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TRACE CLASS ELEMENTS AND CROSS-SECTIONS IN
KAC-MOODY GROUPS

GERD BRÜCHERT

ABSTRACT. Let G be an affine Kac-Moody group, ô0Ò    Ò ôrÒ ôé its fundamental
irreducible representations and ü0Ò    Ò ürÒ üé their characters. We determine the set
of all group elements x such that all ôi(x) act as trace class operators, i.e., such that
üi(x) exists, then prove that the üi are class functions. Thus, ü := (ü0Ò    Ò ürÒ üé)
factors to an adjoint quotient ǖ for G. In a second part, following Steinberg, we define a
cross-section C for the potential regular classes in G. We prove that the restriction üjC
behaves well algebraically. Moreover, we obtain an action of Cð on C, which leads to
a functional identity for üjC which shows that üjC is quasi-homogeneous.

Introduction. This work is on the adjoint quotient of affine Kac-Moody groups. The
adjoint quotient is of relevance in singularity theory, because there is a correspondence
between simple singularities and simple linear algebraic groups [S1] which extends
to a correspondence between simple elliptic and cusp singularities and Kac-Moody
groups [S3]. To elucidate this correspondence, one can use a group theoretic approach.
We will give a short summary of the finite dimensional case [St1, St2].

Let G be a simply connected, semisimple linear algebraic group. G acts on itself by
the adjoint action (conjugation)

Gð G ! GÒ g Ð x := Ad(g)(x) := gxg�1


The quotient GÛAd as well as the associated morphism (of varieties) ü: G ! GÛAd
are called the adjoint quotient of G. There are several ways to obtain a realization of ü:

(i) Let T be a maximal torus, U the unipotent radical, B = T å U a Borel subgroup
and W the Weyl group of G. Each element g 2 G is conjugate to some element
b = tu 2 B. Let ü(g) := [[t]] 2 TÛW ≤ C

r.
(ii) Each element g 2 G may be decomposed into g = su, where s is semisimple and

u is unipotent (Jordan-Chevalley decomposition). s is conjugate to some t 2 T; let
ü(g) := [[t]] 2 TÛW ≤ C

r.
(iii) If ôi: G ! GL(Vi) (i = 1Ò    Ò r) are the fundamental irreducible representations

of G and üi := trace Žôi their characters, then let ü := (ü1Ò    ür): G ! C
r.

Trying to generalize this to Kac-Moody groups, one runs into several difficulties: (1) Not
all group elements are conjugate into a fixed Borel subgroup, (2) there is no Jordan-
Chevalley decomposition, (3) the quotient TÛW has no structure (in the sense of being
a variety or such) and (4) the fundamental irreducible representations are infinite dimen-
sional, üi(g) is not defined for all g 2 G. Even if there are partial solutions to these
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problems, one considers the realization of an adjoint quotient for Kac-Moody groups as
an open problem [S3, Section 11.7], [S4, section 10].

In this work we will generalize the group theoretic approach, as in (iii) above, to
affine Kac-Moody groups. For that, let G be an affine Kac-Moody group, üi := trace Žôi

the characters of the fundamental irreducible representations (i 2 f0Ò    Ò rÒ ég) and
ü := (ü0Ò    Ò ürÒ üé), then ü(x) is defined iff all ôi(x) are trace class operators.

In the first part of our work we investigate the functional analytic properties of the
operators ôi(x). In particular, we determine the set Gtr

Ž of all x 2 G for which ü(x) is
defined. Up to boundary points, this set coincides with GÙ1 = f(xÒ q) 2 G = G0 ç C

ð
j

jqj Ù 1g and is invariant under conjugation by arbitrary group elements (Theorems 1
and 2). Moreover it was possible to prove that ü is invariant under the adjoint action, i.e.,
invariant under conjugation by arbitrary group elements; this is nontrivial as it means
conjugation by unbounded operators (Theorem 3)1. Thus, we have a class function
ü: GÙ1 ! C

r+1
ð C

ð and a commutative diagram

GÙ1ÛAd

GÙ1
C

r+1
ð C

ð
ü

Ž
ǖ?

-

�
��

As far as the fundamental characters can be considered to be algebraically independent
(and this is essentially a question on ü0Ò    Ò ür, depending on the value üé), ü may thus
be viewed as a character-theoretic realization of an adjoint quotient of G (cf. [S4]).

The second part of this work is dedicated to the construction and investigation of an
analogue of Steinberg’s cross-section for regular classes in simply connected semisimple
algebraic groups [St1, St2]. As in the finite dimensional case, we can define this cross-
section C by using one-parameter subgroups,

°:Cr+1
ð C

ð
! GÒ (c0Ò    Ò crÒ q) 7!

� rY
i=0

xi(c)niÒ q
�
Ò

C := im(°) =
rY

i=0
Uini ð C

ð


In Steinberg’s case, the restriction of the adjoint quotient ü: G ! TÛW induces an
isomorphism of algebraic varieties üjC: C ! TÛW . In our situation, we can show
that üjC = ü Ž ° can be expressed as a power series in q with polynomial coefficients
in c0Ò    Ò cr (Theorem 4), that the Jacobian determinant det(ü Ž °)0(c0Ò    Ò crÒ q) is
invertible in the ring of formal power series C[[q�1]] (Theorem 5), and that there is a
natural Cð-action on C rendering ü Ž ° quasi-homogeneous with respect to the natural
degrees (levels) of ü0Ò    Ò ür (Theorem 6). As a consequence of Theorems 5 and 6, the
map ü Ž ° induces an isomorphism

üq := üjCq : Cq = im
�
°
�
C

r+1
ð fqg

��
! C

r+1

1 Preliminary work on Theorems 1, 2, 3 by Stephen Slebarski [Sle] has to be acknowledged.
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for all sufficiently large q (Theorem 7). The Cð-action on C has no counterpart in the
finite-dimensional situation of semisimple algebraic groups. However, it may be viewed
as an analogue of a Cð-action on transversal slices to nilpotent orbits in semisimple Lie
algebras as originally introduced by Harish-Chandra and heavily exploited in [S1].

1. Kac-Moody algebras and Kac-Moody groups.

Generalized Cartan Matrices. Let A be a generalized Cartan matrix (GCM), i.e., A 2

Mn(Z), aii = 2 for all i, aij � 0 for all i 6= j, and aij = 0 , aji = 0. Such a matrix
A is called indecomposable if there is no decomposition of f1Ò    Ò ng into nonempty
disjoint subsets I1Ò I2 such that aij = 0 whenever i 2 I1, j 2 I2. Subsequently, we will
consider only indecomposable GCM. The GCM roughly fall into three classes, called
GCM of finite, affine or general type. A GCM is called symmetrizable (SCM), if there is
an invertible diagonal matrix D = (d1Ò    Ò dn) and a symmetric matrix B 2 Mn(Z) with
A = DB. All GCM of finite and affine type are symmetrizable.

Realizations. A (minimal) realization of A is a triple (hÒ∆Òr), consisting of a com-
plex vector space h of dimension 2n � rank A, a linearly independent subset ∆ =
fã1Ò    Ò ãng ² hŁ and a linearly independent subset r = fh1Ò    Ò hng ² h, with
ãj(hi) = aij for all iÒ j. Elements of ∆ are called simple roots, elements of r are called
simple coroots. Furthermore, h∆iZ is called the root lattice and hriZ is called the coroot
lattice. There is an order relation (reflexive, antisymmetric, transitive) on hŁ defined by
ï � ñ :, ñ� ï 2 h∆iN0

.

Weyl group. One introduces linear maps wi: hŁ ! hŁ, ï 7! ï � ï(hi)ãi (i = 1Ò    Ò n);
these maps generate a subgroup of GL(hŁ), called the Weyl group W = W (A). In the
same way, one defines linear maps si: h ! h, h 7! h�ãi(h)hi; the si generate a subgroup
of GL(h) which is isomorphic to the Weyl group. The Weyl group is a Coxeter group, i.e.,
is a group with generators w1Ò    Òwn and relations (wiwj)mij = 1, where mij 2 Z[ f1g,
mii = 1, mji = mij ½ 2 for i 6= j [K, Proposition 3.13]. The mij depend on A as follows:

aijaji 0 1 2 3 ½ 4
mij 2 3 4 6 1.

If A = DB is a SCM, then there is a nondegenerate, symmetric, C-bilinear form
( j ): h ð h ! C satisfying (hi j hj) = aijdj. Furthermore, there is an isomorphism
ó: h ! hŁ defined by ó(h)(h0) = (h j h0), hÒ h0 2 h; ó induces a nondegenerate, symmet-
ric, C-bilinear form ( j ): hŁ ð hŁ ! C.

Kac-Moody algebras. If A is a SCM, then the Kac-Moody algebra g(A) associated with
A can be obtained as the Lie algebra with generators eiÒ fiÒ hî and Serre relations

[hîÒ hî0 ] = 0Ò [hîÒ ei] = ãi(hî)eiÒ [hîÒ fi] = �ãi(hî) fiÒ

[eiÒ fj] = éijhiÒ (ad ei)1�aij ej = 0Ò (ad fi)1�aij fj = 0

The main point of symmetrizability is, that g(A) admits a nondegenerate invariant sym-
metric C-bilinear form ( j ): g(A)ðg(A) ! C if and only if A is a SCM [K, Theorem 2.2,
Exercise 2.3].
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Explicit construction of affine Kac-Moody algebras. Kac-Moody algebras of affine
type can also be obtained via the following construction: Start with the loop algebra
Ž
g
C[tÒ t�1] of a finite dimensional simple Lie algebra

Ž
g; the loop algebra is then centrally

extended to give the derived algebra g0 =
Ž
g
C[tÒ t�1]ýCc (direct sum of vector spaces);

finally, we take the semidirect product g := g0 ç Cd, where d: g0 ! g0 is the derivation
defined by x 
 tm 7! mx 
 tm, c 7! 0 (cf. [K, Chapter 7], [FLM, Section 1.6]). The Lie
bracket in g is given by

[x
 tm +òc+ëdÒ y
 tn +ò0c+ë0d] =
�
[xÒ y]
 tm+n +ëny
 tn

�ë
0mx
 tm

�
+mém+nÒ0(x j y)cÒ

where ( j ) is the Killing form on
Ž
g. This construction gives the so-called untwisted

affine Kac-Moody algebras; a slight modification of this construction gives the twisted
affine algebras [K, Chapter 8], [FLM, Section 1.6].

Roots. For arbitrary GCM, g = g(A) is a hŁ-graded Lie algebra via

g =
M
ã2hŁ

gãÒ where gã :=
n

x 2 g j [hÒ x] = ã(h)x for all h 2 h
o

(1)

and dim gã Ú 1. Those ã 6= 0 with gã 6= f0g are called roots, the corresponding gã
are called root spaces, and the set R of all roots is called the root system. We have
∆ ² R ² h∆iZ. The root system R is invariant under the action of the Weyl group and
consists of real roots R re := W Ð ∆ and imaginary roots R im := R nR re. Furthermore,
the root system decomposes into positive and negative roots, R = R+[R� = R+[�R+,
where R+ := fã 2 R j ã Ù 0g.

If A is of affine type, then r := rank(A) = n � 1 and we use f0Ò    Ò rg as indices
instead of f1Ò    Ò ng. g = g(A) is no longer simple, but has exactly two nontrivial ideals:
The one-dimensional center c and the commutator subalgebra g0 = [gÒ g]. The center c
is spanned by c =

Pr
i=0 a_i hi; the coefficients a_i 2 N defined by this equation are called

the dual labels or dual marks of A. Furthermore, dim h = r + 2 and r is completed to a
basis fh0Ò    Ò hrÒ dg of h. The imaginary roots are R im = Zðé, where é =

Pr
i=0 aiãi (the

numbers ai 2 N are called the labels or marks of A).

Compact involution. Defining ei 7! �fi, fi 7! �ei, h 7! �h (h 2 hR), one obtains an
antilinear involution °0 on g = g(A), which is called the compact involution. The fixed
point set k := k(A) := fx 2 g j °0(x) = xg is called the compact form of g = g(A). Since
°0 is an antilinear involution, it is easily verified that k is a real Lie algebra and g is the
complexification of k.

Weights. Let A be a GCM and h the Cartan subalgebra of g = g(A). An element Λ 2 hŁ

is called integral or a weight (dominant, integral dominant) if Λ(hi) 2 Z (2 R
+
0 , 2 N0)

for all i = 1Ò    Ò n. There is a very close relationship between roots and weights, and we
will recall a few facts for the finite and affine case.

Finite case. Let A be a GCM of finite type and X := hriZ. The elements defined by
ïi(hj) = éij (i = 1Ò    Ò r) are called fundamental dominant weights. Since h = hriC, the
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set of weights is just XŁ := HomZ(XÒ Z) = hï1Ò    Ò ïriZ. Thus, the relationship between
roots and weights is essentially summarized in the chain of inclusions

∆ ² R ² h∆iZ ² XŁ = hï1Ò    Ò ïriZ ² hŁ = XŁ

Z C

In particular, every simple root ãi is a Z-linear combination of ïi’s and the set D of all
integral dominant elements coincides with the N0-linear combinations of ïi’s:

ãi =
rX

j=1
ajiïj (i = 1Ò    Ò r)

D = hï1Ò    Ò ïriN0 

Affine case. In the affine case, X := hh0Ò    Ò hrÒ diZ and the fundamental dominant
weights ïi (i = 0Ò    Ò r) are defined by ïi(hj) = éij, ïi(d) = 0. Following the conventions
as in [K],

ã0(d) = 1Ò ãi(d) = 0 (i = 1Ò    Ò r)Ò é(hj) = 0Ò é(d) = a0Ò

we get a chain of inclusions

∆ ² R ² h∆iZ ² XŁ = hï0Ò    Ò ïriZ ý
1
a0
Zé ² hŁ = XŁ 
Z C

and the simple roots resp. integral dominant elements can be written as

ãi =
rX

j=0
ajiïj + nié (i = 0Ò    Ò r)Ò where n0 =

1
a0
Ò n1 = Ð Ð Ð = nr = 0Ò(2)

D = hï0Ò    Ò ïriN0
ý Cé(3)

Because of (3) it is sometimes convenient to consider é as the r + 2-nd fundamental
dominant element.

The category O. A g(A)-module V is called diagonalizable if

V =
M
ï2 hŁ

VïÒ where Vï =
n
v j h Ð v = ï(h)v 8h 2 h

o
(4)

If Vï 6= f0g, then ï is called a weight of V and Vï is called a weight space. The
set of all weights of V will be denoted by P(V). A diagonalizable g(A)-module V is
said to belong to the category O if all the weight spaces are finite dimensional and
P(V) ²

SN
i=1fñ 2 hŁ j ñ � Λig for some Λ1Ò    ÒΛN 2 hŁ. Submodules, quotient

modules, finite sums and finite tensor products of modules in O are again in O. The
morphisms in O are simply the g(A)-module homomorphisms.
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Highest weight modules. Examples of modules, which are in O, are the highest weight
modules. These are g(A)-modules, such that there is a Λ 2 hŁ and a highest weight vector
vΛ 2 V satisfying

n+ Ð vΛ = 0Ò

h Ð vΛ = Λ(h)vΛ for all h 2 hÒ(5)

U
�
g(A)

�
Ð vΛ = V

For each Λ 2 hŁ, there is a unique irreducible highest weight module with highest weight
Λ, denoted by L(Λ). Conversely, any irreducible representation in O is isomorphic to
some L(Λ). Thus, Λ 7! L(Λ) is a bijection between hŁ and the set of all (isomorphism
classes of) irreducible representations in O. For any L(Λ), we have

dim L(Λ)Λ = 1 and P(Λ) := P
�
L(Λ)

�
² fñ j ñ � Λg

Integrable modules. A g(A)-module V of the category O is called integrable, if all
ei, fi act locally nilpotent on V. This local nilpotency is one of the reasons why such
representations of g can be lifted to a representation of the associated group. Of particular
interest are the highest weight modules L(Λ) with integral dominant Λ, since L(Λ) is
integrable if and only if Λ is integral dominant [K, Lemma 10.1]. Thus, Λ 7! L(Λ) is a
bijection between D and the set of all integrable irreducible representations in O.

Integrable modules for affine Kac-Moody algebras. In chapter 2 we will focus on the
fundamental representations L(ï0)Ò    ÒL(ïr), L(é) of affine Kac-Moody algebras. The
module L(ï0) is also known as the basic representation which is used in string theory
(cf. chapters III and IV of the introduction in [FLM]). The L(ïi) are infinite dimensional,
but the L(né), n 2 C, are one-dimensional: g = g(A) acts on L(né) = C via

ôné(ei)(1) := 0Ò ôné( fi)(1) := 0Ò ôné(hi)(1) := 0Ò ôné(d)(1) := na0

Obviously, vné := 1 2 C is a highest weight vector which satisfies the conditions (5). After
identifying End(C) with C, we see that ôné can also be thought of as being né: h ! C,
trivially extended to a linear map (denoted by the same letter) né: g ! C.

Later, we would like to restrict ourselves “without loss of generality” to L(Λ) with
Λ 2 hï0Ò    Ò ïriN0 . Thus, if Λ + né =

P
niïi + né 2 D, we need to know how the

representations L(Λ + né), L(Λ) and L(né) relate to each other. Using the definition of
a highest weight module, it is easy to see that L(Λ + né) = L(Λ) 
 L(né). Furthermore,
after identifying the vector spaces L(Λ + né) and L(Λ), the actions ôΛ+né, ôΛ and ôné are
related to each other by

ôΛ+né(x) = ôΛ(x) + né(x) idL(Λ)(6)

If Λ 2 D, then Λ(c) 2 N0 is called the level of Λ. The weight system P(Λ) can be
described as follows [K, Proposition 12.5]: P(Λ) lies in the hyperplane fï 2 hŁ j ï(c) =
Λ(c)g and is the intersection of the parabola given by (ï j ï) � (Λ j Λ) and the “lattice”
Λ � h∆iN0 . From this, it is straightforward to prove some technical details needed later,
collected in the following lemma.
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LEMMA 1. The weight system P(Λ) of an integrable representation L(Λ) of an affine
Kac-Moody algebra has the following properties.

(1) P(Λ) ² XŁ , Λ 2 XŁ;
(2) If Λ 62 Cé, then for each i there exists a ñ 2 P(Λ) such that also ñ � ãi 2 P(Λ);
(3) ï0 � ã0 � é 2 P(ï0);
(4) if é(h) 6= 0 and R 2 R, then fñ 2 P(Λ) j ñ(h) = Rg is finite.

The hermitian form h j i on L(Λ). As a direct sum of countably many finite dimensional
weight spaces, the L(Λ), Λ 2 hŁ, are themselves of countably infinite dimension. The
following lemma is essential for using functional analytic techniques in chapter 2, as it
ensures the existence of an inner product on L(Λ) with additional ‘nice’ properties [K,
Proposition 9.4, Lemma 11.5, Theorem 11.7]:

LEMMA 2. For every Λ 2 D, there is an inner product h j i: L(Λ) ð L(Λ) ! C such
that

hx Ð v j wi = �
D
v j °0(x) Ð w

E
(contravariance)(7)

hvΛ j vΛi = 1(8)

Together with this inner product, L(Λ) is a unitary space of countably infinite dimension;
the completion H(Λ) of L(Λ) is a separable Hilbert space.

By the contravariance (7), the adjoint map ôΛ(x)Ł of ôΛ(x) exists for any x 2 g, and
equals ôΛ

�
�°0(x)

�
. Furthermore, one can prove that (7) implies that the weight spaces

are orthogonal: D
L(Λ)ï j L(Λ)ñ

E
= 0 if ï 6= ñ(9)

If, for each weight ñ, one chooses an orthonormal basis of L(Λ)ñ, then the union of all
these bases is, by (9), an orthonormal basis of L(Λ); this is called an adapted basis.

Kac-Moody groups. There are several ways of associating a group G(A) to a Kac-Moody
algebra g(A). Kac and Peterson exploit the properties of the modules L(Λ) to introduce
a “minimal derived” Kac-Moody group [PK, K2, G, MP]. Alternatively, Kac-Moody
groups can be defined via an amalgamation process, cf. [S3] and the works of Tits cited
there. Or, one gives a definition via generators and relations, without referring to the
algebra g(A) [KP]. In the present work I will use the “minimal” version of a Kac-Moody
group, which is slightly larger than the “minimal derived” version; we give a short
introduction and will supply some information which is needed later.

Let g be an arbitrary Lie algebra and (ôÒV) be a g-module. An element x 2 g is called
ô-locally finite if ô(x) acts locally finitely on V; denote the set of all ô-locally finite
elements of g by Fô. If F ² Fô, then one can consider the subgroup of GL(V) generated
by the exp

�
ô(x)

�
, x 2 F.
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Let g = g(A) be an affine Kac-Moody algebra. If we choose

(ôÒV) :=
M
Λ2D

�
ôΛÒL(Λ)

�
(10)

and

F := h [
r[

i=0
gãi [

r[
i=0

g�ãi or Cd [
r[

i=0
gãi [

r[
i=0

g�ãi Ò(11)

then we get the (minimal) Kac-Moody group G = G(A) associated to g = g(A), which is
discussed in the present work.

The torus T. Since all ô(h), h 2 h, act diagonally on V, the subgroup T :=
n

exp
�
ô(h)

�
j

h 2 h
o

is commutative. As a Z-module, it can be identified with X 
Z C
ð via

exp
�
ziô(hi)

�
$ hi 
 e2ôzi . To avoid confusion, we list the different Z-module actions:

C: n Ð z := nzÒ

C
ð: n Ð q := qn

Ò

h = X 
Z C: n Ð (x 
 z) := nx 
 z = x 
 nzÒ

T = X 
Z C
ð: n Ð (x 
 q) := nx
 q = x 
 qn



In T we will sometimes use additive notation, sometimes multiplicative notation. Thus
we have x 
 q + x 
 q0 = x 
 qq0 and x 
 q + x0 
 q = (x + x0) 
 q in additive notation,
(x 
 q)(x 
 q0) = x 
 qq0 and (x 
 q)(x0 
 q) = (x + x0) 
 q in multiplicative notation.
The exponential map exp: h ! T, h 7! exp

�
ô(h)

�
is a surjective group homomorphism;

it can also be written as
P

hi 
 zi 7!
P

hi 
 e2ôzi . The kernel of exp is iX. The following
subgroups of T will be important later:

Ti := fhi 
 q j q 2 Cðg ≤ C
ð (i = 0Ò    Ò r)Ò

Td := fd 
 q j q 2 Cðg ≤ C
ð
Ò

T+ := exp(hR) =
n rX

k=0
hk 
 qk + d 
 q

þþþ qk Ù 0 for k = 0Ò    Ò r and q Ù 0
o
Ò

Tc := exp(ihR) =
n rX

k=0
hk 
 qk + d 
 q

þþþ jqkj = jqj = 1 for k = 0Ò    Ò r
o


These subgroups can be used to write down two decompositions of T which we will
use frequently. The first one is the polar decomposition, T = T+ ð Tc. Corresponding
to this decomposition we write t = t+tc for elements of T. The second one is the
decomposition T = (T0 ð Ð Ð Ð ð Tr) ð Td ≤ (T0 ð Ð Ð Ð ð Tr) ð C

ð, here, we write
t =

P
hi 
 qi + d 
 q = (

P
hi 
 qiÒ q).

One-parameter subgroups in T and characters of T. Each one-parameter subgroup
ñ 2 HomZ(ZÒX) (of these, there are only the maps ña: z 7! za, a 2 X) extends to a
one-parameter subgroup ñ̄ 2 HomZ(CÒh), which itself lifts to a one-parameter subgroup
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¯̄ñ 2 HomZ(CðÒT):

C
ð

exp 6

C

6

Z

-

Ž

-

Ž

-

T = X 
 C
ð

exp6

h = X 
 C

6

X = X 
 Z

¯̄ñ: q 7! a
 q

ñ̄: z 7! a
 z

ñ: z 7! az

where exp:C ! C
ð, z 7! e2ôz. Each character ñ 2 HomZ(XÒ Z) = XŁ extends to a map

ñ̄ 2 HomZ(hÒ C), which in turn lifts to a map ¯̄ñ 2 HomZ(TÒ Cð):

C
ð

exp6

C

6

Z

-

Ž

-

Ž

-

T = X 
 C
ð

exp 6

h = X 
 C

6

X = X 
 Z

¯̄ñ: x 
 q 7! qñ(x)

ñ̄: x 
 z 7! zñ(x)

ñ: x 7! ñ(x)

If there is no danger of confusion, we will drop the bar and the double bar.

The one-parameter subgroups Ui and Vi. For each simple root ãi (i = 0Ò    Ò r) we
define one-parameter subgroups

xi := xãi:C ! GÒ xãi (c) := exp
�
ô(cei)

�
Ò Ui := Uãi := xãi(C)Ò

yi := x�ãi:C ! GÒ x�ãi (c) := exp
�
ô(cfi)

�
Ò Vi := U�ãi := x�ãi (C)

The exponential maps exp:Cei ! Ui, cei 7! xi(c) and exp:Cfi ! Vi, cfi 7! yi(c) are
group isomorphisms. Since [eiÒ fj] = 0, we know that xi(c) and yj(c0) commute for i 6= j.
Using [K, (3.8.1)], one proves that the one-parameter subgroups are normalized by T:

exp
�
ô(h)

�
xi(c) exp

�
ô(h)

��1
= xi(e

ãi(h)c)Ò(12)

exp
�
ô(h)

�
yi(c) exp

�
ô(h)

��1
= yi(e

�ãi(h)c)(13)

But (12), (13) and the commutativity of T imply G0 = [GÒG], which justifies calling G0

the “derived Kac-Moody group”. Furthermore, G = G0 ç Td. In this sense, we will use
the notation (xÒ q) for elements of G.

The building blocks Gi. Let gi := heiÒ fiÒ hii and Gi := hTiÒUiÒVii. Since all elements of gi

act locally finite on V [K, Section 1.2], the exponential map exp: gi ! Gi, x 7! exp
�
ô(x)

�
is well-defined. Just as we have an isomorphism of Lie algebras ßi: sl(2Ò C)

¾
! gi,
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�

0
0

1
0

�
7! ei,

�
0
1

0
0

�
7! fi,

�
1
0

0
�1

�
7! hi, we have a group isomorphism ûi: SL(2Ò C)

¾
! Gi

given by

ûi:
 

1 c
0 1

!
7! xi(c)Ò

 
1 0
c 1

!
7! yi(c)Ò

 
q 0
0 q�1

!
7! hi 
 q

From (12), (13) and the formulae given in the proof of [C, Lemma 6.1.1], we know
that the Gi are normalized by T. Furthermore, Ki := ûi

�
SU(2)

�
≤ SU(2) is a compact

form of Gi and we denote by ni the element

ni := ûi

  
0 1
�1 0

!!
= ûi

  
1 1
0 1

!!
ûi

  
1 0
�1 1

!!
ûi

  
1 1
0 1

!!
= xi(1)yi(�1)xi(1)

The normalizer of T and the Weyl group W . Let N := hTÒ n0Ò    Ò nri. Then T Ú N and
N is the normalizer of T in G. W := NÛT is called the Weyl group of G = G(A); the
si := [[ni]] generate W , (W Ò S) (where S := fs0Ò    Ò srg) is a Coxeter system, and W is
isomorphic to the Weyl group of the corresponding Lie algebra g = g(A).

Borel subgroups. Above, we associated a one-parameter subgroup to each simple root.
This can be done for any real root. Let ã be a real root, say ã = w Ð ãi for some simple
root ãi and some w = [[n]] 2 W . Then

xã:C ! GÒ xã(c) := nxãi(c)n�1Ò Uã := xã(C) = nUin�1

is the one-parameter subgroup associated to ã. Now we can define the following sub-
groups of G:

U+ := hUã j ã Ù 0Ò ã realiÒ U� := hUã j ã Ú 0Ò ã realiÒ

B+ := hTÒU+iÒ B� := hTÒU�i

The involution °0 and the compact form K. The compact involution °0: g ! g lifts to
an involution °̂0: G ! G. For elements of T and the one-parameter subgroups one gets

°̂0(t) = t�1 for t 2 T+Ò(14)

°̂0(t) = t for t 2 TcÒ(15)

°̂0

�
xi(c)

�
= yi(�c̄)Ò(16)

°̂0

�
yi(c)

�
= xi(�c̄)(17)

The fixed point set K := fg 2 G j °̂0(g) = gg is called the compact form of G. From
[PK, Corollary 4(b)] we know that there is an Iwasawa decomposition for G, i.e.,

G = KT+U+

REMARK. Whether there is a Cartan decomposition G = KT+K for Kac-Moody
groups, is an open problem. If there were, this would simplify some of the proofs in
chapter 2.
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Lifting the representations of g(A). Denote the set of all locally finite elements of
End

�
L(Λ)

�
by F id, and let Λ 2 D. From F ad ² FôΛ we get ôΛ(F ad) ² F id, whence

ô̂Λ: exp(F ad) ! GL
�
L(Λ)

�
, exp(x) 7! exp

�
ôΛ(x)

�
is well-defined. If this map extends

to a group homomorphism ô̂Λ: G(A) ! GL
�
L(Λ)

�
we say that ôΛ lifts to ô̂Λ. In this case,

one has a commuting diagram

G(A)

F ad

GL
�
L(Λ)

�

F id

-

-

6 6Žexp exp

ôΛ

ô̂Λ

By [MP, Proposition 6.1.12] all the representationsôΛ, Λ 2 D can be lifted to a represen-
tation of G(A). In particular, ô̂ï0 Ò    Ò ô̂ïr Ò ô̂é are called the fundamental representations
of G.

Action of the torus on L(Λ). Each element t 2 T acts as a ¯̄ñ(t)-multiple of the identity
on L(Λ)ñ.

Action of the one-parameter subgroups on L(Λ). Let v 2 L(Λ). Since ôΛ(ei) acts locally
nilpotent, the sum

ô̂Λ
�
xãi(c)

�
v = exp

�
ôΛ(cei)

�
(v) =

X
n

1
n!
ôΛ(cei)nv =

X
n

cn

n!
ôΛ(ei)nv

is finite, say terminates at n = N (N depends on v, but not on c). If v 2 L(Λ)ñ, then

ô̂Λ
�
xãi (c)

�
v = v + cv1 + c2v2 + Ð Ð Ð + cNvN where vk 2 L(Λ)ñ+kãi (18)

In the same vein,

ô̂Λ
�
xã(c)

�
v = v + cv1 + c2v2 + Ð Ð Ð + cNvN where vk 2 L(Λ)ñ+kã

for any real root ã.

Action of the Weyl group. Elements of the Weyl group (or, more precisely, their repre-
sentatives) permute weight spaces. If w = [[n]] 2 W , then [S3, p. 5-48]

n Ð Vñ = Vw(ñ)(19)

Action of the compact form K. From the contravariance of the hermitian form h j i:
L(Λ) ð L(Λ) ! C with respect to g(A) we easily deduce, starting with the exponential
generators of G(A), the global contravariance of h j i with respect to G(A), i.e.,−

ô̂Λ(g)v j ô̂Λ
�
°̂0(g)

�
w
×

= hv j wi(20)

for all g 2 G(A), vÒw 2 L(Λ). In particular, we get that the compact form K = fg 2 G j

°̂0(g) = gg acts by unitary operators on L(Λ) and thus on H(Λ).
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Other useful formulas with respect to °̂0 are given by the explicit adjoints with respect
to h j i:

ô̂Λ(t)Ł = ô̂Λ
�
°̂0(t�1)

�
for all t 2 TÒ(21)

ô̂Λ
�
xi(c)

�Ł
= ô̂Λ

�
yi(c̄)

�
and ô̂Λ

�
yi(c)

�Ł
= ô̂Λ

�
xi(c̄)

�
(22)

for all i = 1Ò    Ò r, c 2 C.

2. Trace class elements in Kac-Moody groups. In this chapter we investigate the
functional analytic properties of the elements of G when they are viewed as operators
acting on L(Λ), VŽ =

Lr
i=0 L(ïi) or V =

L
Λ2D L(Λ). We start by looking at suitable

subgroups of G, and ask: Which of the elements of the subgroup under consideration are

(F1) selfadjoint (F4) bounded
(F2) unitary (F5) bounded invertible
(F3) normal (F6) algebraic trace class operators

on L(Λ), resp. VŽ, resp. V? And, if the completions of these spaces are denoted by H(Λ),
HŽ, H, respectively: Which elements are

(F7) trace class operators on H(Λ), resp. HŽ, resp. H?

For convenience, we recall the definitions (for more, cf. [Con] or [Go]). If V is a unitary
space, then a linear map û: V ! V is called selfadjoint if hûv j wi = hv j ûwi for all vÒw,
unitary if hûv j ûwi = hv j wi for all vÒw, normal if ûûŁ = ûŁû, bounded if kûk Ú 1,
bounded invertible if kûkÒ kû�1k Ú 1, and compact if the closure of û(fv j kvk Ú 1g)
is a compact subset of V.

A linear map û: V ! V is called an algebraic trace class operator with respect to
a given orthonormal basis B = feigi2N, if

P
i jhei j ûeiij Ú 1. In this case we call

traceB(û) :=
P

ihei j ûeii the algebraic trace of û. Please note that it depends on the
chosen orthonormal basis, whether a map û: V ! V is an algebraic trace class operator
or not. The set of all algebraic trace class operators with respect to a basis B is denoted
by EndB

1 (V).
Let H be a Hilbert space. An operator Φ 2 B(H) is called trace class operator ifP

ihei j jΦjeii Ú 1, where jΦj = (ΦŁΦ)
1
2 is the absolute value of Φ. The set of all trace

class operators is denoted by B1(H). The (Hilbert space) trace of Φ, trace(Φ) :=
P

ihei j

Φeii, is independent of the choice of basis [Con, p. 274]. We have B1(H) Ú B(H) and
B1(H) ² EndB

1 (H) [Con, p. 274].
For arbitrary subsets U ² G we introduce the following notation:

Ub
Λ :=

n
g 2 U j ô̂Λ(g): L(Λ) ! L(Λ) is bounded

o
Ò

Ubi
Λ :=

n
g 2 U j ô̂Λ(g)Ò ô̂Λ(g�1): L(Λ) ! L(Λ) are bounded

o
Ò

Uatr
Λ :=

n
g 2 U j ô̂Λ(g): L(Λ) ! L(Λ) is an algebraic trace class operator

o
Ò

Utr
Λ :=

n
g 2 U j ô̂Λ(g) extends to a trace class operator on H(Λ)

o
;
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similarly, we use the symbols Ub
Ž , Ubi

Ž , Uatr
Ž , Utr

Ž and Ub, Ubi, Uatr, Utr (substitute ô̂Λ by
ô̂Ž resp. ô̂). Furthermore, let

UÙ1 :=
n

g = (xÒ q) 2 U
þþþ jqj Ù 1

o
Ò

U=1 :=
n

g = (xÒ q) 2 U
þþþ jqj = 1

o
Ò

UÚ1 :=
n

g = (xÒ q) 2 U
þþþ jqj Ú 1

o


The main results of this chapter are: We have GÙ1 ² Gtr
Ž ² GÙ1 [G=1 (Theorem 1),

and GÙ1 is invariant under conjugation by arbitrary group elements (Theorem 2). We
proceed in three steps: First, we take a thorough look at the torus T; then we deal with
the Levi subgroups Lç = hTÒUçÒU�çi; finally we come to the group G itself.

2.1. Torus elements as operators on L(Λ), VŽ and V. We recall the definition of the
fundamental chamber F and the Tits cone X :

F :=
n
h 2 hR j ãi(h) ½ 0 for all i

o
Ò X :=

[
w2W

w Ð F (23)

LEMMA 3 (ACTION OF T ON L(Λ)). Let G be an affine Kac-Moody group, T the torus
of G, Λ 2 hï0Ò    Ò ïriN0

and t = exp(h0 + ih00), h0Ò h00 2 hR. Then:
(F1) ô̂Λ(t) is selfadjoint , ñ(h00) 2 1

2Z for all ñ 2 P(Λ);
(F2) ô̂Λ(t) is unitary , h0 = 0 , t 2 Tc;
(F3) ô̂Λ(t) is normal;
(F4) Tb

Λ = exp(X ) ð Tc;
(F5) Tbi

Λ = exp(Rc)ð Tc;
(F6) Tatr

Λ = TÙ1;
(F7) Ttr

Λ = TÙ1.

PROOF. Because ô̂Λ(t) acts diagonally on the weight spaces L(Λ)ñ as multiplication
by ¯̄ñ(t), it is natural to look at the set of eigenvalues of ô̂Λ(t), called the spectrum of
ô̂Λ(t), spec ô̂Λ(t) := f ¯̄ñ(t) j ñ 2 P(Λ)g. If t = exp(h), it is also convenient to look at the
spectrum of ôΛ(h), specôΛ(h) := fñ(h) j ñ 2 P(Λ)g, instead.

(F1): ô̂Λ(t) is selfadjoint iff ¯̄ñ(t) 2 R for all ñ 2 P(Λ). Since ¯̄ñ(t) = ¯̄ñ(t+) ¯̄ñ(tc), where
¯̄ñ(t+) 2 R

+ and ¯̄ñ(tc) 2 S1 (here, we implicitly use Λ 2 hï0Ò    Ò ïriN0
) Λ 2 XŁ )

P(Λ) ² XŁ, cf. Lemma 1(1)), this holds iff ¯̄ñ(tc) = e2ôiñ(h00) = š1 iff ñ(h00) 2 1
2Z for all

ñ 2 P(Λ). }

(F2): Similar to (F1), ô̂Λ(t) is unitary iff ¯̄ñ(t) 2 S1 iff ¯̄ñ(t+) = e2ôñ(h0) = 1 iff ñ(h0) = 0
for all ñ 2 P(Λ). By Lemma 1(2) this implies ãi(h0) = 0 for all i, whence h0 2 Rc. But
we also have Λ(h0) = 0, which finally forces h0 = 0. }

(F3): Since T is commutative, any ô̂Λ(t) is normal. }

(F4): ô̂Λ(t) is bounded iff spec ô̂Λ(t) is bounded; in this case kô̂Λ(t)k = supfj ¯̄ñ(t)j j
ñ 2 P(Λ)g Ú 1. We discuss a) the case t 2 Tc, b) the case t 2 T+, then c) the general
case.
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a) If t 2 Tc, then ¯̄ñ(t) 2 S1 for all ñ 2 P(Λ), whence kô̂Λ(t)k = supfj ¯̄ñ(t)j j ñ 2

P(Λ)g = 1.
b) t 2 T+. This is where the real work is. Recall the definition of the fundamental

chamber and the Tits cone (23). One has X = Rc [ fh 2 hR j é(h) Ù 0g [K, Proposi-
tion 5.8.b], X \ (�X ) = Rc, and hR decomposes disjointly into the four sets

Rc

X1 := X n Rc =
n

h 2 hR j é(h) Ù 0
o

=
[

w2W
w Ð (F n Rc)Ò

X2 := �X n Rc =
n

h 2 hR j é(h) Ú 0
o
Ò

X3 := hriR n Rc =
n

h 2 hR j é(h) = 0
o
n Rc

Correspondingly, we discuss spec ô̂Λ(t), t = exp(h), for each of these four cases.
ž t = exp(h), h 2 Rc. Since ô̂Λ(t) = Λ(t) Ð idL(Λ), we have spec ô̂Λ(t) = fΛ(t)g and

kô̂Λ(t)k = jΛ(t)j.
ž t = exp(h), h 2 X1. Let t = exp(h), where h 2 F n Rc. In this case

sup
n
ñ(h) j ñ 2 P(Λ)

o
= Λ(h)Ò(24)

inf
n
ñ(h) j ñ 2 P(Λ)

o
= �1Ò(25)

specôΛ(h) =
n
ñ(h) j ñ 2 P(Λ)

o
is a discrete subset of RÒ(26)

each eigenvalue has finite multiplicity.(27)

Ad (24): Since Λ 2 P(Λ), we have Λ(h) 2 fñ(h) j ñ 2 P(Λ)g; since ñ 2 P(Λ) )
ñ � Λ ) ñ = Λ �

Pr
i=0 niãi (ni ½ 0), we get ñ(h) � Λ(h).

Ad (25): For all n 2 N0 we have Λ� né 2 P(Λ); now é(h) Ù 0 implies (25).
Ad (26): Let J := fi j ãi(h) Ù 0g, which is nonempty because we assumed that

h 2 F nRc. For each real number R the set fñ(h) j ñ 2 P(Λ)g\ [RÒ1[ is finite, because

ñ(h) = Λ(h) �
rX

i=0
niãi(h) = Λ(h) �

X
i2J

niãi(h) ½ R ,
X
i2J

niãi(h) � Λ(h) � R

and the latter can be realized only by finitely many tupels (ni)i2J , ni 2 N0.
Ad (27): Follows from Lemma 1(4).
If t = exp(h), where h 2 X1, say h = wh̃ for some w 2 W and h̃ 2 F n Rc, then by

the invariance of P(Λ) under the action of W ,n
ñ(h) j ñ 2 P(Λ)

o
=
n
ñ(h̃) j ñ 2 P(Λ)

o


Hence

sup
n
ñ(t) j ñ 2 P(Λ)

o
Ú 1Ò

inf
n
ñ(t) j ñ 2 P(Λ)

o
= 0Ò

spec ô̂Λ(t) =
n
ñ(t) j ñ 2 P(Λ)

o
is a discrete subset of R+

Ò

each eigenvalue has finite multiplicity,
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i.e., [Con, Proposition II.4.6]:

If t = exp(h), h 2 X1, then ô̂Λ(t) is a compact operator on L(Λ).(28)

ž Let t = exp(h), h 2 X2. These are the inverses of the elements we were talking
about a moment ago, thus

If t = exp(h), h 2 X2, then ô̂Λ(t) is an unbounded operator on L(Λ);

spec ô̂Λ(t) has no limit points.(29)

ž Now for the last case, t = exp(h), h 2 X3. Here, ô̂Λ(t) is unbounded in a very
unpleasant way. First, any eigenvalue has infinite multiplicity, since ñ(h) = (ñ � né)(h)
for all n 2 N0. On the other hand, fñ(h) j ñ 2 P(Λ)g is bounded neither below nor
above: Since h 62 c, there is an i 2 f0Ò    Ò rg such that ãi(h) 6= 0. If ã := ãi + né then
ã_ = hi + n ai

a_i
c [K, Proposition 5.1.d.ii]; furthermore because of é(h) = 0

(wã Ð Λ)(h) =
�
Λ � Λ(ã_)ã

�
(h) = Λ(h) � Λ(hi)ãi(h)� n

ai

a_i
Λ(c)ãi(h)

| {z }
6= 0

Ò

which, for suitable n, gets arbitrarily large or small. Thus:

If t = exp(h), h 2 X3, then ô̂Λ(t) is an unbounded operator on L(Λ);

spec ô̂Λ(t) has 0 as a limit point.(30)

To summarize b): If t = exp(h), h 2 hR, then ô̂Λ(t) is bounded iff h 2 X .
c) t 2 T arbitrary. Since ô̂Λ(t) = ô̂Λ(t+tc) = ô̂Λ(t+)ô̂Λ(tc) and kô̂Λ(tc)k = 1, the map

ô̂Λ(t) is bounded iff ô̂Λ(t+) is bounded, i.e., iff t+ 2 exp(X ). }

(F5): Using X \ (�X ) = Rc and the statements in (F4), we obtain (F5). }

(F6), (F7): Since ô̂Λ(t) acts diagonally, it already extends to a trace class operator on
H(Λ) if it is just an algebraic trace class operator, i.e., if and only if

X
ñ2P(Λ)

dim L(Λ)ñjñ(t)j Ú 1

In [K], the character chV of a g-module V = ýñVñ is defined by chV :=
P
ñ dim Vñeñ,

where eñ: h ! C
ð, eñ(h) := eñ(h). The character chV is thus a function defined on (a

subset of) h. The set where chV converges absolutely, is denoted by Y(V). The character
chV can be interpreted as the trace of ô̂Λ(t), for

trace
�
ô̂Λ(t)

�
=
X
ñ

dim L(Λ)ññ(t) =
X
ñ

dim L(Λ)ñe2ôñ(h) = chL(Λ)(2ôh)

By [K, Section 11.10], for affine algebras and Λ 2 D,

Y
�
L(Λ)

�
=
n

h 2 h
þþþ X

ñ
dim L(Λ)ñjeñ(h)

j Ú 1
o

=
n

h 2 h
þþþ Re

�
é(h)

�
Ù 0

o
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Of course Re
�
é(h)

�
Ù 0 , Re

�
é(2ôh)

�
Ù 0, thus ô̂Λ(t) is a trace class operator if and

only if Re
�
é(h)

�
Ù 0; in more detail, the following statements are equivalent:

(a) ô̂Λ(t) extends to a trace class operator on H(Λ)Ò

(b) Re
�
é(h)

�
Ù 0Ò

(c) jé(t)j Ù 1Ò

(d) t = (xÒ q) where jqj Ù 1

This finishes the proof of Lemma 3.

PROPOSITION 4 (ACTION OF T ON VŽ). Let G be an affine Kac-Moody group, T the
torus of G and t = exp(h0 + ih00), h0Ò h00 2 hR. Then
(F1) ô̂Ž(t) is selfadjoint , h00 2 1

2 X , t 2 T+ ð exp
�

1
2 iX

�
;

(F2) ô̂Ž(t) is unitary , h0 = 0 , t 2 Tc;
(F3) ô̂Ž(t) is normal;
(F4) Tb

Ž = exp(X ) ð Tc;
(F5) Tbi

Ž = exp(Rc)ð Tc;
(F6) Tatr

Ž = TÙ1;
(F7) Ttr

Ž = TÙ1.

PROOF. First recall that ô̂Ž(t) =
Lr

i=0 ô̂ïi (t), whence ô̂Ž(t) is selfadjoint, unitary,    ,
trace class if and only if all ô̂ïi (t) are so.

(F1): ): Let h00 =
P

mjhj + md. By Lemma 3 (F1) we have ñ(h00) 2 1
2Z for all

ñ 2 P(ïi), all i = 0Ò    Ò r. In particular, ïi(h00) 2 1
2Z forces mi 2

1
2Z and (ïi � é)(h00) 2

1
2Z forces m 2 1

2a0
Z. But there is a stronger argument which even forces m 2 1

2Z: By
Lemma 1 (3), ï0 � ã0 � é 2 P(ï0). Now

(ï0 � ã0 � é)(h00) = (ï0 � é)(h00)| {z }
2 1

2Z

�
X

mjã0(hj)| {z }
2 1

2Z

�mã0(d)| {z }
=1

2
1
2
Z

whence m 2 1
2Z. Thus h00 2 1

2 X.(: Let h00 2 1
2 X, i.e., 2h00 2 X. Since ïi 2 XŁ, we know

that P(ïi) ² XŁ. Thus, for all ñ 2 P(ïi) and all i, ñ(2h00) 2 Z. }

(F2)–(F7): Follows immediately from Lemma 3.

PROPOSITION 5 (ACTION OF T ON V). Let G be an affine Kac-Moody group, T the
torus of G and t = exp(h0 + ih00), h0Ò h00 2 hR. Then
(F1) ô̂(t) is selfadjoint , h00 2 1

2 hriZ , t 2 T+ ð exp
�

1
2 ihriZ

�
;

(F2) ô̂(t) is unitary , h0 = 0 , t 2 Tc;
(F3) ô̂(t) is normal;
(F4) Tb = f1g;
(F5) Tbi = f1g;
(F6) Tatr = ;;
(F7) Ttr = ;.
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PROOF. (F1): ô̂(t) is selfadjoint iff all ô̂Λ(t), Λ 2 D are. Let h00 =
P

mjhj + md. As
above, mj 2

1
2Z. In addition, né(h00) 2 1

2Z (for all n 2 C!) forces m = 0. Conversely, let
h00 2 1

2 hriZ, and ñ 2 P(Λ), Λ 2 D. Since ñ � Λ, we know that ñ(h00) 2 1
2Z , Λ(h00) 2

1
2Z. Now, for Λ =

P
njïj + né:

Λ(h00) =
X

nj ïj(h
00)| {z }

2 1
2Z

�n é(h00)| {z }
= 0

2
1
2
Z }

(F2), (F3): Follows immediately from Lemma 3 (F2), (F3). }

(F4), (F5): Since T acts diagonally on the weight spaces, ô̂(t) is bounded iff
supfjñ(h)j j ñ 2 P(Λ)ÒΛ 2 Dg Ú 1. We claim that this only holds for h = 0.
Suppose h =

P
mjhj + md 6= 0, then mj 6= 0 for some j or m 6= 0. In the first case, we

consider the integral dominant weights Nïj, N 2 N, and get

sup
n
jñ(h)j

þþþ ñ 2 P(Λ)ÒΛ 2 D
o
½ sup

N2N

n
jNïj(h)j

o
= sup

N2N
fNjmjjg = +1Ò

in the second case, we consider the integral dominant weights Né, N 2 N, and get

sup
n
jñ(h)j

þþþ ñ 2 P(Λ)ÒΛ 2 D
o
½ sup

N2N

n
jNé(h)j

o
= sup

N2N
fNjmjg = +1

Now (F5) is obvious. }

(F6), (F7): Since ô̂(t) acts diagonally, it is of algebraic trace class iff it is of trace
class. But Ttr ² Tb, whence Ttr = Tatr = ;.

REMARK. In view of the things to come (definition of an adjoint quotient) we see
that V is “too large”.

2.2. The Levi subgroups. Consider the Levi subgroups Lç := hTÒUçÒU�çi. Let Kç

be the compact form of Lç, i.e., the fixed point set of Lç with respect to °̂0. Lç has
a Cartan decomposition Lç = KçTKç. We now use the fact that é extends to a group
homomorphism on G [S2]. Since Kç ² ker jéj, we have LÙ1

ç = KçTÙ1Kç. On the other
hand, since the elements of Kç ² K are bounded invertible, we also have Lb

ç = KçTbKç

and Ltr
ç = KçTtrKç. Now, by Proposition 4(F7),

Ltr
ç = KçTtrKç = KçTÙ1Kç = LÙ1

ç (31)

2.3. Trace class elements.

THEOREM 1. Let G = G(A) be a (minimal) Kac-Moody group of affine type and
Λ 2 D n Cé. Then the set Gtr

Λ of all elements g for which ô̂Λ(g): L(Λ) ! L(Λ) extends to
a trace class operator on H(Λ) satisfies

GÙ1
² Gtr

Λ ² GÙ1
[G=1



From this, we immediately get GÙ1 ² Gtr
Ž ² GÙ1 [ G=1.
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PROOF. We can now use all our propositions and previous work to prove GÙ1 ² Gtr
Λ.

Let x 2 GÙ1. Since G is generated by the torus and by the one-parameter subgroups Uç

(ç real root), x can be written as

x = t1u1 Ð Ð Ð Ð Ð tNuN (ti 2 TÒ ui 2 Uçi )

Each one-parameter subgroup is normalized by the torus, whence this can be rewritten
as

x = tu01 Ð Ð Ð Ð Ð u0N (t 2 TÙ1
Ò u0i 2 Uçi )

(where t 2 TÙ1 because Uçi ² ker é). Artificially write t as a product t = t01 Ð Ð Ð t0N,
where t0i 2 TÙ1. This is always possible, for example one could take t = (úÒ q) =
(úÒ q

1
N )(1Ò q

1
N ) Ð Ð Ð (1Ò q

1
N ). Once again, we reorder the factors and get

x = t01u001 Ð Ð Ð Ð Ð t0Nu00N (t0i 2 TÙ1
Ò u00i 2 Uçi )

Each of the factors t0iu
00
i is 2 LÙ1

çiÒΛ = Ltr
çi

(cf. (31)), thus x 2 Gtr
Λ. Now let x 2 GÚ1. Then

x�1 2 GÙ1 (because 1 = é(1) = é(x)é(x�1)). If ô̂Λ(x) were bounded, then because of
B1

�
H(Λ)

�
Ú B

�
H(Λ)

�
we would have id = ô̂Λ(x)ô̂Λ(x)�1 2 B1

�
H(Λ)

�
. Thus GÚ1\Gb

Λ =
;; in particular elements of GÚ1 are never trace class operators.

THEOREM 2. Let G = G(A) be a (minimal) Kac-Moody group of affine type. Then
GÙ1 is invariant under conjugation by arbitrary elements of G.

PROOF. If x 2 GÙ1, y 2 G, then é( yxy�1) = é(x).

2.4. Trace Invariance. We will now prove that, in a certain sense, we get an adjoint
quotient on a subset of G. This subset is, after our elaborations on trace class elements
(Theorems 1 and 2), chosen to be GÙ1. In fact we have

THEOREM 3. a) Let G be an affine Kac-Moody group and Λ 2 D. Then üΛ :=
trace Žô̂Λ: GÙ1 ! C is invariant under conjugation by arbitrary group elements, i.e., a
class function. b) The trace function ü = (ü0Ò    Ò ürÒ üé): GÙ1 ! C

r+1
ð C

ð is a class
function and factors to ǖ:

GÙ1ÛAd

GÙ1 C
r+1

ð C
ð

ü

Ž

ǖ?

-

�
��

PROOF. b) follows from a). Using the Iwasawa decomposition G = KT+U+ [PK]
reduces the problem of invariance of üΛ under conjugation by arbitrary group elements
to the problem of invariance under conjugation by elements of the subgroups K, T+, U+.

Invariance of üΛ under K. Let x 2 GÙ1, k 2 K. Since elements of K act as unitary
operators, we have üi(x) = üi(kxk�1) [Con, p. 274].
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Invariance of üΛ under T+. Let t 2 T+. Then ô̂Λ(t) is selfadjoint and acts on L(Λ)ñ as
multiplication by ¯̄ñ(t). Thus, in L(Λ)ñ,D

ei j ô̂Λ(t)ô̂Λ(x)ô̂Λ(t�1)ei

E
=
D
ô̂Λ(t)ei j ô̂Λ(x)ô̂Λ(t�1)ei

E
= ¯̄ñ(t) ¯̄ñ(t�1)

D
ei j ô̂Λ(x)ei

E
=
D
ei j ô̂Λ(x)ei

E

whence trace
�
ô̂Λ(t)ô̂Λ(x)ô̂Λ(t�1)

�
= trace

�
ô̂Λ(x)

�
.

Invariance of üΛ under U+. It is sufficient to prove invariance under conjugation by el-
ements xi(c) of the one-parameter subgroups Ui. To prove this, we use the decomposition
of L(Λ) into ãi-strings:

L(Λ) =
M

ñ2P(Λ)
L(Λ)ñ =

M
(ãi-strings of subspaces)

Since in the latter identity we only put together finitely many weight spaces to give anãi-
string, each basis B of L(Λ) adapted to the weight space decomposition is automatically
also adapted to the decomposition of L(Λ) into ãi-strings. For each ãi-string s ² L(Λ)
let ps resp. is denote the canonical projection resp. injection. Since the ãi-strings are
invariant under xi(c), we get

ps Ž xi(c) Ž ô̂Λ(x) Ž xi(c)�1 Ž is =
�
ps Ž xi(c) Ž is

��
ps Ž ô̂Λ(x) Ž is

��
ps Ž xi(c)�1 Ž is

�
=
�
ps Ž xi(c) Ž is

��
ps Ž ô̂Λ(x) Ž is

��
ps Ž xi(c) Ž is

��1


Since dim s Ú 1, we know

trace
�
ps Ž xi(c) Ž ô̂Λ(x) Ž xi(c)�1

Ž is
�

= trace
�
ps Ž xi(c) Ž is

��
ps Ž ô̂Λ(x) Ž is

��
ps Ž xi(c) Ž is

��1

= trace
�
ps Ž ô̂Λ(x) Ž is

�


The trace formula (32), applied to L(Λ) =
L

s, now gives

üi

�
xi(c) Ž ô̂Λ(x) Ž xi(c)�1

�
= trace

�
xi(c) Ž ô̂Λ(x) Ž xi(c)�1

�
=
X

s
trace

�
ps Ž xi(c) Ž ô̂Λ(x) Ž xi(c)�1 Ž is

�

=
X

s
trace

�
ps Ž ô̂Λ(x) Ž is

�

= trace
�
ô̂Λ(x)

�
= üi(x)

and that’s what we wanted.
It is now time to mention some open problems. 1) What exactly is Gb? Or, since

we already know GÙ1 ² Gb ² GÙ1 [ G=1: What are the elements of Gb \ G=1? One
conjecture is, that Gb \G=1 is equal to the subgroup generated by the center of G and the
compact form K. 2) What exactly is Gtr? Or, as we already know GÙ1 ² Gtr ² GÙ1[G=1,
what is Gtr \G=1? Here the conjecture is that Gtr \G=1 = ;. (Which would follow from
the conjecture about Gb above.) 3) If G=1 \Gtr 6= ;, is Gtr invariant under conjugation?
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3. Steinberg cross-sections in Kac-Moody groups. In chapter 2 we proved that the
trace function ü is well-defined on GÙ1 and factors to a map ǖ: GÙ1ÛAd ! C

r+1
ðC

Ù1.
In order to understand the nature of ǖ, we transfer the notion of a cross-section, as
introduced by Steinberg in his investigations about linear algebraic groups [St1, St2],
to affine Kac-Moody groups: Define a map ° and a set C, both called a Steinberg
cross-section, by

°:Cr+1
ð C

ð
! GÒ (c0Ò    Ò crÒ q) 7!

� rY
i=0

xi(c)niÒ q
�
Ò

C := im(°) =
rY

i=0
Uini ð C

ð


It is possible to prove that ü Ž ° (i.e., the trace function restricted to C) still has some
of the nice properties of the finite dimensional case (Theorems 4 and 5). An interesting
new feature is the existence of a Cð-action on the cross-section (Proposition 15), which
leads to a functional identity (Theorem 6).

3.1. A trace formula. If V = ý°V° then an orthonormal basis B of V is adapted to
the decomposition V = ý°V° if B is the union of orthonormal bases of the V°’s. In our
case, bases of L(Λ) will always be chosen adapted to the weight space decomposition
L(Λ) = ýñL(Λ)ñ. Later we will need the following

LEMMA 6 (TRACE FORMULA). Let V = ý°V°, where dim V° Ú 1, B be an adapted
basis of V, let i°: V° ! V and p°: V ! V° be the canonical injection resp. projection
and û 2 EndB

1 (V) an algebraic trace class operator, then

traceB(û) =
X
°

trace ( p° Ž û Ž i°)(32)

3.2. üŽ° for Kac-Moody groups. To find out how the trace function üŽ° behaves, we
will first look at the components üi Ž °. To simplify the notation we write V instead of
L(ïi), Vñ instead of L(ïi)ñ and (xÒ q) instead of ô̂ïi (xÒ q). Let B be an orthonormal basis
of V adapted to V = ýñVñ and suppose (xÒ q) 2 EndB

1 (V). By the trace formula (32) we
have

üi(xÒ q) = trace(xÒ q) =
X
ñ

trace
�
pñ Ž (xÒ q) Ž iñ

�
(33)

Since (1Ò q) = d 
 q acts diagonally on Vñ as multiplication by ñ(d 
 q) = qñ(d), we get

trace
�
pñ Ž (xÒ q) Ž iñ

�
= trace

�
pñ Ž (xÒ 1) Ž (1Ò q) Ž iñ

�
= qñ(d) trace

�
pñ Ž (xÒ 1) Ž iñ

�
Ò(34)

which reduces the problem of determining üi(xÒ q) to the problem of determining
trace

�
pñ Ž (xÒ 1) Ž iñ

�
.
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Determining trace( pñ Ž x Ž iñ). We will proceed along the lines of [St2, p. 69], but give
the details missing there. Let yj := xj(cj)nj; then x = x0(c0)n0 Ð Ð Ð xr(cr)nr = y0 Ð Ð Ð yr and
one has

( pñ Ž x Ž iñ) = ( pñ Ž y0 Ž iñ) Ž Ð Ð Ð Ž ( pñ Ž yr Ž iñ)(35)

PROOF OF (35) BY INDUCTION ON r. Let v 2 Vñ where ñ =
P

mjïj + né, and
k 2 f0Ò    Ò rg. Then wk(ñ) = ñ � ñ(hk)ãk = ñ � mkãk and by (19), nk Ð v 2 Vñ�mkãk .
Furthermore

yk Ð v = nk Ð v + ckv1 + c2
kv2 + Ð Ð Ð Ò (where vl 2 Vñ�mkãk+lãk

by (18))Ò(36)

( pñ Ž yk Ž iñ)(v) =
(

cmk
k vmk Ò mk ½ 0

0Ò mk Ú 0.
(37)

It now follows that, if we abbreviate w0 := nr Ð v, w1 := crv1, w2 := c2
rv2, etc.,

( pñ Ž x Ž iñ)(v) = pñ
�
y0 Ð Ð Ð yr(v)

�
= pñ

�
y0 Ð Ð Ð yr�1(w0 + w1 + Ð Ð Ð + wmr + Ð Ð Ð)

�
= pñ

�
y0 Ð Ð Ð yr�1(wmr )

�
+
X

k6=mr

pñ
�
y0 Ð Ð Ð yr�1(wk)

�

= ( pñ Ž y0 Ž iñ) Ð Ð Ð ( pñ Ž yr�1 Ž iñ)( pñ Ž yr Ž iñ)(v)

+
X

k6=mr

pñ
�
y0 Ð Ð Ð yr�1(wk)

�


Each of the summands pñ
�
y0 Ð Ð Ð yr�1(wk)

�
, k 6= mr, is zero: Repeated application of (19)

and (18) gives

wk 2 Vñ+Łãr (Ł 6= 0 because k 6= mr)

nr�1wk 2 Vñ+Łãr+Êãr�1 (maybe Ê = 0)

yr�1wk 2
M
kr�1

Vñ+Łãr+kr�1ãr�1

...

y0 Ð Ð Ð yr�1wk 2
M
k0

Ð Ð Ð
M
kr�1

Vñ+Łãr+kr�1ãr�1+ÐÐÐ+k0ã0 

From the linear independence of fã0Ò    Ò ãrg it is immediate that none of the latter
vector spaces equals Vñ, whence (35).

Which ñ contribute? Which ñ contribute to the sum (33)? The ñ with ñ 6� ïi do not
contribute, since Vñ = f0g for such ñ. Non-dominant ñ also do not contribute: Let
ñ =

Pr
j=0 mjïj + né with mk Ú 0; we first get (by (37)) pñ Ž yk Ž iñ = 0 and then (by (35))

pñ Ž x Ž iñ = 0. This motivates taking a closer look at the sets

D(ïi) := fñ j ñ � ïi ^ ñ 2 Dg
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By [K, Proposition 12.5.a], D(ïi) is the set of all dominant weights and D(ïi) = P(ïi)\D.
A simple but important observation is the following: If ñ =

P
mjïj + né 2 D(ïi), then

ïi �
�X

mjïj + né
�

= ïi � ñ =
X

njãj(38)

for some n0Ò    Ò nr 2 N0. If both sides of (38) are evaluated at the central element c, one
gets a necessary condition for the tupels (m0Ò    Òmr):

rX
j=0

mja
_
j = a_i (39)

LEMMA 7. Let i 2 f0Ò    Ò rg and D(ïi) mod é := f
P

mjïj j
P

mjïj + né 2 D(ïi) for
some ng. Then D(ïi) mod é is finite and decomposes into three types of elements:

I: ïi itselfÒ

II: ïj with j 6= i and a_j = a_i Ò

III:
X

mjïj with
X

mj ½ 2 and mj = 0 if a_j ½ a_i .

Correspondingly, each element ñ 2 D(ïi) is exactly of one of the following types:

I: ñ = ïi + néÒ n � ni(ïi) = 0Ò

II: ñ = ïj + néÒ where j 6= i and a_j = a_i , n � ni(ïj) � 0Ò

III: ñ =
X

mjïj + né, where
X

mj ½ 2 and mj = 0 if a_j ½ a_i 

PROOF. The finiteness of D(ïi) mod é and decomposition into the three types I, II, III
is immediate from (39). If both sides of (38) are evaluated at d, we get n � 0; thus the
number ni(ó) := maxfn 2 1

a0
N j ó + né 2 D(ïi)g exists for all ó 2 D(ïi) mod é and is

� 0.

It is possible to determine D(ïi) mod é and D(ïi) explicitly for all affine Kac-Moody
algebras and all i = 0Ò    Ò r; this was done in Appendix B of the German version of the
present work2 [B].

EXAMPLE. E(1)
6 , i = 2. Equation (39) becomes

m0 + m1 + 2m2 + 3m3 + 2m4 + m5 + 2m6 = 2

and D(ï2) mod é contains at most the elements I: ï2, II: ï4Ò ï6, III: 2ï0Ò 2ï1Ò 2ï5Ò ï0 +
ï1Ò ï0 + ï5Ò ï1 + ï5. (In the appendix B mentioned above it is proved that actually,
D(ï2) mod é consists of I: ï2, II: –, III: 2ï1, ï0 + ï5.)

2   which has been deleted in this version, since the actual knowledge of these sets turned out to be
redundant for the proofs of my theorems. Of course, for doing examples, this is still quite useful.
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(üŽ°)(c0Ò    Ò crÒ q) as a formal power series. By (35) and (37) we know what the action
of x =

Qr
i=0 xi(ci)ni =

Qr
i=0 yi on Vñ is: There is a linear map ϒñ: Vñ ! Vñ, independent

of c0Ò    Ò cr, such that pñ Ž x Ž iñ has the form

pñ Ž x Ž iñ: Vñ ! VñÒ v 7! cm0
0 Ð Ð Ð cmr

r ϒñ(v)

If añ denotes the trace of ϒñ: Vñ ! Vñ, then

trace( pñ Ž x Ž iñ) = añ Ð cm0
0 Ð Ð Ð cmr

r (40)

THEOREM 4. Let G be an affine Kac-Moody group and let °, ü be defined as above.
Then, for the components üi Ž ° of ü Ž °, we have: (üi Ž °)(c0Ò    Ò crÒ q) is a formal
power series in q�1 with coefficients in C[c0Ò    Ò cr]:

(üi Ž °)(c0Ò    Ò crÒ q) =
X

ñ2D(ïi) and
ñ=Σmjïj+né

añqñ(d)cmr
0 Ð Ð Ð cmr

r

=
X

n

�X
m0

Ð Ð Ð
X
mr| {z }

finite sum

añcm0
0 Ð Ð Ð cmr

r

�
qn
(41)

PROOF. (33), (34), (40) and Lemma 7.

REMARK. It would be nice to know something about the añ. A glance at the formulas
of the preceding paragraphs gives añ = trace

�
pñ Ž x0(1)n0 Ð Ð Ð xr(1)nr Ž iñ

�
. Is there

a connection between x0(1)n0 Ð Ð Ð xr(1)nr and the Coxeter element cox = n0 Ð Ð Ð nr =
x0(0)n0 Ð Ð Ð xr(0)nr?

Regularity of ü Ž °. Before discussing the regularity of ü Ž ° we have a look at the
sum (41) and consider (üiŽ°)(c0Ò    Ò crÒ q) as polynomials in c0Ò    Ò cr with coefficients
in C[[q�1]]:

(üi Ž °)(c0Ò    Ò crÒ q) =
X
m0

Ð Ð Ð
X
mr

�X
n

añqn
�
cm0

0 Ð Ð Ð cmr
r (42)

Using the decomposition of the set of dominant weights into types I, II, III we get

(üi Ž °)(c0Ò    Ò crÒ q) = (Ð Ð Ð)ci +
X

(Ð Ð Ð)cj| {z }
summands,

containing cj’s
with a_j = a_i

+ other summands| {z }
summands of higher
order, not containing
cj’s with a_j ½ a_i .

(43)

If we define bn := aïi+né, then the coefficient of ci in (43) is

b0 + b�1q�1 + b�2q�2 + Ð Ð Ð (44)

LEMMA 8. b0 6= 0.
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PROOF. As above, let yj := xj(c)nj; we will prove

pïi Ž yj Ž iïi : Vïi ! Vïi is the identity if j 6= i(45)

pïi Ž yi Ž iïi : Vïi ! Vïi is not the zero map.(46)

Ad (45): Vïi is invariant under nj as well as xj(c), because on the one hand nj Ð Vïi =
Vwj(ïi) = Vïi , and on the other hand xj(c) ÐVïi = Vïi by (18). But Gj is generated by nj and
the xj(c), thus Vïi is invariant under Gj. Using dim Vïi = 1 and Gj = [GjÒGj] it follows
that all elements of Gj act as the identity on Vïi —in particular, yj does. }

Ad (46): Let Vïi = Cv and Vïi�ãi = Cw where w := ni Ð v (note that ïi � ãi = wi(ïi)
implies dim Vïi�ãi = dim Vïi = 1). By (18), yi Ð v = xi(c) Ð w = w + w0, where w0 2 Vïi . If
pïi Ž yi Ž iïi were the zero map, then also w0 = ( pïi Ž yi Ž iïi )(v) = 0 and

xi(c) Ð w = w; ) Ui Ð Vïi�ãi = Vïi�ãi

x�ãi(c) Ð w
z
= w; ) Vi Ð Vïi�ãi = Vïi�ãi

(z because ïi � ãi � kãi = wi(ïi + kãi) and ïi + kãi 6� ïi). Since ni is in the subgroup
generated by Ui and Vi, this would imply ni Ð Vïi�ãi = Vïi�ãi , contradicting ni Ð Vïi�ãi =
Vïi . }

b0 is the trace of the 1ð 1-matrix of the linear map

pïi Ž x Ž iïi : Vïi ! Vïi(47)

from (40). Equations (35), (45), (46) now imply that pïi Ž x Ž iïi = pïi Ž yi Ž iïi is not the
zero map, i.e., b0 6= 0.

The coefficient infront of cj on the right hand side of (43) has the form

bjÒ0 + bjÒ�1q�1 + bjÒ�2q�2 + Ð Ð Ð(48)

where bjÒk := aïj+ké and bjÒ0 is possibly = 0.

EXAMPLE. If ni(ïj) denotes the first of the numbers k for which bjÒk of (48) is 6= 0,
then in the case of the algebra of type B(1)

r and the module L(ï0), we have n0(ï1) = �1.
In the finite dimensional case, ü Ž ° = üjC induces an isomorphism of algebraic

varieties C ! C
r. In our situation, we shall obtain a slightly weaker result (Theorem 7).

As a first step, we shall see in Theorem 5 that the Jacobian determinant of ü Ž ° is a
function of the “modular” coordinate q alone, non-zero for sufficiently large q.

Taking a first look at the functional determinant of üŽ°, it seems that because of (42)
it is polynomial in c0Ò    Ò cr and a formal power series in q�1. A second look simplifies
the situation considerably: We have

det(ü Ž °)0(c0Ò    Ò crÒ q) =

þþþþþþþþþþþþþþþþþþ

] (ü0 Ž °)
] c0

Ð Ð Ð
] (ü0 Ž °)

] cr

] (ü0 Ž °)
] q

...
...

...
] (ür Ž °)

] c0
Ð Ð Ð

] (ür Ž °)
] cr

] (ür Ž °)
] q

] (üé Ž °)
] c0

Ð Ð Ð
] (üé Ž °)

] cr

] (üé Ž °)
] q

þþþþþþþþþþþþþþþþþþ
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=

þþþþþþþþþþþþþþþþ

] (ü0 Ž °)
] c0

Ð Ð Ð
] (ü0 Ž °)

] cr

] (ü0 Ž °)
] q

...
...

...
] (ür Ž °)

] c0
Ð Ð Ð

] (ür Ž °)
] cr

] (ür Ž °)
] q

0 Ð Ð Ð 0 1

þþþþþþþþþþþþþþþþ

=

þþþþþþþþþþþþþ

] (ü0 Ž °)
] c0

Ð Ð Ð
] (ü0 Ž °)

] cr
...

...
] (ür Ž °)

] c0
Ð Ð Ð

] (ür Ž °)
] cr

þþþþþþþþþþþþþ
=: ∆

so the partial derivatives by q have vanished. We can now formulate one of the main
results:

THEOREM 5. The functional determinant ∆, after suitably reordering indices, has the
form þþþþþþþþþþþþþþþþþþþþþþþ

Ł Ł Ł

0 Ł Ł

. . .

0 0 0

þþþþþþþþþþþþþþþþþþþþþþþ
where the blocks are determined by the equivalence relation i ¾ j , a_i = a_j and the
blocks on the diagonal do not contain any cj’s, whence only depends on q: ∆ 2 C[[q�1]].
∆ is invertible in C[[q�1]], since all dettu are.

PROOF. We order indices by descending dual labels and decompose the matrix into
blocks determined by the equivalence relation i ¾ j , a_i = a_j . The way üi Ž ° looks
like in (43), it is obvious that the blocks on the diagonal do not contain cj’s and that the
blocks below the diagonal are zero. Hence ∆ 2 C[[q�1]].

EXAMPLE. In the case of E(1)
6 , the block structure is given by a_3 = 3, a_2 = a_4 = a_6 =

2, a_0 = a_1 = a_5 = 1. Thus

∆ =

þþþþþþþþþþþþþþþþþþ

Ł

Ł 0 0 Ê

0 Ł 0
0 0 Ł

Ł 0 0
0 0 Ł 0

0 0 Ł

þþþþþþþþþþþþþþþþþþ
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(the zeros inside the blocks on the diagonal are obtained from additional information
from the appendix B in [B]), where Ł 2 C[[q�1]]. In Ê there may be cj’s. }

We still have to prove that the determinants of the blocks on the diagonal are invertible.
To this end, we have to prove that the constant term of the formal power series does not
vanish. Let tu = (mij) be one of these blocks. The mii look like (44) and the mij (i 6= j)
look like (48). We now use an old acquaintance, the Leibniz formula

dettu =
X
õ

sgnõm1õ(1) Ð Ð ÐmNõ(N) = m11m22 Ð Ð ÐmNN +
X
õ6= id

sgnõm1õ(1) Ð Ð ÐmNõ(N)

and will prove

m11m22 Ð Ð ÐmNN = A0 + A1q�1 + A2q�2 + Ð Ð Ð where A0 6= 0Ò(49) X
õ6= id

sgnõm1õ(1) Ð Ð ÐmNõ(N) = B1q�1 + B2q�2 + Ð Ð Ð (50)

(49) is immediate, since all mii look like (44). As for (50), we make the

CLAIM. If ïj1 Ò    Ò ïjs (s Ù 1) have the same level, then not only are all the numbers
nj1 (ïj2 )Ò nj2 (ïj3 )Ò    Ò njs (ïj1 ) � 0, but at least one of them is Ú 0.

For: Suppose nj1 (ïj2 ) = nj2 (ïj3 ) = Ð Ð Ð = njs(ïj1 ) = 0. Then

ó1 := ïj1 � ïj2 ½ 0

ó2 := ïj2 � ïj3 ½ 0
...

ós := ïjs � ïj1 ½ 0

Adding these up yields ó1 + Ð Ð Ð + ós = 0. Since ói ½ 0, we get ó1 = Ð Ð Ð = ós = 0 and in
particular ïj1 = ïj2 , which is a contradiction. }

Since õ 6= id, there is a “cycle” mi1i2mi2i3 Ð Ð Ðmisi1 (s ½ 2) in each of the summands of
the sum

P
õ6= id. But

mij =
] (üi Ž °)

] cj
=

X
ñ=ïj+né

n�ni(ïj )

añqn
Ò

and at least one of the numbers nij (ïij+1 ) is not just� 0 but evenÚ 0—which proves (50).
By (49) and (50), the determinant dettu 2 C[[q�1]] is invertible.

3.3. A C
ð-action on the cross-section. Preview. We will first determine the set H of

all h 2 h such that (cox�id)(h) 2 c. This set turns out to be H = Cb ý Cc, for some
element b 2 X. Then, we investigate the set Φcox := fã Ù 0 j cox�1 ã Ú 0g and, for all
å 2 Φcox, determine the value å(b). After these preparations, we define a Cð-action on
the Steinberg cross-section C, then get a functional identity for ü Ž °.
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The subspace H. If W is a Coxeter group with generators s1Ò    Ò sn, then cox := s1 Ð Ð Ð sn

is called the Coxeter element of W. For each permutation õ 2 Sn, the elements coxõ :=
sõ(1) Ð Ð Ð sõ(n) are also called Coxeter elements. If A is a GCM, not of type A(1)

1 , r ½ 2,
then all Coxeter elements coxõ 2 W (A) are conjugate in W [H, pp. 74, 174]. Many
statements about cox thus also hold for all coxõ.

PROPOSITION 9. Let A be an affine GCM, g = g(A) the associated Kac-Moody algebra
and coxõ = sõ(0) Ð Ð Ð sõ(r) a Coxeter element of the Weyl group W = W (A). Let

H :=
n
h 2 h j (coxõ�id)(h) 2 c

o


Then dim H = 2 and H ² h0.

PROOF. The subspace h0 ² h is invariant under W ; if s 2 W , denote by s0 the
restriction h0 ! h0. Consider the sets

H0 :=
n

h 2 h0 j (cox0õ�id)(h) 2 c
o
Ò

H :=
n
h 2 h j (coxõ�id)(h) 2 c

o


About H0: In [Co] one finds the characteristic polynomials of the Coxeter transformations
cox0õ; in the table where they are listed [Co, p. 474] you can read off that the algebraic
multiplicity of the eigenvalue 1 of cox0õ is two for all affine GCM. From [Co, Theorem 3.1]
and the identity

Tr
i=0 kerãi = c [K, Proposition 1.6] we now get

cox0õ(h) = h () h 2 c(51)

whence the geometric multiplicity of the eigenvalue 1 of cox0õ is equal to one. The Jordan
normal form contains the Jordan block

�
1
0

1
1

�
(and no other Jordan blocks with eigenvalue

1). Once again applying (51), we get

h 2 H0
() (cox0õ�id)(h) 2 c () (cox0õ�id)2(h) = 0

Together with the statement above about the Jordan normal form of coxõ, it follows that
dim H0 = 2.

About H: The relation between the matrix of s0 with respect to the basis fh0Ò    Ò hrg

and the matrix of s with respect to the basis fh0Ò    Ò hrÒ dg is:

s =

0
BBBB@

s0 Ł

0 1

1
CCCCA ;

hence the algebraic multiplicity of the eigenvalue 1 of coxõ is 3 for all affine GCM. The
argument using [Co, Theorem 3.1] and [K, Proposition 1.6] still holds in h, thus

coxõ(h) = h () h 2 c(52)
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and the geometric multiplicity of the eigenvalue 1 of coxõ is again equal to one. The
Jordan normal form of coxõ contains the Jordan block

0
BB@

1 1 0
0 1 1
0 0 1

1
CCA

(and no other Jordan blocks with eigenvalue 1). From (52) we get

h 2 H () (coxõ�id)2(h) = 0(53)

whence dim H = 2. Since H0 ² H, obviously, and H0 and H have the same dimension, it
follows that H = H0. In particular, H ² h0.

With respect to the basis fh0Ò    Ò hrÒ dgwe have coxõ 2 Mn(Z). By (53), this implies
that H is spanned by two vectors 2 X. One of them we already know: c 2 H. A
second vector which is linearly independent of c, is obtained by solving the equation
(coxõ�id)x = c.

PROPOSITION 10. Let A be an affine GCM, g = g(A) the Kac-Moody algebra associ-
ated with A and cox = s0 Ð Ð Ð sr the Coxeter element of the Weyl group W = W (A). Then
H = Cbý Cc, where c is the central element and b is determined by

(cox�id)b = kc (k 2 N minimal)Ò b 2 hriN0 Ò b� c Û2 hriN0 

The number k as well as the components of c and b with respect to the basis r =
fh0Ò    Ò hrg turn out to be as listed in the table below3:

type k c b

A(1)
r r + 1 (1,1,   ,1,1) (rÒ r � 1Ò    Ò 1Ò 0)

B(1)
r , r even 2 (1,1,2,   ,2,2,1) (r � 1Ò r � 1Ò 2r � 4Ò 2r � 6Ò    Ò 2Ò 0)

B(1)
r , r odd 1 (1,1,2,   ,2,2,1) ( r�1

2 Ò r�1
2 Ò r � 2Ò r � 3Ò    Ò 1Ò 0)

C(1)
r 2 (1,1,   ,1,1) (rÒ r � 1Ò    Ò 1Ò 0)

D(1)
r , r even 1 (1,1,2,   ,2,1,1) ( r

2 � 1Ò r
2 � 1Ò r � 3Ò r � 4Ò    Ò 1Ò 0Ò 0)

D(1)
r , r odd 2 (1,1,2,   ,2,1,1) (r � 2Ò r � 2Ò 2r � 6Ò 2r � 8Ò    Ò 2Ò 0Ò 0)

E(1)
6 1 (1,1,2,3,2,1,2) (1Ò 2Ò 3Ò 3Ò 1Ò 0Ò 1)

E(1)
7 1 (1,2,3,4,3,2,1,2) (3Ò 5Ò 6Ò 6Ò 3Ò 1Ò 0Ò 2)

E(1)
8 1 (1,2,3,4,5,6,4,2,3) (4Ò 7Ò 9Ò 10Ò 10Ò 9Ò 4Ò 1Ò 3)

F(1)
4 1 (1,2,3,2,1) (2Ò 3Ò 3Ò 1Ò 0)

G(1)
2 1 (1,2,1) (1Ò 1Ò 0)

3 The components of c, which are of course the dual labels, have been listed for completeness’ sake.
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A(2)
2 1 (1,2) (1,1)

A(2)
2r , r even 1 (1,2,   ,2,2) ( r

2 Ò r � 1Ò r � 2Ò    Ò 1Ò 0)

A(2)
2r , r odd 1 (1,2,   ,2,2) ( r+1

2 Ò rÒ r � 1Ò    Ò 2Ò 1)

A(2)
2r�1, r even 1 (1,1,2,   ,2,2) ( r

2 Ò
r
2 Ò r � 1Ò r � 2Ò    Ò 2Ò 1)

A(2)
2r�1, r odd 1 (1,1,2,   ,2,2) ( r�1

2 Ò r�1
2 Ò r � 2Ò r � 3Ò    Ò 1Ò 0)

D(1)
r , r even 1 (1,2,   ,2,1) ( r

2 Ò r � 1Ò r � 2Ò    Ò 1Ò 0)
D(1)

r , r odd 2 (1,2,   ,2,1) (rÒ 2r � 2Ò 2r � 4Ò    Ò 2Ò 0)

E(2)
6 1 (1,2,3,4,2) (2,3,3,2,0)

D(3)
4 1 (1,2,3) (1,1,0)

PROOF. Explicit calculation of all cases. Write the si as matrices with respect to the
basis fh0Ò    Ò hrÒ dg of h, determine the matrix of cox, and solve the linear system of
equations (cox�id)x = c.

REMARK. There is a more conceptual approach to Proposition 10, at least in the
case of bipartite graphs X(k)

r , due to Steinberg [St3] and further elaborated in [BLM]. In
particular, H can be written in the form

H = Cc ý Cc̃Ò

where c̃ is obtained from c by changing every “second” sign (cf. [BLM, Proposition 8]).
Moreover, the image of H in the “finite” Cartan subalgebra h0ÛCc is conjugate under the
finite Weyl group into the spaceCwå_ , spanned by the simple coweight wå_ corresponding
to the fork node å of the diagram X(k)

r ([BLM, Prop. 12,13], [St3, Part 2]).

EXAMPLE. In the case A(1)
1 , with Cartan matrix A =

�
2
�2

�2
2

�
, the matrix of cox = s0s1

turns out to be

cox =

0
BB@
�1 2 �1
0 1 0
0 0 1

1
CCA
0
BB@

1 0 0
2 �1 0
0 0 1

1
CCA =

0
BB@

3 �2 �1
2 �1 0
0 0 1

1
CCA

and for b := h0 we have (cox�id)b = 2c. }

The set Φcox. To determine Φcox := fã Ù 0 j cox�1 ã Ú 0g we use a corrected version
of [K, Exercise 3.12]:

LEMMA 11. Let w = wi1 Ð Ð Ðwit be an expression of minimal length and Φw :=
fã Ù 0 j w�1ã Ú 0g. Then:

(a) Φw = fãi1 Òwi1ãi2 Ò    Òwi1 Ð Ð Ðwit�1ãitg;
(b) For each å 2 Φw, the sequence åÒwi1åÒ    Òwit Ð Ð Ðwi1å contains exactly one

change of sign + ! �; At the place where this occurs, there is a simple root;
(c) If ãj(å) denotes the simple root associated with å 2 Φw in (b), then for all ï 2 hŁ

we have the identity
ï � wï =

X
å2Φw

ï(hj(å))å(54)
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PROOF OF (a) (cf. [H, EXERCISE 5.6.1]). Let å 2 Φw. The sequence

åÒwi1åÒ    Òwit Ð Ð Ðwi1å(55)

contains at least one change of sign + ! �, say

wiN�1 Ð Ð Ðwi1å Ù 0 and wiN wiN�1 Ð Ð Ðwi1å Ú 0

Since wiN permutes the set R+ n fãiNg, it follows that wiN�1 Ð Ð Ðwi1å = ãiN resp. å =
wi1 Ð Ð ÐwiN�1ãiN =: çN; thus Φw ² fç1Ò    Ò çtg. Since the expression for w was supposed
to be of minimal length we get, by [H, Proposition 5.6], equality of these sets.

PROOF OF (b). Suppose there were two changes of sign occuring in sequence (55),
say

å Ð Ð Ð wiN�1 Ð Ð Ðwi1å| {z }
=ãiN

Ù0

wiN Ð Ð Ðwi1å| {z }
=wiN

ãiN
Ú0

Ð Ð Ð wiM�1 Ð Ð Ðwi1å| {z }
=ãiM

Ù0

wiM Ð Ð Ðwi1å| {z }
=wiM

ãiM
Ú0

Ð Ð Ðw�1
å

(cf. the proof of (a)). Then ãiM = wiM�1 Ð Ð ÐwiNãiN Ú 0, which is 2 R� by [K,
Lemma 3.11 b], contradiction.

PROOF OF (c) (INDUCTION BY t). The case t = 1 is trivial. Let v := wi1 Ð Ð Ðwit�1 , then
Φv = fãi1 Òwi1ãi2 Ò    Òwi1 Ð Ð Ðwit�2ãit�1g by (a) and furthermore

ï � wï = ï � vï + vï � wï

=
X
å2Φv

ï(hj(å))å + wi1 Ð Ð Ðwit�1 (ï � witï)

=
X
å2Φv

ï(hj(å))å + ï(hit )wi1 Ð Ð Ðwit�1ãit

=
X
å2Φw

ï(hj(å))åÒ

the latter because Φw = Φv [ fwi1 Ð Ð Ðwit�1ãitg and since the sequence (55) for å =
wi1 Ð Ð Ðwit�1ãit has a since change + ! � at it:

wit�1 Ð Ð Ðwi1 (wi1 Ð Ð Ðwit�1ãit ) = ãit Ù 0

and wit wit�1 Ð Ð Ðwi1 (wi1 Ð Ð Ðwit�1ãit ) = witãit Ú 0

We would like to apply Lemma 11 to the Coxeter element cox, so we need:

LEMMA 12. cox = w0w1 Ð Ð Ðwr is an expression of minimal length.
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PROOF. Our strategy is: If cox = w0w1 Ð Ð Ðwr were of minimal length, then Φcox =
fã0Òw0ã1Ò    Òw0 Ð Ð Ðwr�1ãrg by Lemma 11. We will now, reversely, prove that the
elements of the latter set are different from each other and are 2 Φcox; by [H, Proposi-
tion 5.6.b] we get what we want.

Since wi permutes the set R+ n fãig, we get for k = 0Ò    Ò r

ãk 2 R+

wk�1ãk 2 R+ and moreover 2 hãk�1Ò ãkiN0

wk�2wk�1ãk 2 R+ and moreover 2 hãk�2Ò ãk�1Ò ãkiN0

  

w0 Ð Ð Ðwk�1ãk 2 R+;

furthermore, for the same reason,

ãk 2 R+

wkãk = �ãk 2 R�

wk+1wkãk 2 R� even 2 �hãkÒ ãk+1iN0

  

wr Ð Ð Ðwkãk 2 R�

i.e., cox�1(w0 Ð Ð Ðwk�1ãk) = wr Ð Ð Ðwkãk 2 R�. Thus, w0 Ð Ð Ðwk�1ãk 2 Φcox for k =
0Ò    Ò r. These elements are different from each other, since

ã0 = ã0Ò

w0ã1 = ã1 + linear combination of ã0Ò

w0w1ã2 = ã2 + linear combination of ã0Ò ã1Ò

etc.

COROLLARY 13 (AND DEFINITION).

Φcox = fã0Òw0ã1Ò    Òw0 Ð Ð Ðwr�1ãrg =: få0Ò å1Ò    Ò årg

In Section 3.4 we will get a functional identity for ü Ž °, but to this end we need the
values åi(b). These can be determined:

LEMMA 14. If b 2 h is the element of h satisfying (cox�id)b = kc, cf. Proposition 10,
then �

å0(b)Ò    Ò år(b)
�

= k(a_0 Ò    Ò a
_
r )
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PROOF. We will first prove that
�
å0(b)Ò    Ò år(b)

�
is proportional to (a_0 Ò    Ò a

_
r ).

For each ãj 2 hŁ, (54) implies

ãj � coxãj =
X

i
ãj(hi)åi =

X
i

aijåi

Evaluated at b this gives

ãj(b) � (coxãj)(b) =
X

i
aijåi(b)(56)

But we also have
cox b� b = kc ) cox�1 b = b� kc

and, if h Ò i denotes the dual pairing hð hŁ ! C,

(coxãj)(b) = hbÒw0 Ð Ð Ðwrãji = hsr Ð Ð Ð s0bÒ ãji = hb� kcÒ ãji = hbÒ ãji = ãj(b);

whence the lefthand side of (56) is zero. Since the dual Kac labels describe the linear
dependence of the rows of the Cartan matrix, we end up with the proportionality we
claimed, say �

å0(b)Ò    Ò år(b)
�

= î(a_0 Ò    Ò a
_
r )Ò

for some î 2 C. The constant î can be determined from å0(b) = ã0(b) = îa_0 = î by
using the data from the table in Proposition 10; it turns out that in all cases î = k.

EXAMPLE. For B(1)
3 , and with respect to the basis fh0Ò    Ò h3g, we get

cox =

0
BBBB@

0 1 1 �2
1 0 1 �2
1 1 1 �2
0 0 1 �1

1
CCCCA Ò b =

0
BBBB@

1
1
1
0

1
CCCCA Ò î = �

ã3(b)
a_3

= �
�1
1

= 1

A Cð-action on C. For the time being, we will use the notation of chapter 1. The center
c is parametrized by ç:C ! h, ê 7! kc 
 ê, (k is the number from Proposition 10), and
the center of G is parametrized by ¯̄ç:Cð ! T, z 7! kc 
 z (cf. [K2, p. 190]). For each
z 2 Cð we want to find an element ¯̄ñ(z) 2 T such that

¯̄ñ(z)�1C ¯̄ñ(z) = C ¯̄ç(z) bzw. ¯̄ñ(z)C ¯̄ç(z) ¯̄ñ(z)�1 = C;

in this sense, the translation by the central element ¯̄ç(z) can be reversed by conjugation
with ¯̄ñ(z) and we get an action of Cð on C:

C
ð
ð C ! CÒ z(xÒ q) := ¯̄ñ(z)(xÒ q) ¯̄ç(z) ¯̄ñ(z)�1



The one-parameter subgroup ¯̄ñ:Cð ! T, z 7! b 
 z, where b 2 hriN0 as in Proposi-
tion 10, satisfies our needs: First, we have

(cox�id)b = kc () cox(b 
 ê) � b
 ê = kc 
 ê 8 ê 2 C
1

=) exp(�b 
 ê) exp
�
cox(b
 ê)

�
= exp(kc 
 ê) 8 ê 2 C

2
() exp(�b 
 ê) ˆcox exp(b 
 ê) ˆcox�1 = exp(kc 
 ê) 8 ê 2 C

3
() ¯̄ñ(z)�1 ˆcox ¯̄ñ(z) ˆcox�1 = ¯̄ç(z) 8 z 2 Cð

4
() ¯̄ñ(z)�1 ˆcox ¯̄ñ(z) = ˆcox ¯̄ç(z) 8 z 2 Cð
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(1: exp: h ! T is a group homomorphism; 2: si: h ! h lifts to an action on T, ˆcox =
n0n1 Ð Ð Ð nr; 3: definition of ¯̄ñ, ¯̄ç and substituting eê $ z; 4: ç(z) 2 center(G)). We now
write ç, ñ instead of ¯̄ç, ¯̄ñ.

Let
å0 := ã0Ò å1 := s0(ã1)Ò    Ò år := s0 Ð Ð Ð sr�1(ãr)Ò(57)

using nixã(c)n�1
i = xsi(ã)(c) we get

x0(c0)n0x1(c1)n1x2(c2)n2 Ð Ð Ð xr(cr)nr

= x0(c0)
h
n0x1(c1)n�1

0

i
n0n1x2(c2)n2 Ð Ð Ð xr(c)nr

= x0(c0)xs0(ã1)(c1)
h
n0n1x2(c2)n�1

1 n�1
0

i
n0n1n2 Ð Ð Ð xr(cr)nr

= Ð Ð Ð = x0(c0)xs0(ã1)(c1)xs0s1(ã2)(c2) Ð Ð Ð xs0ÐÐÐsr�1(ãr)(cr)n0 Ð Ð Ð nr

= xå0 (c0)xå1 (c1) Ð Ð Ð xår(cr) ˆcox

It follows that

°(c0Ò    Ò crÒ q) =
h rY

i=0
xi(ci)niÒ q

i
=
h� rY

i=0
xåi (ci)

�
ˆcoxÒ q

i


Right translation of elements of the cross-section by ç(z) and subsequent conjugation by
ñ(z) gives

ñ(z)
h� rY

i=0
xåi (ci)

�
ˆcoxÒ q

i
ç(z)ñ(z)�1 =

h
ñ(z)

� rY
i=0

xåi (ci)
�

ˆcoxç(z)ñ(z)�1
Ò q
i

=
h rY

i=0

�
ñ(z)xåi (ci)ñ(z)�1

�
ñ(z) ˆcoxç(z)ñ(z)�1

Ò q
i

=
" rY

i=0
xåi

�
åi

�
ñ(z)

�
ci

�!
ˆcoxÒ q

#
(58)

=
h� rY

i=0
xåi (z

åi(b)ci)
�

ˆcoxÒ q
i

=
h� rY

i=0
xåi (z

ka_i ci)
�

ˆcoxÒ q
i
2 C

In the last equality, we used Lemma 14. Now we just proved :

PROPOSITION 15. Let b 2 h be the element satisfying (cox�id)b = kc, see Propo-
sition 10. Then right translation by ç(z) := kc 
 z and subsequent conjugation by
ñ(z) := b
 z defines a Cð-action on C, and this Cð-action is given by

z Ð °(c0Ò    Ò crÒ q) = °(zka_0 c0Ò    Ò zka_r crÒ q)(59)

A functional identity for ü Ž °.

THEOREM 6. The components of the trace function satisfy the following functional
identity (with k as in Proposition 10):

(üi Ž °)(zka_0 c0Ò    Ò z
ka_r crÒ q) = zka_i (üi Ž °)(c0Ò    Ò crÒ q)(60)
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PROOF. Since the üi are invariant under conjugation by elements of T (cf. chapter 2),
and central elements ç(z) = kc 
 z act as a ïi(kc 
 z)-multiple of the identity on L(ïi),
we arrive at

(üi Ž °)(zka_0 c0Ò    Ò z
ka_r crÒ q) = ü

�
z Ð °(c0Ò    Ò crÒ q)

�
= üi

�
ñ(z)°(c0Ò    Ò crÒ q)ç(z)ñ(z)�1

�
= üi

�
°(c0Ò    Ò crÒ q)ç(z)

�
= zïi(kc)

üi

�
°(c0Ò    Ò crÒ q)

�
= zka_i (üi Ž °)(c0Ò    Ò crÒ q)

For each q 2 C
ð, let pq: G ! G0, (xÒ q) 7! x and Cq := pq(C); furthermore, let

üq := üjCqðfqg: Cq ð fqg ! C
r+1

ð fqg

denote the restriction of ü. The following is the analogue of Steinberg’s result on the
regularity of ü Ž °.

THEOREM 7. For sufficiently large q, the restriction üq induces a C
ð-equivariant

isomorphism of algebraic varieties

Cq ! C
r+1


PROOF. By Theorem 6,üq is a Cð-equivariant morphism between (r+1)-dimensional
affine spaces with respect to the same set of weights. Since, for sufficiently large q, its
Jacobian is non-zero (Theorem 5), we get that it is an isomorphism (cf. [S1, Section 8.1]).

REMARK. One may as well employ the statement of Theorem 7 to deduce the equality
of the Cð-weights on Cq and Cr+1 to deduce the fact that k = î in Lemma 14.
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