieties) x:G — G/ Ad
are called the adjoint quotient of G. There are several ways to obtain arealization of :
(i) Let T be amaximal torus, U the unipotent radical, B =T x U a Borel subgroup
and W the Weyl group of G. Each element g € G is conjugate to some element
b=tueB.Letx(g):=[t] € T/W ~C".
(i) Each element g € G may be decomposed into g = su, where sis semisimple and
uis unipotent (Jordan-Chevalley decomposition). sis conjugateto somet € T; let
x(@) :=[t] e T/W ~C".

@iii) If m:G — GL(V)) (i = 1,...,r) are the fundamental irreducible representations
of G and y; := traceor; their characters, thenlet x := (x1....x):G — C'.
Trying to generalize thisto Kac-Moody groups, onerunsinto several difficulties: (1) Not
all group elements are conjugate into a fixed Borel subgroup, (2) there is no Jordan-
Chevalley decomposition, (3) the quotient T /W has no structure (in the sense of being
avariety or such) and (4) the fundamental irreducible representations are infinite dimen-
siona, xi(g) is not defined for all g € G. Even if there are partial solutions to these
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problems, one considers the realization of an adjoint quotient for Kac-Moody groups as
an open problem [S3, Section 11.7], [$4, section 10].

In this work we will generalize the group theoretic approach, as in (iii) above, to
affine Kac-Moody groups. For that, let G be an affine Kac-Moody group, x; := trace o
the characters of the fundamental irreducible representations (i € {0..... r,6}) and
X = (x0s-- -, Xr» X5), then x(X) is defined iff al 7;(X) are trace class operators.

In the first part of our work we investigate the functional analytic properties of the
operators 7i(x). In particular, we determine the set GI of al x € G for which x(x) is
defined. Up to boundary points, this set coincideswith G = {(x,q) € G=G' x C* |
|g) > 1} and is invariant under conjugation by arhitrary group elements (Theorems 1
and 2). Moreover it was possibleto prove that y isinvariant under the adjoint action, i.e.,
invariant under conjugation by arbitrary group elements; this is nontrivial as it means
conjugation by unbounded operators (Theorem 3)%. Thus, we have a class function
x: G"1 — €™ x €* and acommutative diagram

X
G>1 - CHlXCX

L > /4

G>1/ Ad

Asfar as the fundamental characters can be considered to be algebraically independent
(and thisis essentially aquestionon o, . . . , xr, depending on the value ), x may thus
be viewed as a character-theoretic realization of an adjoint quotient of G (cf. [$4]).

The second part of thiswork is dedicated to the construction and investigation of an
analogue of Steinberg’s cross-section for regular classesin simply connected semisimple
algebraic groups [St1, St2]. Asin the finite dimensional case, we can define this cross-

section C by using one-parameter subgroups,

r
C:= im(w) = HUini x C*.

i=0
In Steinberg’s case, the restriction of the adjoint quotient x:G — T/W induces an
isomorphism of algebraic varieties x|c:C — T/W. In our situation, we can show
that x|c = x o w can be expressed as a power seriesin g with polynomial coefficients
inco,..., ¢ (Theorem 4), that the Jacobian determinant det(y o w)’(Co, ..., G, Q) is
invertible in the ring of formal power series C[[q~1]] (Theorem 5), and that there is a
natural C*-action on C rendering x o w quasi-homogeneous with respect to the natural
degrees (levels) of xo, .. ., xr (Theorem 6). As a consegquence of Theorems5 and 6, the
map x o w induces an isomorphism

Xq = Xlcg: Cq = im(w(CHl X {q})) — ¢t

1 Preliminary work on Theorems 1, 2, 3 by Stephen Slebarski [Sle] has to be acknowledged.
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for all sufficiently large g (Theorem 7). The C*-action on C has no counterpart in the
finite-dimensional situation of semisimple algebraic groups. However, it may be viewed
as an analogue of aC*-action on transversal slices to nilpotent orbits in semisimple Lie
algebras as originally introduced by Harish-Chandraand heavily exploited in [S1].

1. Kac-Moody algebrasand Kac-M oody groups.

Generalized Cartan Matrices. Let A be ageneralized Cartan matrix (GCM), i.e.,, A €
Mn(Z), & = 2 foral i,a; < Oforali #j, anda; = 0 & &; = 0. Such a matrix
A is called indecomposable if there is no decomposition of {1,.... n} into nonempty
disioint subsets I, |, such that a; = O wheneveri € |4, j € I>. Subsequently, we will
consider only indecomposable GCM. The GCM roughly fall into three classes, called
GCM of finite, affine or general type. A GCM is called symmetrizable (SCM), if thereis
aninvertible diagonal matrix D = (dy, . . . , dy) and a symmetric matrix B € Mp(Z) with
A = DB. All GCM of finite and affine type are symmetrizable.

Realizations. A (minimal) realization of A is a triple (h, A, V), consisting of a com-
plex vector space h of dimension 2n — rank A, a linearly independent subset A =
{a1,....an} C h* and a linearly independent subset V = {hy,..., h.} C h, with
aj(hy) = &; for all i,j. Elements of A are called simple roots, elements of V are called
simple coroots. Furthermore, (A); is called theroot lattice and (V)7 is called the coroot
lattice. Thereis an order relation (reflexive, antisymmetric, transitive) on h* defined by
A<p:ep—XAE (D),

Weyl group. Oneintroduces linear mapsw;: h* — h*, A — A — A(h)og (i=1,....n);
these maps generate a subgroup of GL(h*), called the Weyl group W = W (A). In the
sameway, onedefineslinear mapss: h — h, h— h—q;(h)h;; thes generateasubgroup
of GL(h) whichisisomorphicto the Weyl group. The Wey! groupisaCoxeter group, i.e.,
isagroup with generatorswy, . . . . W, and relations (wiw;)™ = 1, wherem; € ZU {oo},

mi =1, my =my; > 2fori #] [K, Proposition 3.13]. The m; depend on A as follows:
aj |0 1 2 3 >4
mp (|2 3 4 6 oo

If A = DB is a SCM, then there is a nondegenerate, symmetric, C-bilinear form
( | ):h xh — C satisfying (hy | hj) = a&;d;. Furthermore, there is an isomorphism
v:h — h* defined by v(h)(h") = (h | i), h,h’ € h; v induces a nondegenerate, symmet-
ric, C-bilinear foom (| ):h* x h* —C.

Kac-Moody algebras. If AisaSCM, then the Kac-Moody algebrag(A) associated with
A can be obtained asthe Lie algebrawith generators g, f;, h, and Serrerelations

[h..h,]=0, [h.e]=ai(h)e. [h.f]=—ai(h.)f.
[e.,fj] =5ijhi- (ade.)l""“le, =0, (adfi)lia”fj =0.

The main point of symmetrizability is, that g(A) admits a nondegenerate invariant sym-
metric C-bilinear form ( | ):g(A) x g(A) — Cif andonly if AisaSCM [K, Theorem 2.2,
Exercise 2.3].
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Explicit construction of affine Kac-Moody algebras. Kac-Moody algebras of affine
type can aso be obtained via the following construction: Start with the loop algebra
(OJ ®C[t, t~1] of afinite dimensional simpleLieaIgebraé; theloop algebraisthen centrally
extendedto givethederivedalgebrag’ = go] ®@C[t. t~1] @ Cc (direct sum of vector spaces);
finally, we take the semidirect product g := g’ x Cd, where d: ¢’ — ¢ is the derivation
defined by x @ t™ — mx @ t™, ¢ +— 0 (cf. [K, Chapter 7], [FLM, Section 1.6]). TheLie
bracketin gis given by

[Xx@tM+¢c+nd. yot"+¢'cHy'd] = ([x. y] @™ +pny@t"— ' mx@t™) +Mmano(X | Y)C.

where ( | ) isthe Killing form on a This construction gives the so-called untwisted
affine Kac-Moody algebras; a slight modification of this construction gives the twisted
affine algebras[K, Chapter 8], [FLM, Section 1.6].

Roots. For arbitrary GCM, g = g(A) isah*-graded Lie agebravia

(@) g= &P 9.. where g,:= {x €g]| [h,X] = a(h)xforalhe h}
ach*

and dimg, < oo. Those o # 0 with g, # {0} are called roots, the corresponding g
are called root spaces, and the set R of all roots is called the root system. We have
A c R c (A);. Theroot system R isinvariant under the action of the Weyl group and
consists of real rootsR " := W - A andimaginary rootsR '™ := R \ R . Furthermore,
the root system decomposesinto positiveand negativeroots, R = R,UR_ =R.U—-R.,
whereR, :={a €R | « >0}

If Ais of affine type, thenr := rank(A) = n— 1 and we use {0, ...,r} asindices
instead of {1,...,n}. g =g(A) isnolonger simple, but hasexactly two nontrivial ideals:
The one-dimensional center ¢ and the commutator subalgebrag’ = [g, g]. The center ¢
is spanned by ¢ = >[_, &’hj; the coefficients gy’ € N defined by this equation are called
the dual labels or dual marks of A. Furthermore, dimh =r +2 and V is completed to a
basis {ho, ..., he,d} of h. Theimaginary rootsare R '™ = 7*§, where§ = >, ajcx; (the
numbersa; € N are called the labels or marks of A).

Compact involution. Defining g — —fi, fi — —e&, h+— —h (h € hg), one obtains an
antilinear involution wg on g = g(A), which is called the compact involution. The fixed
point set k := k(A) := {x € g | wo(X) = x} is called the compact form of g = g(A). Since
wp isan antilinear involution, it is easily verified that k isareal Lie algebraand g isthe
complexification of k.

Weights. Let AbeaGCM and h the Cartan subalgebraof g = g(A). An element A € h*
is called integral or a weight (dominant, integral dominant) if A(hj) € Z (€ R, € No)
forali=1.....n. Thereisavery close relationship between roots and weights, and we
will recall afew facts for the finite and affine case.

Finite case. Let A be aGCM of finite type and X := (V). The elements defined by
Aihy) =65 (=1..... r) are called fundamental dominant weights. Sinceh = (V)q, the
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set of weightsisjust X* := Homz(X, Z) = (A1, .. .. Ar)z. Thus, the relationship between
roots and weights is essentially summarized in the chain of inclusions

ACR C(A); CX =(An....\)z Ch*=X*®;C.

In particular, every simple root «; is a Z-linear combination of );’s and the set D of all
integral dominant elements coincides with the No-linear combinations of \;’s:

Affine case. In the affine case, X = (ho, ..., hr, d); and the fundamental dominant
weights A (i =0, ..., r) aredefined by Ai(h;) = é;;, Ai(d) = 0. Following the conventions
asin[K],

ap(d) =1, o(d)=0(@(=1,..., r), 6(y) =0, o(d)=ao.
we get achain of inclusions
AcCR c(d); cX ={...., M)z ® 226 Ch*=X"@; C

and the simple roots resp. integral dominant elements can be written as

r 1

2 ai =) agiAjtmd (i=0...., r, whereno:£,n1:~--:nr:0.
=0

©) D= (Aos. .. A, ® C6.

Because of (3) it is sometimes convenient to consider 6 as the r + 2-nd fundamental
dominant element.

The category O. A g(A)-module V is called diagonalizable if

(4) V=@ V.. whereV,={v|h-v=x(hvVheh}.
xe h”

If V, # {0}, then )\ is called a weight of V and V, is called a weight space. The
set of all weights of V will be denoted by P(V). A diagonalizable g(A)-module V is
said to belong to the category O if all the weight spaces are finite dimensional and
PV) C UN{p € h* | p < A} for some Ay, .... An € h*. Submodules, quotient
modules, finite sums and finite tensor products of modules in O are again in O. The
morphismsin O are simply the g(A)-module homomorphisms.
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Highest weight modules. Examples of modules, which arein O, are the highest weight
modules. These are g(A)-modules, suchthat thereisa/A € h* and ahighest weight vector
VA €V satisfying

N+ - VA =0,
(5) h-va =A(hjva foralheh,
U(g®) -va = V.

For each A\ € h*, thereisauniqueirreducible highest weight module with highest weight
A, denoted by L(A). Conversely, any irreducible representation in O is isomorphic to
some L(A). Thus, A — L(A) is a bijection between h* and the set of all (isomorphism
classes of) irreducible representationsin O. For any L(A), we have

dimL(AaA=1 and P(A) :=P(L(A)) C{u|p <A}

Integrable modules. A g(A)-module V of the category O is called integrable, if all
e, fi act locally nilpotent on V. This local nilpotency is one of the reasons why such
representations of g can belifted to arepresentation of the associated group. Of particular
interest are the highest weight modules L(/A) with integral dominant A, since L(A) is
integrable if and only if A isintegral dominant [K, Lemma 10.1]. Thus, A — L(A) isa
bijection between D and the set of all integrable irreducible representationsin O.

Integrable modules for affine Kac-Moody algebras. In chapter 2 we will focus on the
fundamental representationsL(\o), .. ., L(\r), L(6) of affine Kac-Moody algebras. The
module L()\o) is aso known as the basic representation which is used in string theory
(cf. chapterslll and IV of the introduction in [FLM]). The L(A;) are infinite dimensional,
but the L(nd), n € C, are one-dimensional: g = g(A) actson L(nd) = C via

ms(@)(1) == 0. mus(f)(D) := 0. mus(hi)(1) := 0.  mns(d)(2) := nao.

Obvioudly, vs := 1 € Cisahighest weight vector which satisfiesthe conditions (5). After
identifying End(C) with C, we see that 7,5 can also be thought of as being no:h — C,
trivially extended to alinear map (denoted by the same letter) no:g — C.

Later, we would like to restrict ourselves “without loss of generality” to L(A) with
A€ (Aoy--o s M)y Thus, if A+nd = T nA +n € D, we need to know how the
representations L(A + nd), L(A) and L(nd) relate to each other. Using the definition of
a highest weight module, it is easy to see that L(A + nd) = L(A) @ L(nd). Furthermore,
after identifying the vector spacesL(A + nd) and L(A), the actions mans, ma and mns are
related to each other by
(6) Ta+ns(X) = Ta(X) + Nd(X) idL(/\).

If A € D, then A(c) € Np is called the level of A. The weight system P(A) can be
described as follows [K, Proposition 12.5]: P(A) liesin the hyperplane {\ € h* | A(c) =
A(c)} and isthe intersection of the parabolagivenby (A | X) < (A | A) and the “lattice”
N — (A)y,. Fromthis, it is straightforward to prove some technical details needed later,
collected in the following lemma.
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LEMMA 1. The weight system P(A) of an integrable representation L(A) of an affine
Kac-Moody algebra has the following properties.
1) PN\ C X ANe Xy
(2) If A\ ¢ Cb, then for eachi thereexistsa u € P(A) suchthat also p — o5 € P(A);
(3) M—og—06 € P()\o),
(4) if6(h) #0and R € R, then {u € P(A) | p(h) = R} isfinite. n

Thehermitianform (| ) on L(A). Asadirect sum of countably many finite dimensional
weight spaces, the L(A), A € h*, are themselves of countably infinite dimension. The
following lemmais essential for using functional analytic techniquesin chapter 2, asit
ensures the existence of an inner product on L(A) with additional ‘nice’ properties [K,
Proposition 9.4, Lemma 11.5, Theorem 11.7]:

LEMMA 2. For every A € D, thereisan inner product { | ): L(A) x L(A) — C such

that
(7) (x-v|w)=—(v|w(¥)-w) (contravariance)
8 (VA | Va) = 1.

Together with thisinner product, L(A) is a unitary space of countably infinite dimension;
the completion H(A) of L(A\) is a separable Hilbert space.

By the contravariance (7), the adjoint map ma(X)* of ma(X) existsfor any x € g, and
equals ma (—wo(X)). Furthermore, one can prove that (7) implies that the weight spaces
are orthogonal:

9) (LA L)) =0 if A # p,

If, for each weight 1, one chooses an orthonormal basis of L(A),,, then the union of all
these basesis, by (9), an orthonormal basis of L(A); thisis called an adapted basis.

Kac-Moody groups. Therearesevera waysof associating agroup G(A) to aKac-Moody
algebrag(A). Kac and Peterson exploit the properties of the modulesL(A) to introduce
a “minimal derived” Kac-Moody group [PK, K2, G, MP]. Alternatively, Kac-Moody
groups can be defined via an amalgamation process, cf. [S3] and the works of Tits cited
there. Or, one gives a definition via generators and relations, without referring to the
algebrag(A) [KP]. In the present work | will usethe “minimal” version of a Kac-Moody
group, which is dlightly larger than the “minimal derived” version; we give a short
introduction and will supply some information which is needed |ater.

Let g bean arbitrary Liealgebraand (, V) beag-module. An element x € giscalled
m-locally finite if 7(x) acts locally finitely on V; denote the set of al w-locally finite
elementsof gby F,. If F C F,, then one can consider the subgroup of GL(V) generated
by the exp(7(x)), x € F.
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Let g = g(A) be an affine Kac-Moody agebra. If we choose

(10) (m.V) = P (ma. L))
AeD
and r r r r
(11) F=hUulUgs,UlJg-o, or CAdUJguUlJg—u-
i=0 i=0 i=0 i=0

then we get the (minimal) Kac-Moody group G = G(A) associated to g = g(A), which is
discussed in the present work.

ThetorusT. Sinceall r(h), h € h, act diagonally on V, the subgroup T := {exp(7(h)) |
h e h} is commutative. As a Z-module, it can be identified with X ®; C* via
exp(zm(hi)) — hy ® ¥, To avoid confusion, we list the different Z-module actions:

C: n-z:=nz

c* n-q:=d"
h=X®;C: n-X®2 =NX®zZ=X® Nz
T=X®;C% n-XQ0) =mx@q=xdq".

In T we will sometimes use additive notation, sometimes multiplicative notation. Thus
wehavex® q+x®@ 0 =x®@q¢ andXx® g+x @ g = (x+X) @ g in additive notation,
xegxed)=x@qd and (x® g)(X ® q) = (x+X) @ q in multiplicative notation.
The exponential map exp:h — T, h— exp(r(h)) is asurjective group homomorphism;
it can also bewritten as>" h; @ z — > h; @ €. Thekernel of expisiX. Thefollowing
subgroups of T will be important later:

T ={hi®q|geC*}~C* (i=0,....r),
Tag={d®q|geC*}x~C",

)
T = exp(he) = { @ +d@q|gc>0fork=0.....randq > 0}.
k=0
r
Te = exp(ihg) = (S h@a+d@q|lal=lg/ =1 fork=0,....r}.
k=0

These subgroups can be used to write down two decompositions of T which we will
use frequently. The first one is the polar decomposition, T = T, x T.. Corresponding
to this decomposition we write t = t.t; for elements of T. The second one is the
decomposition T = (To X - X Ty) X Tg = (To X --- X T;) x C*, here, we write
t=rhe@g+d®qg=(Ch ®q.q).

One-parameter subgroups in T and characters of T. Each one-parameter subgroup
w € Homz(Z, X) (of these, there are only the maps p4:z — za, a € X) extendsto a
one-parameter subgroup i € Homy (C, h), which itself lifts to a one-parameter subgroup
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[t € Homy(C*,T):

C* — T=X®C* uwq—a®q
exp T o Texp

C —— h=X®C nz—aQz

t o t

7 — X=X®Z W:Z+— az

where exp: C — C*, z+— €. Each character 1 € Hom; (X, Z) = X* extends to a map
{r € Homy(h. C), whichin turn lifts to amap ;1 € Hom; (T, C*):

T=X®C* — C* u=:X®q»—>ql"(X)

®<pT o ?exp

h=X®C — C WX Q Z— zu(X)
f o t

X=X®7Z — Z i X — p1(X)

If there is no danger of confusion, we will drop the bar and the double bar.
The one-parameter subgroups U; and V;. For each simple root «; (i = O,...,r) we

define one-parameter subgroups '

X =Xy i€ — G, Xy (C) :=exp(m(ca)). Ui = Ug =Xy (C).
Vi =X i€ — G, X.g(0) = exp(n(ch)),  Vii=U_y 1= X 4(C).
The exponential maps exp: Ce — U, ce — X;(c) and exp: Cf; — V;, cfi — yi(c) are

group isomorphisms. Since[e, fj] = 0, we know that x;(c) and y;(c’) commute for i # j.
Using [K, (3.8.1)], one proves that the one-parameter subgroupsare normalized by T:

(12) exp((h))x(c) eXp(ﬂ(h))_l = x(e"™g),
(13) exp((h)yi(c) exp(n(h) = yi(e ).

But (12), (13) and the commuitativity of T imply G’ = [G, G], which justifies calling G’
the “derived Kac-Moody group”. Furthermore, G = G’ x Ty. In this sense, we will use
the notation (x, q) for elements of G.

ThebuildingblocksG;. Letg; := (e, fi,h)andG; := (T;, Ui, Vi). Sinceall elementsof g;
actlocally finiteonV [K, Section 1.2], the exponential map exp: g; — Gi, X — exp(())
is well-defined. Just as we have an isomorphism of Lie algebras ¢;:d(2.C) — g;,
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(55)— & (35) — f. (5%) — hi, wehave agroup isomorphism ¢;: SL(2.C) = G
given by

i (éi)Hm(c)s (iﬁ)wi(c). (gqgl)HhiQaq-

From (12), (13) and the formulae given in the proof of [C, Lemma 6.1.1], we know
that the G; are normalized by T. Furthermore, K; := ¢;(SU(2)) = SU(2) is a compact
form of G; and we denote by n; the element

N ) I I Y e

The normalizer of T and the Weyl groupW . LetN:=(T.np,....n:). ThenT <t N and
N is the normalizer of T in G. W := N/T is called the Weyl group of G = G(A); the
s := [n] generate W, (W . S) (where S:= {s. ... s }) isaCoxeter system, and W is
isomorphic to the Weyl group of the corresponding Lie algebrag = g(A).

Borel subgroups. Above, we associated a one-parameter subgroup to each simple root.
This can be done for any real root. Let o be areal root, say o = w - «; for some simple
root o and somew = [n] € W. Then

Xe:C — G, Xu(C) := Xy (N7, U, i=%,(C) = nUin?

is the one-parameter subgroup associated to «. Now we can define the following sub-
groups of G:

Us = (Ug |a>0. ared), U-:=(Uy| a <0, ared).
B.:=(T.U.). B_:=(T.U_).

Theinvolution wg and the compact form K. The compact involution wp: g — g liftsto
aninvolution &o: G — G. For elements of T and the one-parameter subgroups one gets

(14) Qo) =t forte Ty,
(15) wo(t) =t fort € T,
(16) Zo(%(0)) = yi(—0).
17 Zo(Yi(c)) =x(=C).

The fixed point set K := {g € G | &o(g) = g} is called the compact form of G. From
[PK, Corollary 4(b)] we know that there is an Iwasawa decomposition for G, i.e.,

G =KT,U..

REMARK. Whether there is a Cartan decomposition G = KT.K for Kac-Moody
groups, is an open problem. If there were, this would simplify some of the proofs in
chapter 2.
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Lifting the representations of g(A). Denote the set of all localy finite elements of
End(L(/\)) by Fig, and let A € D. From F i C F,, we get 7A(F o9) C F g, Wwhence
in: eXP(F a1) — GL(L(N)), exp(x) — exp(ma(X)) is well-defined. If this map extends
to agroup homomorphism 7ia: G(A) — GL(L(A)) wesay that  liftsto 7ia. Inthis case,
one has a commuting diagram

G(A) ™, GL(L()

ol o e

Fag — Fid

A

By [MP, Proposition 6.1.12] all therepresentationsma, A € D canbelifted to arepresen-
tation of G(A). In particular, 7y, . ... T, . s are called the fundamental representations
of G.

Action of the toruson L(A). Each element t € T acts as a u(t)-multiple of the identity
onL(A),.

Action of the one-parameter subgroupsonL(A). Letv € L(A). Since a(e) actslocally
nilpotent, the sum

in (o (0) = @XB(na(c8)) () = 3 s ma(Ce) = 3 Frma(e)'y
isfinite, say terminates at n = N (N dependson v, but not on c). If v € L(A),, then
(18) Aa(X (©)V=VHevy +CVp +- -+ SNy where Vi € L(A) sk -
In the same vein,

A(X(Q)V=VHev + PV, +- - +cMvy where Vi € L(A) ke

for any real root «.

Action of the Weyl group. Elements of the Weyl group (or, more precisely, their repre-
sentatives) permute weight spaces. If w = [[n] € W, then[S3, p. 5-48]

(19) n- Vu = VW(#).

Action of the compact form K. From the contravariance of the hermitian form ( | ):
L(A) x L(A) — C with respect to g(A) we easily deduce, starting with the exponential
generators of G(A), the global contravariance of (| ) with respect to G(A), i.e.,

(20) (An(@V | 7a(2o(@)w) = (v] W)

for al g € G(A), v.w € L(A). In particular, we get that the compact foomK = {g € G |
@o(g) = g} acts by unitary operators on L(A) and thus on H(A).
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Other useful formulaswith respect to &g are given by the explicit adjointswith respect

to(]):
(21) A" = Fa(Got™)) foralteT.
(22) aa(X(Q) = A (@) and FA(¥i(Q) = Fa(X(©)

fordli=1,....r,ceC.

2. Traceclasselementsin Kac-Moody groups. In this chapter we investigate the
functional analytic properties of the elements of G when they are viewed as operators
acting on L(A), Vo = @i_oL(\i) or V = @pep L(A). We start by looking at suitable
subgroups of G, and ask: Which of the elements of the subgroup under consideration are

(F1) sefadjoint (F4) bounded
(F2) unitary (F5) boundedinvertible
(F3) normal (F6) algebraic trace class operators

on L(A\), resp. V,, resp. V? And, if the completions of these spaces are denoted by H(A),
H., H, respectively: Which elements are

(F7) trace class operators on H(A), resp. H, resp. H?

For convenience, we recall the definitions (for more, cf. [Con] or [Go]). If V isaunitary
space, then alinear map ¢: V — Viscalled selfadjoint if (¢v | w) = (v | ¢w) for al v, w,
unitary if (¢pv | ow) = (v | w) for all v,w, normal if ¢p¢* = ¢*¢, bounded if ||4|| < oo,
bounded invertible if ||¢||. ||| < oo, and compact if the closure of ¢({v | ||v|| < 1})
is acompact subset of V.

A linear map ¢:V — V is called an algebraic trace class operator with respect to
a given orthonormal basis B = {e }icn, if Y |(e | ¢&)| < oo. In this case we call
traceP(¢) := (e | ¢&) the algebraic trace of ¢. Please note that it depends on the
chosen orthonormal basis, whether amap ¢:V — V is an algebraic trace class operator
or not. The set of all algebraic trace class operators with respect to a basis B is denoted
by End (V).

Let H be a Hilbert space. An operator ® € B(H) is called trace class operator if
e | |Ple) < oo, where || = (@ ®d)? is the absolute value of ®. The set of all trace
class operators is denoted by B;(H). The (Hilbert space) trace of @, trace(®) := (g |
®e), is independent of the choice of basis [Con, p. 274]. We have B;(H) <1 B(H) and
By(H) < End®(H) [Con, p. 274].

For arbitrary subsetsU C G we introduce the following notation:

UR = {g € U | #a(@): L(A) — L(A) is bounded},
UR = {g € U | 7a(Q). #(g™): L(A) — L(A) are bounded].
UR" = {g € U | #(0): L(A) — L(A) is an algebraic trace class operator |
UR = {g € U | #ia(g) extendsto atrace class operator on H(A) };

https://doi.org/10.4153/CJM-1998-049-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-049-3

984 GERD BRUCHERT

similarly, we use the symbols UP, U% U U and Ub, UP, Ua", U™ (substitute 74 by
o resp. 7). Furthermore, let

U™t :={g=(x.q) € U||q > 1}.
U™:={g=(xq) eU]|lq =1}.
Ut:={g=(x.q) e U||q <1}.

The main results of this chapter are: We have G>! ¢ G ¢ G>1 U G™ (Theorem 1),
and G is invariant under conjugation by arbitrary group elements (Theorem 2). We
proceed in three steps: First, we take a thorough look at the torus T; then we deal with
the Levi subgroupsL, = (T, Uy, U_); finally we cometo the group G itself.

2.1. Torus elements as operators on L(A), V, and V. We recall the definition of the
fundamental chamber F and the Tits cone X :

(23) F :={hehg|aih)>0forali}. X:=J w-F.
weW

LEMMA 3 (ACTION OF T ON L(A\)). Let G bean affine Kac-Moody group, T the torus
of G,A € (Ao..... A\r)n, andt = exp(h’ +ih”), ", h" € hg. Then:
(F1) 7a(t) isselfadjoint & p(h”) € %Z for all u € P(\);
(F2) a(t)isunitary & =0 & te T
(F3) wa(t) isnormal;
(F4) TR =exp(X) x Tg;
(F5) T8 = exp(Rc) x T;
(F6) T& =T,
(F7) T{ =TL.

ProOF. Because 7A(t) acts diagonally on the weight spaces L(A),, as multiplication
by n(t), it is natural to look at the set of eigenvalues of 7a(t), called the spectrum of
FA(t), specaa(t) = {u(t) | © € P(A)}. If t = exp(h), it is also convenient to look at the
spectrumof ma(h), specma(h) := {u(h) | © € P(A)}, instead.

(F1): 7a(t) isselfadjoint iff (t) € Rfor all 1 € P(A). Since fu(t) = p(ts)p(te), where
u(t) € R* and plt;) € St (here, we implicitly use A € ()Xo, ..., My, = A € X5 =
P(A\) C X*, cf. Lemma 1(1)), this holds iff p(tc) = €##(") = £1iff p(h”) € 1Z for all
€ P(N). O

(F2): Similar to (F1), 7a(t) is unitary iff u(t) € Stiff u(ty) = ™M = 1iff u(W) =0
for al u € P(A). By Lemma 1(2) thisimplies «i(h’) = 0 for all i, whenceh’ € Rc. But
we also have A(h’) = 0, which finally forcesh’ = 0. O

(F3): SinceT iscommutative, any 7 (t) is normal. O

(F4): #a(t) is bounded iff speca(t) is bounded; in this case || 7a(t)|| = sup{|u(®)| |
p € P(A)} < oo. Wediscuss a) the caset € Tg, b) the caset € T, then c) the general
case.
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a) Ift € T, then p(t) € S for al € P(A), whence ||7a(t)|| = sup{|a(t)| | 1 €
PN} = 1.

b) t € T.. Thisiswhere the real work is. Recall the definition of the fundamental
chamber and the Tits cone (23). One has X = RcU {h € hg | §(h) > 0} [K, Proposi-
tion 5.8.b], X N (—X) = Rc, and hg decomposesdisjointly into the four sets

Rc

Xy =X \Rc={hehg|éh >0}= J w-(F \Re).
weW

Xo:= —X \Rc = {h & hy | () < 0},
X3 :=(V)r \Rc={h e hg | é(h) =0} \ Re.

Correspondingly, we discuss spec a(t), t = exp(h), for each of these four cases.
e t = exp(h), h € Rc. Since a(t) = A(t) - idi (), we have speca(t) = {A(t)} and

IFA® = IA®)]-

o t=exp(h), h € X;. Lett = exp(h), whereh € F \ Rc. In this case
(24) sup{p(h) | u € P(N)} = A(h).
(25) inf{u(h) | we P(/\)} = —00,
(26) specma(h) = {u(h) | 1 € P(A)} isadiscrete subset of R.
27 each eigenvalue has finite multiplicity.

Ad (24): Since A\ € P(A), we have A(h) € {u(h) | © € P(A)}; sinceup € P(A) =
p<A=p=N-=3_ynao (n >0), weget u(h) <A(h).

Ad (25): For dl n € Ngwehave A —né € P(A); now 6(h) > 0 implies (25).

Ad (26): LetJ :={i | oi(h) > 0}, which is nonempty because we assumed that
h € F \ Rc. For each real number Rthe set {u:(h) | © € P(A)}N[R, oo isfinite, because

u(h) = Ah) — i nioi(h) = A(h) — > niei(h) > Re 3 niai(h) < A(h) — R
i=0 ied i€l

and the latter can be realized only by finitely many tupels (n)ics, ni € No.

Ad (27): Followsfrom Lemma1(4).

If t = exp(h), where h € Xy, say h = w.h for somew € W and h € F \ R, then by
the invariance of P(A\) under the action of W,

{uh) | p e PO} = {u®) | 1 € POV},
Hence
sup{p(t) | 4 € P(N)} < oo,
inf{u() | p € P} =0,
specia(t) = {u(t) | 1 € P(N)} isadiscrete subset of R*,
each eigenvalue has finite multiplicity,
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i.e., [Con, Proposition 11.4.6]:
(28) If t = exp(h), h € X1, then 7ix(t) isacompact operator on L(A).

e Lett = exp(h), h € X,. These are the inverses of the elements we were talking
about amoment ago, thus

If t = exp(h), h € X5, then 7A(t) is an unbounded operator on L(A);
(29 spec A (t) hasno limit points.
e Now for the last case, t = exp(h), h € X3. Here, 7ia(t) is unbounded in a very
unpleasant way. First, any eigenvalue has infinite multiplicity, since p(h) = (1 — ns)(h)
for al n € No. On the other hand, {i(h) | © € P(A)} is bounded neither below nor

above: Sinceh ¢ c, thereisani € {0...., r} such that os(h) # 0. If « := o + nd then
o’ =hi+ n%c [K, Proposition 5.1.d.ii]; furthermore because of §(h) = 0

(o N = (A =A@ ))(0) = A) = A)or () = 1 A ().

I

#0

which, for suitable n, gets arbitrarily large or small. Thus:

If t = exp(h), h € X3, then 7A(t) is an unbounded operator on L(A);
(30) spec a(t) has 0 asalimit point.

To summarize b): If t = exp(h), h € hg, then a(t) is bounded iff h € X.
c) t € T arbitrary. Since a(t) = a(tste) = TA(t)TA(te) and ||Ta(te)]| = 1, the map
7ia(t) is bounded iff 7A(t:) isbounded, i.e., iff t. € exp(X). O
(F5): Using X N (—X) = Rc and the statementsin (F4), we obtain (F5). O
(F6), (F7): Since ma(t) actsdiagonally, it already extendsto atrace class operator on
H(A) if it isjust an algebraic trace class operator, i.e., if and only if

> dimL(A),|u(t)] < oo.
neP(N)

In [K], the character chy of ag-moduleV = ®,V,, is defined by chy := >, dimV,¢e",
where e:h — C*, e'(h) := €M, The character chy is thus a function defined on (a
subset of) h. The set where chy converges absolutely, is denoted by Y(V). The character
chy can be interpreted as the trace of 7 (t), for

trace(7a()) = > dimL(A),u(t) = 3 dimL(A),e™® = chypy(27h).
0 0

By [K, Section 11.10], for affine dlgebrasand A € D,

Y(L) = {he h| > dimL(A),|e'®| < oo} = {h € h | Re(5(h)) > 0}.
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Of course Re(5(h)) > 0 < Re(6(2rh)) > 0, thus #A(t) is a trace class operator if and
only if Re(b‘(h)) > 0; in more detail, the following statements are equivalent:

(@ 7a(t) extendsto atrace class operator on H(A),
(b) Re(é(h)) > 0.

© Ol >1,

(d) t=(x.q)where|q| > 1.

Thisfinishesthe proof of Lemma 3. L]

PROPOSITION 4 (ACTION OF T ON V,). Let G be an affine Kac-Moody group, T the
torusof Gandt = exp(h’ +ih”), . h” € hg. Then
(F1) #.(t) isselfadjoint & h” € X & t € Ty x exp(3iX);
(F2) 7o(t)isunitary & W =0&1e T
(F3) 7,(t) isnormal;
(F4) T2 = exp(X) x T;
(F5) T2 = exp(Re) x Te;
(F6) T2 =T%,
(F7) TV =T>L

PrROOF. First recall that 7. (t) = Bj_o Ty, (t), whence 7,(t) is selfadjoint, unitary, .. .,
trace classif and only if all 7, (t) are so.

(F1): =: Leth” = ¥ mh + md. By Lemma 3 (F1) we have pu(h”) € 1z for all
w €PN, ali=0,..., r. In particular, Ai(h”) € 1Z forcesm € $Z and (A — §)(h") €
%Z forcesm € %Z. But there is a stronger argument which even forces m € %Z: By
Lemmal (3), Ao — oo — 6 € P(No). Now

(Mo — a0 — )(N") = (ho — B — 3" myaro(hy) —marg(d) € =2

\—V—-/ 2

€ 7 =1

[N

z €

[N

whencem € 7. Thush” € 1X. <: Leth” € 1X,i.e, 2h” € X. Since \; € X*, weknow
that P(\j) C X*. Thus, for all u € P(\) and al i, u(2h”) € Z. O
(F2)«(F7): Followsimmediately from Lemma 3. ]

PROPOSITION 5 (ACTION OF T ON V). Let G be an affine Kac-Moody group, T the
torusof Gandt = exp(h’ +ih”), . h” € hg. Then
(F1) #(t) isselfadjoint & h’ € 3(V); & te To x exp (3i(V)2);
(F2) #(t)isunitary W =0 te T
(F3) #(t) isnormal;

(F4) T ={1};
(F5) T = {1}
(F6) T4 = {);
(F7) T = ).
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ProoF. (F1): 7(t) is selfadjoint iff al 7A(t), A € D are. Let h” = = myh; + md. As
above, m € 3Z. Inaddition, né(h”) € 3Z (for all n € C!) forces m = 0. Conversely, let
h" € $(V)z, andu € P(A), A € D. Sincer < A, weknow that u(h”) € 37 < A(h’) €
7. Now, for A = £\ + né:

A(") =>"n A(h")—né(h”) € %Z. O
\ - N —
elz =0
(F2), (F3): Followsimmediately from Lemma 3 (F2), (F3). O

(F4), (F5): Since T acts diagonally on the weight spaces, 7(t) is bounded iff
sup{|pu(h)| | © € P(A),A € D} < oo. We claim that this only holds for h = 0.
Suppose h = X mh; + md # 0, then m # 0 for somej or m # 0. In the first case, we
consider the integral dominant weights NA;, N € N, and get

sup{|u(h)| | u € PA), A € D} > sup{|NX;(h)|} = sup{N|m}|} = +o0,
NeN NeN
in the second case, we consider the integral dominant weights N6, N € N, and get

sup{|u(h)| | p € P(A). A € D} > ﬁgg{mé(hn} = sup{N|m/} = +o.

Now (F5) is obvious. O
(F6), (F7): Since 7(t) acts diagonally, it is of algebraic trace class iff it is of trace
class. But T C TP, whence T' = T&" = (). .

REMARK. In view of the things to come (definition of an adjoint quotient) we see
that V is “too large”.

2.2. The Levi subgroups. Consider the Levi subgroups L, = (T, U,,U_4). Let K,
be the compact form of L, i.e., the fixed point set of L, with respect to &. Ly has
a Cartan decomposition L, = K,TK,. We now use the fact that 6 extends to a group
homomorphism on G [S2]. Since K, C ker|5|, we have L7t = K, T~1K,. On the other
hand, since the elements of K, C K are bounded invertible, we also have LQ = K, TPK,
and LY = K, T"K,. Now, by Proposition 4(F7),

(31) LY =K, T"K, =K, 77K, = LJ%.
2.3. Traceclass elements.

THEOREM 1. Let G = G(A) be a (minimal) Kac-Moody group of affine type and
A € D\ Cé. Then the set G of all elements g for which 7ia(g): L(A) — L(A) extendsto
a trace class operator on H(\) satisfies

GlcGhcGtuG™

Fromthis, we immediately get G ¢ GI c G>1UG™.
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PROOF. We can now useall our propositions and previouswork to prove Gt C G¥.
Let x € G™L. Since G is generated by the torus and by the one-parameter subgroups U
(v real root), x can be written as

X=1uy - --- - tNUN (ti eT.u € in).

Each one-parameter subgroup is normalized by the torus, whence this can be rewritten

as

x=tup- Uy (teThu euy)
(where t € T~ because U,, C keré). Artificially write t as a product t = t; - - t{,
where ! € T>L This is always possible, for example one could take t = (r,q) =

(r.qn)(1, gv) - - - (1, g¥). Once again, we reorder the factors and get
x=tul- - Uy ¢ eThu euy).

Each of thefactors tiu” is € L, = LY, (cf. (31)), thusx € Gj. Now let x € G=. Then
x1 € G (because 1 = 6(1) = 6(X)6(x1)). If 7a(X) were bounded, then because of
B1(H(A)) < B(H(A)) wewould haveid = #A()7a(X)~* € Bi(H(A)). ThusG=*NGY =
0; in particular elements of G<* are never trace class operators. ]

THEOREM 2. Let G = G(A) be a (minimal) Kac-Moody group of affine type. Then
G>tisinvariant under conjugation by arbitrary elements of G.

PrROOF. If x € G™1,y € G, then §(yxy 1) = 6(X). .

2.4. Trace Invariance. We will now prove that, in a certain sense, we get an adjoint
guotient on a subset of G. This subset is, after our elaborations on trace class elements
(Theorems 1 and 2), chosento be G>. In fact we have

THEOREM 3. @) Let G be an affine Kac-Moody group and A € D. Then xa =
traceofia: G — C isinvariant under conjugation by arbitrary group elements, i.e., a
class function. b) The trace function x = (xo.. ... xr- x5): G* — C™! x C* isaclass
function and factorsto x:

X
G>l - Cr+1XC><

[¢]
Lo
G/ Ad
ProOCF. b) follows from a). Using the Iwasawa decomposition G = KT.U. [PK]

reduces the problem of invariance of y» under conjugation by arbitrary group elements
to the problem of invariance under conjugation by elements of the subgroupsK, T., U..

Invariance of yo under K. Let x € G%, k € K. Since elements of K act as unitary
operators, we have yi(x) = xi(kxk—1) [Con, p. 274].

https://doi.org/10.4153/CJM-1998-049-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-049-3

990 GERD BRUCHERT

Invariance of ya under T.. Lett € T.. Then ma(t) is selfadjoint and acts on L(A),, as
multiplication by p(t). Thus, in L(A),,,

(& | TAMTAMITANE) = (Fa)a | TA)FA)e)

= put (e | Fa(e) = (& | 7a(e)
whence trace( T (1) ()7a (1)) = trace(7ia(x)).

Invariance of ya under U,. Itissufficient to proveinvariance under conjugation by el-
ements x;(c) of the one-parameter subgroupsU;. To provethis, we use the decomposition
of L(A) into «;-strings:

LA) = @ L(A), =P (ai-strings of subspaces).
neP(A)

Sinceinthelatter identity we only put together finitely many weight spacesto givean o;-
string, each basis B of L(A) adapted to the weight space decomposition is automatically
also adapted to the decomposition of L(A\) into «j-strings. For each o-string s C L(A)
let ps resp. is denote the canonical projection resp. injection. Since the «oj-strings are
invariant under x;(c), we get
Ps o Xi(€) o Aa(X) 0 %i() " ois = (PsoXi(C) o is) (Ps© Fa(X) 0 is) (ps 0 Xi(€) * o is)
. -~ . . 1
= (ps oxi(c)o |s) (ps o TA(X) o 's)(ps oxj(c)o 's) .
Sincedims < oo, we know
trace(ps o Xi(C) o An(X) o Xi(c) " ois)
. - . -1
= trace<ps oxi(c) o IS) (ps o IA(X) o |s)<ps oxi(c) o |s)
= trace(pS o p(X) os).
The trace formula (32), applied to L(A) = & s, now gives
Xi(Xi(©) o Ia() 0 xi(c) ™) = trace(xi(c) o Ta(X) o Xi(c) )

= > trace(ps 0 %i(C) o Aa(X) 0 Xi(c) * ois)
= > trace(ps o Ta(X) o is)

= trace(7(X)) = xi(¥)

and that’s what we wanted. ]

It is now time to mention some open problems. 1) What exactly is GP? Or, since
we already know G>* ¢ G ¢ G>* U G™: What are the elements of G N G™1? One
conjectureis, that G’ NG~ isequal to the subgroup generated by the center of G and the
compact form K. 2) What exactly isG"? Or, aswealready know G>* ¢ G" ¢ GtUG™,
what is G' N G™1? Here the conjectureisthat G NG™ = (). (Which would follow from
the conjecture about G° above.) 3) If GT1 N G # (), is G invariant under conjugation?
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3. Steinbergcross-sectionsin Kac-Moody groups. Inchapter 2we provedthat the
trace function y iswell-defined on G>! and factorsto amap x: G/ Ad — €™ x ¢,
In order to understand the nature of x, we transfer the notion of a cross-section, as
introduced by Steinberg in his investigations about linear algebraic groups [St1, St2],
to affine Kac-Moody groups: Define a map w and a set C, both called a Seinberg
cross-section, by

r
C:=im(w) = [JUini x C*.
i=0
It is possible to prove that x o w (i.e., the trace function restricted to C) still has some
of the nice properties of the finite dimensional case (Theorems 4 and 5). An interesting
new feature is the existence of a C*-action on the cross-section (Proposition 15), which
leads to a functional identity (Theorem 6).

3.1. Atrace formula. If V = @,V,, then an orthonormal basis B of V is adapted to
the decomposition V = &,V,, if B isthe union of orthonormal bases of the V,,’s. In our
case, bases of L(A) will always be chosen adapted to the weight space decomposition
L(A) = @, L(A),. Later we will need the following

LEMMA 6 (TRACE FORMULA). LetV = @¢,V,, wheredimV,, < oo, B be an adapted
basisof V, leti,:V, — V and p,:V — V,, be the canonical injection resp. projection
and ¢ € EndlB (V) an algebraic trace class operator, then

(32) trace® (¢) = S trace(p, 0 ¢ o1i,).

3.2. xowfor Kac-Moody groups. To find out how the trace function x o w behaves, we
will first look at the components x; o w. To simplify the notation we write V instead of
L(\i), V,, instead of L();),, and (x, q) instead of 7y, (x. g). Let B be an orthonormal basis
of V adapted to V = ¢,,V,, and suppose (x, g) € EndlB (V). By the trace formula (32) we
have

(33) Xi(x. 0) = trace(x. q) = 3 trace(p,, o (x.q) oi,).
10
Since (1, q) = d ® q acts diagonally on V,, as multiplication by x(d @ ) = ¢, we get

trace(p, o (x,q) oi,) = trace(p, o (x,1) o (L. q) oiy,)
(34) = qll(d) trace(p‘u o (X. 1) o i,u)*

which reduces the problem of determining xi(x, q) to the problem of determining
trace(p, o (x. 1) oi,).
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Determining trace(p, o xoi,). Wewill proceed along the lines of [St2, p. 69], but give
the details missing there. Let y; := X;(j)n;; then x = Xo(Co)np - - - %(Cr)Nr = Yo - - - Yy and
one has

(35) (puoxoiy)=(puoYooiy)o---o(pP.oyroiy).

PROOF OF (35) BY INDUCTION ON r. Let v € V, where p = > my\; + nd, and
k e {o,..., r}. Then wi(p) = p — p(h)ox = p — meog and by (19), g - v € V,,—m g, -

Furthermore

(36) Yk V=g VF GV + GV + -+, (Where Vi € V,_ma+io DY (18)),
; _ [ c*Vh., mc>0

(37) (pooweoi)={ g M=o

It now follows that, if we abbreviate wo := n, - v, Wy := CrVq, Wy = C2V», €fC.,

(pu o Xo iu)(v) = pu, ()’0 te yl’(v))
= pu<y0"'yr—l(W0+Wl+"' + Wi, +))
= Pu (Yo - Yr-1(Wim)) + 3 Pu(Yo- - Vr-1(wi))
k#my
= (pu oYoo iu) T (pu oYr-10 iu)(p;t oyro iu)(v)
+ > P (YO e Yr—l(Wk))-
k#my

Each of the summandsp,, (Yo - - yr—1(Wk)), k # m, is zero: Repeated application of (19)

and (18) gives

Wi € Vs,  (* #Z 0 becausek # my)

Nr—1Wk € Vytsaptxa, ,  (Maybex = 0)

Yr—1Wk € @Vy,+>:<a,+l((,1rx,,1
—1
Yo Yr—1Wk € @ T EB Vﬂ+*0(r+kr—1ar—1+"'+k00(0'
ko Kr—1

From the linear independence of {ap. .. .. o } it is immediate that none of the latter
vector spaces equals V,,, whence (35). ]

Which . contribute? Which p contribute to the sum (33)? The p with . £ A do not
contribute, since V,, = {0} for such p. Non-dominant p aso do not contribute: Let
f = Yj-o MAj +no with me < O; wefirst get (by (37)) p,. o Yk o, = 0.and then (by (35))
p. o Xoi, = 0. This motivates taking acloser look at the sets

D) ={p|p<X A ueD}
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By [K, Proposition 12.5.a], D(\;) isthe set of all dominant weightsand D();) = P(A\;)ND.
A simple but important observationis the following: If 1 = > mA; + né € D(A;), then

(38) A= (S mA +nd) = A — =3 njog

for someny. ..., n. € No. If both sides of (38) are evaluated at the central element ¢, one

gets anecessary condition for the tupels (m, . . . , m):

(39) Xr: ma’ =&

j=0

LEMMA 7. Leti € {0...., r} and D(A)) modé = {my; | = mAj +néd € D(X;) for
some n}. Then D(\;) mod S is finite and decomposesinto three types of elements:

[ )\ itself,

I1: A\jwithj #ianda’ =&,

> mAwith " m > 2andm =0ifa’ > a’.
Correspondingly, each element 1 € D(\;) is exactly of one of the following types:

I: p=X+nd, n<n(\)=0,
Il: p=X+n5, wherej Ziandg’' =a’, n<n()) <0,
=3 m\ +n5,where} " m >2andm =0ifa’ > a’.

ProoOF. Thefinitenessof D(\;) modé and decompositioninto the threetypesl, I1, 111
isimmediate from (39). If both sides of (38) are evaluated at d, we get n < 0; thus the
number nj(v) := max{n € %N | v +nd € D(\)} existsfor al v € D(A\j)modé and is
<0. m

It is possible to determine D(;) modé and D(\;) explicitly for all affine Kac-Moody
algebrasand all i = 0,...,r; thiswasdonein Appendix B of the German version of the
present work? [B].

ExampLe. EY, i = 2. Equation (39) becomes
Mo + My + 2mp + 3mg + 2my + Mg + 2mg = 2

and D(\2) modé contains at most the elements |: Ay, I1: A4, e, 11 200, 2A1, 2X5, Ao +
A1, Ao + As. A1 + As. (In the appendix B mentioned above it is proved that actually,
D(A2) modé consistsof 13 Ag, [1: = 11: 2A1, Ao + As.) ]

2 _..which has been deleted in this version, since the actual knowledge of these sets turned out to be
redundant for the proofs of my theorems. Of course, for doing examples, thisis still quite useful.
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(xow)(co, ..., G-, g) asaformal power series. By (35) and (37) we know what the action
of X = ITi_oXi(C)ni = IToyi on V,, is: Thereis alinear map Y,,:V,, — V,,, independent
of co, ..., G, suchthat p, o xo i, hasthe form

Puoxoi iV, —V, Vi gqhY,(v).
If a, denotesthe trace of Y,:V, — V,, then

(40) trace(p#oxoiu):au.cgb...crm.

THEOREM 4. Let G be an affine Kac-Moody group and let w, x be defined as above.
Then, for the components i o w of x o w, we have: (xi o w)(Cy,...,C.q) is a formal
power seriesin gt with coefficientsin C[co, .. .. G]:

Z a“q.“(d)cron' . Crrn'

(xi o w)(Cos - - - » G, Q)

ueb(y) and
y:ij/\j-v-n&
(41) =2 Xae )
n o m m
N/
finite sum
PrROOF. (33), (34), (40) and Lemma 7. ]

REMARK. It would be niceto know something about the a,,. A glance at the formulas
of the preceding paragraphs gives a, = trace(p, o Xo(1)o- - - X ()N o i, ). Is there
a connection between Xo(1)ng - - - X-(1)n, and the Coxeter element cox = ng---n, =
%(O0)no - - - % (O)n; ?

Regularity of x o w. Before discussing the regularity of y o w we have alook at the
sum (41) and consider (i ow)(Co, - - - , G, ) aspolynomialsinc, . . ., ¢ with coefficients
inC[[q]]:

(42) (xi o w)(Cos - - - G.0Q) :ZZ(Z aﬂq“)cgb...crm.
Moy m n
Using the decomposition of the set of dominant weightsinto typesl, 11, 111 we get

(43) (xiow)(Co. ... .0 = ()G + > (---)g +other summands.
—_—
summands, summands of higher
containing ¢;'s order, not containing

Witha]. =a’ G'swith a].v >a’.
If we define by, := ay,+ns5, then the coefficient of ¢; in (43) is
(44) bo + b_1q71 + b_zqf2 +.nn,

LEMMA 8. bg # 0.
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PrROOF. Asabove, let y; := x;(c)n;; we will prove
(45) Py oYjoiy:Vy, — V), istheidentityif]j#i
(46) Py oYioiy:Vy —V,, isnotthezero map.

Ad (45): V,, isinvariant under nj aswell as x;(c), because on the onehand n; - V,, =
Vi) = Vi, and onthe other hand xj(c) -V, = V), by (18). But G; isgenerated by nj and
the x(c), thus V,, isinvariant under G;. Using dimV,, = 1 and G; = [G;. G]] it follows
that all elements of G; act as the identity on V,,—in particular, y; does. 0

Ad (46): Let V,, = Cvand V) _,, = Cwwherew :=n; - v (note that \j — o = wi(\j)
impliesdimV,,_,, = dimV,, = 1). By (18), yi - v=x(c) - w = w+Ww, wherew € V,,. If
Py, ©Vi o iy, werethe zero map, thenasow’ = (p,, oVi iy )(v) = 0and

X)) -w=w, =U-Vy_o =V)_q

i

Xeq(©)-W=W, =Vi-V)_o =Vy_g

(I because \j — o — ko = wi(\ + ko) and Aj + ke £ ). Since n; isin the subgroup
generated by U; and V;, thiswould imply n; - Vy,_s, = V)—o,, CONtradicting n; - V¢, =

Vy,- O
by isthetrace of the 1 x 1-matrix of the linear map

(47) Py o X0 iy Vi — V),

from (40). Equations (35), (45), (46) now imply that py, o Xo iy, = py, oV iy, isnot the

zeromap, i.e., by # 0. n
The coefficient infront of ¢; on the right hand side of (43) has the form

(48) bio+ b1t +bj 0%+

where b« := a,+ks and bj o is possibly = 0.

EXAMPLE. If n;();) denotes the first of the numbers k for which by of (48) is 7 0,
then in the case of the algebra of type B{Y and the module L(\o), we have ng(\1) = —1.

In the finite dimensional case, y o w = x|c induces an isomorphism of algebraic
varietiesC — C'. In our situation, we shall obtain a dightly weaker result (Theorem 7).
As afirst step, we shall see in Theorem 5 that the Jacobian determinant of x o w isa
function of the “modular” coordinate q alone, non-zero for sufficiently large g.

Taking afirst look at the functional determinant of x o w, it seemsthat because of (42)
itispolynomial inc, ..., ¢ and aformal power seriesin 1. A second look simplifies
the situation considerably: We have

I(xoow)  d(xoow) 9(xoow)
9Co Y aq

det(y o w)'(Co, ..., G, Q) = a(Xr:ow) G(Xr:ow) a(Xr:ow)

9Co 9c aq
dxsow)  I(xsow) I(xsow)
9Co 9c aq
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C9(xoow) d(xoow)

a9

Ca(row) alow)

I(0ow)
dCo JdCr
“logaow
dCo JCr
0 0
I(xoow)  d(xoow)
dCo JdCr
d(xr ow) d(xr ow)
dCo JdCr

aq
1

so the partial derivatives by q have vanished. We can now formulate one of the main

results:

THEOREM 5. Thefunctional determinant A, after suitably reordering indices, hasthe

form

OOOD

where the blocks are determined by the equivalencerelationi ~ j & &' = a,-v and the
blocks on the diagonal do not contain any ¢’s, whence only dependson o: A € C[[q~Y]].

Aisinvertiblein C[[q!]], sinceall detO are.

PrROOF. We order indices by descending dual labels and decompose the matrix into
blocks determined by the equivalencerelationi ~ j < @’ = a]-v. The way x; o w looks
likein (43), it is obvious that the blocks on the diagonal do not contain ¢;’s and that the

blocks below the diagonal are zero. Hence A € C[[q1]].
EXAMPLE. Inthecaseof ES, the block structureisgivenby ay = 3,a = aj =

2,85 =a; =al =1.Thus

*
*x00
0x0

A=| 00

0
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(the zeros inside the blocks on the diagonal are obtained from additional information
from the appendix B in [B]), where x € C[[q~]]. In * there may be¢;’s. O

Westill haveto provethat the determinants of the blocksonthediagonal areinvertible.
To this end, we have to prove that the constant term of the formal power series does not
vanish. Let O = (m;) be one of these blocks. The m; look like (44) and the m; (i # j)
look like (48). We now use an old acquaintance, the Leibniz formula

det0 =" sgnoMiy) - - - Mon) = MiaMp -+ - Mn+ Y SINOMi() - - - Mo(N)
o o# id

and will prove

(49) MMy - - M\N = AO + Aqul + Azqu +... WhereAO # 0.
(50) > SgNoMy, @y - Moy = B1gt +Bog 2+ - -
o# id

(49) isimmediate, since all my; look like (44). Asfor (50), we make the

CLaim. If N, ..., Ajs (s> 1) havethe samelevel, then not only are all the numbers

i, (A)s N, (Ao - - - i (N,) < 0, but at least one of themis < 0.
For: Supposenj, (Aj,) = nj,(Aj,) = - - = ni(Aj,) = 0. Then

v1= A, — A, >0
v2 =N, —A; =0

Vs = Ng — Aj, = 0.
Adding theseup yieldsvy +--- +vs = 0. Sincev; > 0, wegetvy =--- =vs=0andin
particular A, = Aj,, which isacontradiction. O

Sinceo #id, thereisa“cycle’ m,i,m,;, - - - Mg, (S > 2) in each of the summands of
the sum 3>, ¢ But
Atiew) g

J
d Cj HEA D
n<n; (Ai)

n
a.q.,

and at |east one of the numbersn; (Ai,,,) isnot just < 0 but even < 0—which proves (50).
By (49) and (50), the determinant det € C[[q~]] isinvertible. ]

3.3. A C*-action on the cross-section. Preview. We will first determine the set H of
all h € h such that (cox —id)(h) € c. This set turns out to be H = Cb ¢ Cc, for some
element b € X. Then, we investigate the set @ := {a > 0| cox * o < 0} and, for all
B € D, determine the value 3(b). After these preparations, we define a C*-action on
the Steinberg cross-section C, then get a functional identity for y o w.
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ThesubspaceH. |If WisaCoxeter group with generatorssy, . . . , Swthencox i=s;--- 5

is called the Coxeter element of W. For each permutation o € S,, the elements cox, =
S(1) - - Sy(n) are aso called Coxeter elements. If A is a GCM, not of type A, r > 2,
then all Coxeter elements cox, € W (A) are conjugate in W [H, pp. 74, 174]. Many
statements about cox thus also hold for al cox,.

PROPOSITION 9. Let Abean affine GCM, g = g(A) the associated Kac-Moody algebra
and coxX, = Sy(0) - * - Sx(r) @ Coxeter element of the Weyl group W =W (A). Let

H :={h e h | (cox, —id)(h) € c}.

ThendimH =2andH C h'.

PrROOF. The subspace h’ C h is invariant under W ; if s € W, denote by s the
restriction h” — h’. Consider the sets

H':= {h e h’| (cox, —id)(h) € c},
H := {h e h| (cox, —id)(h) € c}.

About H': In[Co] onefindsthe characteristic polynomial s of the Coxeter transformations
cox’; in the table where they are listed [Co, p. 474] you can read off that the algebraic
multiplicity of theeigenvalue 1 of cox/, istwo for all affine GCM. From [Co, Theorem 3.1]
and the identity -, ker o; = ¢ [K, Proposition 1.6] we now get

(51) cox'(h)=h <= hec

whencethe geometric multiplicity of the eigenvalue 1 of cox/, isequal to one. The Jordan
normal form containsthe Jordan block ((1) 1) (and no other Jordan blockswith eigenvalue
1). Once again applying (51), we get

heH <= (cox,—id)h)cc <= (cox,—id)’*(h)=0.

Together with the statement above about the Jordan normal form of cox,, it follows that
dimH’ = 2.

About H: Therelation between the matrix of s’ with respect to the basis {ho, ..., h}
and the matrix of swith respect to the basis {hy. . . . . h..d} is:

(S’*
s= ;

\T0 1

hence the algebraic multiplicity of the eigenvalue 1 of cox, is 3 for al affine GCM. The
argument using [Co, Theorem 3.1] and [K, Proposition 1.6] still holdsin h, thus

(52 cox,(h)=h <= hec
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and the geometric multiplicity of the eigenvalue 1 of cox, is again equal to one. The
Jordan normal form of cox, contains the Jordan block

(110
011

\oo1

(and no other Jordan blocks with eigenvalue 1). From (52) we get
(53) heH <« (cox,—id)’(h)=0

whencedimH = 2. SinceH’ C H, obviously, and H’ and H have the same dimension, it

followsthat H = H’. In particular, H C h'. "

With respect to the basis {ho, . . . . hr, d} we have cox, € Mn(Z). By (53), thisimplies
that H is spanned by two vectors € X. One of them we aready know: ¢ € H. A
second vector which is linearly independent of c, is obtained by solving the equation

(cox, —id)x =c.

ProPOSITION 10. Let A be an affine GCM, g = g(A) the Kac-Moody algebra associ-
atedwith Aand cox = s - - § the Coxeter element of the Weyl group W =W (A). Then
H = Cb & Cc, wherecis the central element and b is determined by

(cox —id)b =kc (k € Nminimal), be (V)y,, b—cé& (V).

The number k as well as the components of ¢ and b with respect to the basis V =
{ho. ..., h } turn out to be aslisted in the table below®:

type k ¢ b
AD r+1 (11,...,11) (r.,r—21..... 1.0)
BY,reven 2 (L,12...,221) (r—L1lr—12r—42r—6,...,20)

BY,rodd 1 (1,12...221) (P .5r-2r-3....1.0

cw 2 (11....11) (r.r—1....,1.0)

D®,reven 1 (1,12...211) (5—-15-1r—3r—4...,100)
D® rodd 2 (1,1,2...,211) (r—2r—22r—6.2r—8.....2,0,0)
E 1 (1,1,2321.2) (1,2.3,3.1.0,1)

E® 1 (12343212 (3.56.6.3.1.0.2)

EQ 1 (1,23456423) (4.7,9.10.10.9.4,1.3)

Fo 1 (1,2321) (2.3.3,1.0)

G 1 (1,21 (1.1.0)

3 The components of ¢, which are of course the dual |abels, have been listed for completeness’ sake.

https://doi.org/10.4153/CJM-1998-049-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-049-3

1000 GERD BRUCHERT

A2 1 (12 (1,2
@ reven 1 (12...22) Lr—1lr—2.... 1,0)
A 't odd 1 12...22 (%ror—1....21)
@ ,reven 1 (112...,22) (5.5r—Llr—2.... 2,1)
@ ,rodd 1 (112...22 (F:5hr—2r-3....10)
DM, reven 1 (1,2...,21) (5.r—1r—2...,10)
DO, r odd 2 (1,2,...,21) (r.2r—2.2r—4,....2.0)
EQ 1 (1,234,2) (2,3,3,2,0
DY 1 (123 (1,1,0)
PrOOF. Explicit calculation of all cases. Write the 5 as matrices with respect to the
basis {ho, ..., hr,d} of h, determine the matrix of cox, and solve the linear system of
equations (cox —id)x = c. n

REMARK. There is a more conceptual approach to Proposition 10, at least in the
case of bipartite graphs X, due to Steinberg [St3] and further elaborated in [BLM]. In
particular, H can be written in the form

H =Cc @ Ct,

where € is obtained from c by changing every “second” sign (cf. [BLM, Proposition 8]).
Moreover, theimage of H in the “finite” Cartan subalgebrah’/Cc is conjugate under the
finiteWeyl group into the space Cw;, spanned by the simple coweight w; corresponding
to the fork node 3 of the diagram X ([BLM, Prop. 12,13], [St3, Part 2]).

EXAMPLE. Inthecase A", with Cartan matrix A= ( 2,7

turns out to be

), the matrix of cox = spsy

(—12—1 (100 (3—2—1

cox=| 010 2-10(|=|2-10
\oo1)\oo1) \oo 1

and for b := hy we have (cox —id)b = 2c. O

The set ®oc. To determine @y := {a > 0| cox 1 o < 0} we use a corrected version
of [K, Exercise 3.12]:

LEMMA 11. Let w = w;, ---wW;, be an expression of minimal length and ®,, =
{a>0]wla <0} Then:
(@ ®w= {(Xil'whaizf cees Wi oo \Mt—lait};
(b) For each g € ®,, the sequence 3, w;, . .... W, ---W,3 contains exactly one
change of sign + — —; At the place where this occurs, thereis a simple root;
(c) If o5 denotesthe simple root associated with § € @y, in (b), then for all A € h*
we have the identity

(54) A— W)= Z )\(hj(ﬁ))ﬁ.
BEDy
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PrOOF OF (8) (cf. [H, EXERCISE 5.6.1]). Let 8 € ®,,. The sequence
(55) BW B, W W B
contains at least one change of sign + — —, say
Wi, W, >0 and wi Wi, ---w,3 <O0.

Since w;, permutes the set R \ {«}, it follows that wi, , ---wi,3 = ai, resp. g =
Wi, - Wi oy =2 YN thus @y C {7, . Yt }. Since the expression for w was supposed

to be of minimal length we get, by [H, Proposition 5.6], equality of these sets.

PrROOF OF (b). Suppose there were two changes of sign occuring in sequence (55),
say

—1
ﬁ \NIN,l"'\Nllﬁ VVlN\Nllﬂ \NIM,l"'VVIlﬁ WiM"'\Nllﬁ e W ﬂ

=rx.N>0 =W.Naf.N<O =af.M>O =Wiy, af.M<O

(cf. the proof of (a)). Then o, = Wi, , - W, < 0, whichis € R_ by [K,
Lemma 3.11 b], contradiction.

PROOF OF (c) (INDUCTION BY t). Thecaset = 1istrivia. Letv:=wi ---w,_,, then
®, = {ai,, Wi, Ay - - - W, - -+ Wi_,ai_, } by (8) and furthermore

A—WA = A —VA+VA — W)

Z )‘(h](li))ﬁ + Wi, - - \Nit—]_()‘ - \Nlt)‘)
peEdy

> Ahi)B + AW, - - W, a
Bed,

> Mhi)B,

BeDy

the latter because d,, = ®, U {w;, - -- W, , e, } and since the sequence (55) for 3 =
Wi, - - - W, o, hasasince change+ — — at i:

t—1

Wi, - \N|1(Wi1 T Vvll—lait) =, >0
and Wi Wi, \Nll(Wil W

It—1

Olit) =W, < 0.

We would like to apply Lemma 11 to the Coxeter element cox, so we need:

LEMMA 12. cox = WgWws - - - W; iS an expression of minimal length.
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PROCOF. Our strategy is: If cox = wows - - - Wy were of minimal length, then g =
{0, Woors, ... ,Wp - - - Wr—10r } by Lemma 11. We will now, reversely, prove that the
elements of the latter set are different from each other and are € ®¢; by [H, Proposi-
tion 5.6.b] we get what we want.

Sincew; permutestheset R, \ {oi}, wegetfork=0,....r

(0474 e R+
W1k € R+ and moreover € (ou_1. ou)n,

Wi_oWi—1ak € R+ and moreover € (a2, o1, o),

Wo - - Wi1ak € Ry
furthermore, for the same reason,

(0474 € R+
Wiak = —oi € R_

WinWikak € RZ even € — (o, ot )ng

W - - Weak € R

i.e, cox t(Wo - We1ak) = W ---Weaw € R_. Thus, W - - We_1ax € Doy for k =
0,....r. These elements are different from each other, since

ap = O,
Woa1 = aq + linear combination of «aq.
WoWiarp = arp + linear combination of o, o,

etc. u

COROLLARY 13 (AND DEFINITION).

Deox = {0(0. Wox1, ..., Wo:--- Wr,j_Olr} = {ﬁo. ,81. e ,ﬁr}.

In Section 3.4 we will get afunctional identity for y o w, but to this end we need the
values §j(b). These can be determined:

LEMMA 14. If b € histheelement of h satisfying (cox —id)b = kc, cf. Proposition 10,
then

(Bo(D), ... B (b)) = k(ag. ... &)
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PROOF. We will first prove that (3o(b). ... .5 (b)) is proportional to (ay.....&).

For each o; € h*, (54) implies
oj — coxay = 3 o(h)gi = 30 ayfi.
| |
Evaluated at b this gives
(56) aj(b) — (cox o)(b) = & Bi(h).
I
But we also have
coxb—b=kc = coxtb=b—kec

and, if (., ) denotesthe dual pairing h x h* — C,

(cox og)(b) = (b.wo - - - Wreyj) = (S - - - b, o) = (b—ke. ) = (b, o) = o(b);
whence the lefthand side of (56) is zero. Since the dual Kac labels describe the linear
dependence of the rows of the Cartan matrix, we end up with the proportionality we
claimed, say

(Bo0). ... 5:(0)) = K(ag. ... a").

for some x € C. The constant x can be determined from Bo(b) = ao(b) = kag = by
using the data from the table in Proposition 10; it turns out that in all casesk = k. ]

ExAMPLE. For BS, and with respect to the basis {ho. . . ., hs}, we get

(011—2 (1

101-2 |1 _ oglb) -1 _

COX=|717 o] b= 1 K——a%/ __T_l'
\oo1-1 \o

AC*-actionon C. For thetime being, we will use the notation of chapter 1. The center
cis parametrized by 7: € — h, ( — kc ® ¢, (K is the number from Proposition 10), and
the center of G is parametrized by “7_ C* — T,z kc® z(cf. [K2, p. 190]). For each
z € C* wewant to find an element (2) € T such that
@' Ci@ =CY(@) baw. pRCIDMD ' =C;
in this sense, the translation by the central element “7(2) can be reversed by conjugation
with 1(z) and we get an action of C* on C:
C*xC—C  z(x0) =@ I Q@™
The one-parameter subgroup ;:C* — T, z+— b ® z, whereb € (V)y, asin Proposi-
tion 10, satisfies our needs: First, we have
(cox—id)b=kc <= cox(b®{) —b®@(=kc®( V¢eC
1

= exp(—-b®@{)exp(cox(b®()) =expkc®()  V(eC
2

— exp(—b @ ¢)cox exp(b @ ¢)cdx ! = exp(kc @) V¢ € €
PN [i(2)Lcox a(2) cox L = (2) VzecC”
s 712 Ledx i(2) = cox (D) Vzecx
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(1: exp:h — T is agroup homomorphism; 2: 5:h — h lifts to an actionon T, cox =
NoNny - - - ny; 3: definition  of 11, 7 and substituting & « z 4: Y(2) € center(G)). We now
write v, p instead of 7, .
Let
(57) Bo = agp, B1 = So(ar), - - - G =S S—1(o),
USINg MiXa ()N = X5 (C) We get
Xo(Co)NoX1(Cr)MXa(C2)Nz - - - X (Cr )Ny

= Xo(Co) [NoX1(C1)N * [noN1Xa(Co)Nz - - - X ()N

= Xo(Co)Xey(ar)(C1) [MonXa(C2)Ny g™ nonunz - - - X (Co)ny

= -+ = X0(Co)Xeo o) (C1)Xsos1(02) (C2) - Yoo 1) (€r)0 -+~ Iy

= X3,(Co)Xg, (C1) - - - X3, (Cr)COX.

It follows that
w(Co.....G.0Q) = [ﬁ)xi(ci)ni,q] = [(l_r]ox@(ci))cﬁx ql-

Right tranglation of elements of the cross-section by 7v(z) and subsequent conjugation by
(2 gives

u@)[(1x @)oo A @1 = [u@([1x (@) ed (.
= [[1(1@%, @r@ )u@cd@u@ . d]

= (e
= [(]
= [(g X3, (2% ¢i))cox. g € C.

o

=

Xg, 5. u(z) C.))c()x.q

-

x5, (2"®ci) ) cox, q|

o

= 1

In the last equality, we used Lemma 14. Now we just proved :

PrOPOSITION 15. Let b € h be the element satisfying (cox —id)b = kc, see Propo-
sition 10. Then right translation by v(z) := kc ® z and subseguent conjugation by
1(2) := b® zdefinesa C*-action on C, and this C*-action is given by

(59) z-w(co..... ¢.q) = w(Z¥c. ..., 2% c. Q).
A functional identity for y o w.

THEOREM 6. The components of the trace function satisfy the following functional
identity (with k asin Proposition 10):

(60) (xi o W)@¥co, ... 2% ¢ Q) = 2% (xi 0 W)(Cor - - -+ G, )
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PROCF. Sincethe y; areinvariant under conjugation by elementsof T (cf. chapter 2),
and central elementsY(2) = kc ® z act asa Aj(kc ® z)-multiple of the identity on L()\;),
we arrive at

(xiow)(Z%co.....2%¢.0) = x(2* w(Co. - .. . G )

n 1
x =
/N TN
€ =
5
-
T
.A
Co
C
a
= O
~—~
T e
v\z
~~
o
=
~~~
=
AR
S—

Foreachq € C*, let p;: G — G/, (x. q) — x and Cq := pq(C); furthermore, let

Xq = X|Cq><{q}: Cq % {CI} — €™ x {CI}

denote the restriction of x. The following is the analogue of Steinberg’s result on the
regularity of x o w.

THEOREM 7. For sufficiently large g, the restriction x4 induces a C*-equivariant
isomor phism of algebraic varieties

Cq N CI’+1.

PROOF. By Theorem6, x4 isaC™ -equivariant morphism between (r +1)-dimensional
affine spaces with respect to the same set of weights. Since, for sufficiently large q, its
Jacobianisnon-zero (Theorem 5), weget that it isanisomorphism (cf. [S1, Section 8.1]). =

REMARK. Onemay aswell employ the statement of Theorem 7 to deducethe equality
of the C*-weights on C4 and C™* to deduce the fact that k = x in Lemma 14
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