THE GROUP OF EXTENSIONS AND SPLITTING LENGTH

E. H. TOUBASSI

This paper is concerned with the internal structure of Ext(Q, T) where Q is the group of rationals and T a reduced *p*-primary group of unbounded order. In [1] Irwin, Khabbaz, and Rayna define the splitting length of an arbitrary abelian group A, written l(A), to be the least positive integer n, otherwise infinity, such that $A \otimes \ldots \otimes A$ (n factors) splits. The concept of splitting length has been induced on Ext(Q, T), see [2; 5]. For $E \in \text{Ext}(Q, T)$ where $E: 0 \to T \to X \to Q \to 0$, define l(E) = l(X). In [2] it was shown that

Ext
$$(Q, T) = F \oplus I = \sum_{n=2}^{n=\infty} C_n, \quad F = \sum_{n=2}^{\infty} C_n$$

where the nonzero elements of F are of finite splitting length, the nonzero elements of I of infinite splitting length, and the nonzero elements of C_n are of splitting length n. Moreover, the C_n , $2 \leq n \leq \infty$, were shown to be nonzero for a particular p-primary group T. This was improved in [5] where the C_n , $2 \leq n \leq \infty$, were shown to be nonzero for an arbitrary p-primary group T and that there are at least c non-isomorphic extensions of T by Q for an arbitrary splitting length n, $2 \leq n \leq \infty$, where c is the cardinality of the continuum. In this paper we show that in fact for every splitting length n, $2 \leq n \leq \infty$, there are at least & c nonequivalent extensions of T by Q where & is the final rank of a basic subgroup of T.

Throughout the paper we shall use the notation of [5]. In addition, the values of the *p*-height function h will be taken to be either non-negative integers or the symbol ∞ .

We begin by recalling a special case of a definition and a theorem from [6].

Definition. For a mixed group G of torsion-free rank one with a p-primary torsion subgroup, the *height-slope* of G is defined by

h.s.
$$G = \sup_{\substack{a \in G \\ g(a) = \infty}} \inf h(p^i a)/i.$$

The following theorem relates height-slope to splitting length.

THEOREM 1. Let G be a nonsplitting mixed group of torsion-free rank one with

Received February 12, 1973 and in revised form, June 13, 1973. This research was partially supported by NSF Grant GU-1534.

height-slope α , its torsion subgroup, T(G), p-primary and G/T(G) is p-divisible. Then l(G) = n if and only if one of the following holds:

(i) α belongs to the open interval (n/(n-1), (n-1)/(n-2)), or

(ii) $\alpha = n/(n-1)$ and for some element $a \in G$ of infinite order $h(p^i a) > \alpha(i + f(i))$ for all $i \in Z^+$, where f is a function from $Z^+ \to Z^+$ which is nondecreasing to infinity.

We now prove two preliminary lemmas.

LEMMA 1. Let

 $0 \rightarrow A \xrightarrow{\alpha} B$

be p-pure exact,

$$E: 0 \to A \xrightarrow{\beta} X \to G \to 0$$

an exact sequence, and define $N = \{(-\alpha(a), \beta(a)) \in B \oplus X | a \in A\}$. Then $\eta: X \to B \oplus X/N$ given by $\eta(x) = (o, x) + N$ is a p-height preserving homomorphism.

Proof. Suppose $\eta(x) = (o, x) + N = p^n(b, x_1) + N$. Hence $(-p^n b, x - p^n x_1) \in N$. Let $a \in A$ be such that $\alpha(a) = p^n b, \beta(a) = x - p^n x_1$. Since

 $0 \rightarrow A \xrightarrow{\alpha} B$

is *p*-pure exact we may write $a = p^n a_1$ for some $a_1 \in A$. Now $x - p^n x_1 = \beta(a) = \beta(p^n a_1) = p^n \beta(a_1)$, so that $x = p^n (x_1 + \beta(a_1))$ as desired.

Remark 1. If in Lemma 1, A and B are p-primary groups and X is an extension of A by Q then we can conclude that h.s. X is equal to h.s. $B \oplus X/N$, if h.s. X is finite. We shall use this fact later on in the paper.

Remark 2. The homomorphism η in Lemma 1 does not distinguish between elements of infinite height. For example the image of an element of height ω does at times become of infinite height in the generalized sense.

LEMMA 2. Let $B = \sum_{\gamma} B_{\gamma}$ where the summands are \aleph in number and each B_{γ} is the direct sum of cyclic p-groups of unbounded order. Then

Ext
$$(Q, B) = F \oplus I = \sum_{n=2}^{n=\infty} C_n$$

contains at least $\aleph c$ nonequivalent extensions for every splitting length n, $2 \leq n \leq \infty$.

Proof. If $\aleph c = c$ then the result follows from Theorem 2 of [5] and the remark following the theorem. So suppose $\aleph > c$. Again by Theorem 2, for each γ ,

Ext
$$(Q, B_{\gamma}) = \sum_{n=2}^{n=\omega} C_n$$

where all the C_n are nonzero. Let $E_1 \in \text{Ext}(Q, B_{\alpha}), E_2 \in \text{Ext}(Q, B_{\delta})$ where

$$E_1: 0 \to B_{\alpha} \xrightarrow{\rho_1} X_{\alpha} \to Q \to 0, \quad E_2: 0 \to B_{\delta} \xrightarrow{\rho_2} X_{\delta} \to Q \to 0$$

and $l(E_1) = n = l(E_2)$. Then

$$E_{1}': 0 \to \sum_{\gamma \neq \alpha} B_{\gamma} \oplus B_{\alpha} \xrightarrow{(1, \rho_{1})} \sum_{\gamma \neq \alpha} B_{\gamma} \oplus X_{\alpha} \to Q \to 0$$
$$E_{2}': 0 \to \sum_{\gamma \neq \delta} B_{\gamma} \oplus B_{\delta} \xrightarrow{(1, \rho_{2})} \sum_{\gamma \neq \delta} B_{\gamma} \oplus X_{\delta} \to Q \to 0$$

are elements of Ext(Q, B) of splitting length *n*. Moreover, E_1' , E_2' are non-equivalent extensions. Suppose the contrary. Then there exists an isomorphism

$$\theta: \sum_{\gamma \neq \alpha} B_{\gamma} \oplus X_{\alpha} \to \sum_{\gamma \neq \delta} B_{\gamma} \oplus X_{\delta}$$

such that $\theta(1, \rho_1) = (1, \rho_2)$. Now θ induces an isomorphism

$$\hat{\theta} : X_{\alpha} \to \sum_{\gamma \neq \delta} B_{\gamma} \oplus X_{\delta} \middle/ \theta \biggl(\sum_{\gamma \neq \alpha} B_{\gamma} \biggr) = B_{\alpha} \oplus \frac{X_{\delta}}{B_{\delta}}.$$

This implies that X_{α} splits, a contradiction. Thus, E_1' and E_2' are nonequivalent. Since the summands B_{γ} are **X** in number our conclusion follows.

Remark 3. If in Lemma 2 the B_{γ} are all equal then we can conclude that the same group is appearing in at least $\aleph c$ nonequivalent extensions of B by Q. This indicates that the cardinality of Ext(Q, B) arises largely from this fact.

THEOREM 2. Let T be a reduced p-primary group of unbounded order with B a basic subgroup of T with final rank \aleph . Then $\text{Ext}(Q, T) = F \oplus I = \sum_{n=2}^{n=\infty} C_n$ contains at least \aleph c nonequivalent extensions of splitting length n, $2 \leq n \leq \infty$.

Proof. By [5], Ext(Q, T) contains at least c nonequivalent extensions for every splitting length $n, 2 \leq n \leq \infty$, and so we may assume $\aleph > c$. Since the final rank of B is \aleph we may write $B = \sum_{\gamma} B_{\gamma}$ where the B_{γ} are \aleph in number and each B_{γ} is the direct sum of cyclic p-groups of unbounded order. The exact sequence

$$0 \to B \xrightarrow{\imath} T \to T/B \to 0$$

gives us the exact sequence

$$0 = \text{Hom } (Q, T) \to \text{Hom } (Q, T/B) \to \text{Ext } (Q, B) \xrightarrow{\iota_*} \text{Ext } (Q, T) \to \text{Ext } (Q, T/B) = 0.$$

By Lemma 2, Ext(Q, B) contains at least $\aleph c$ nonequivalent extensions for every splitting length $n, 2 \leq n \leq \infty$. By Lemma 1 the extensions having a middle group with a finite height slope are mapped under i_* into ones with the

E. H. TOUBASSI

same height slope. Thus, by Theorem 1, i_* preserves the splitting length of those extensions having middle groups with finite height slope. It remains to show that they are nonequivalent in Ext(Q, T). Let

$$\begin{split} E_{1}, E_{2} &\in \operatorname{Ext} (Q, B) \\ E_{1}: 0 \to \sum_{\gamma \neq \alpha} B_{\gamma} \oplus B_{\alpha} \xrightarrow{\rho_{1}} \sum_{\gamma \neq \alpha} B_{\gamma} \oplus X_{\alpha} \to Q \to 0 \\ E_{2}: 0 \to \sum_{\gamma \neq \delta} B_{\gamma} \oplus B_{\delta} \xrightarrow{\rho_{2}} \sum_{\gamma \neq \delta} B_{\gamma} \oplus X_{\delta} \to Q \to 0 \end{split}$$

and h.s. $X_{\alpha} < \infty$, h.s. $X_{\delta} < \infty$. The images of E_1 and E_2 under i_* are

$$i_*(E_1): 0 \to T \xrightarrow{\tilde{\rho}_1} \frac{T \oplus \sum_{\gamma \neq \alpha} B_\gamma \oplus X_\alpha}{N_1} \to Q \to 0$$
$$i_*(E_2): 0 \to T \xrightarrow{\tilde{\rho}_2} \frac{T \oplus \sum_{\gamma \neq \delta} B_\gamma \oplus X_\delta}{N_2} \to Q \to 0$$

where $N_i = \{(-b, \rho_i(b)) | b \in B\}$ i = 1, 2. If $i_*(E_1) = i_*(E_2)$ then there exists an isomorphism

$$\theta: \frac{T \oplus \sum_{\gamma \neq \alpha} B_{\gamma} \oplus X_{\alpha}}{N_1} \to \frac{T \oplus \sum_{\gamma \neq \delta} B_{\gamma} \oplus X_{\delta}}{N_2}$$

such that $\theta \tilde{\rho}_1 = \tilde{\rho}_2$. This induces an isomorphism

$$\hat{\theta} : \frac{T \oplus \sum_{\gamma \neq \alpha} B_{\gamma} \oplus X_{\alpha}}{N_{1}} \Big/ \left| \tilde{\rho}_{1}(B_{\alpha}) \to \frac{T \oplus \sum_{\gamma \neq \delta} B_{\gamma} \oplus X_{\delta}}{N_{2}} \Big/ \left| \theta \tilde{\rho}_{1}(B_{\alpha}) = \frac{T \oplus \sum_{\gamma \neq \delta} B_{\gamma} \oplus X_{\delta}}{N_{2}} \Big/ \left| \tilde{\rho}_{2}(B_{\alpha}) \right|.$$

However, this is not possible since the first group splits while the second does not. This completes the proof.

Remark 4. By Lemma 1 (or a direct computation) the kernel of i_* contains nontrivial extensions with middle groups having infinite height slope.

Before we pose a concluding question we show that $|\text{Ext}(Q, T)| = \mathbf{X}^{\mathbf{x}_0}$ where **X** is the final rank of a basic subgroup of T (see also [3]). Let B be basic in T and **X** the final rank of B. Write $B = \sum_n B_n$ where $B_n = \sum Z(p^n)$. Choose $m \in Z$ such that $r(p^m B) = \mathbf{X}$ and $B = B' \oplus B''$ where $B' = \sum_{i=1}^m B_i$ and $B'' = \sum_{i=m+1}^{\infty} B_i$. Thus $\mathbf{X} = r(p^m B) = |B''|$. Then $\text{Ext}(Q, B) \simeq \text{Ext}(Q, B'')$ since B' is bounded. Thus |Ext(Q, B)| = |Ext(Q, B'')|. The exact sequence $0 \to B \to T \to T/B \to 0$ yields the exact sequence $\text{Ext}(Q, B) \to \text{Ext}(Q, T) \to 0$. So $|\text{Ext}(Q, B)| \ge |\text{Ext}(Q, T)|$. Consider the exact sequence $0 \to B'' \to D \to D/B''$ $\to 0$ where D is the divisible hull of B''. This last sequence induces the sequence $\operatorname{Hom}(Q, D/B'') \to \operatorname{Ext}(Q, B'') \to 0$ but

 $|\text{Hom}(Q, D/B'')| \leq |D/B''|^{\aleph_0} = |D|^{\aleph_0} = |B''|^{\aleph_0}.$

Hence $|\operatorname{Ext}(Q, B'')| \leq |\operatorname{Hom}(Q, D/B'')| \leq |B''|^{\aleph_0}$, i.e., $|\operatorname{Ext}(Q, T)| \leq |B''|^{\aleph_0}$. Now from the exact sequence $0 \to B'' \to \overline{B}'' \to \overline{B}'' \to 0$ we get $0 \to \operatorname{Hom}(Q, \overline{B}''/B'') \to \operatorname{Ext}(Q, B'')$. Therefore

$$|\operatorname{Ext}(Q, B'')| \ge |\operatorname{Hom}(Q, \overline{B}''/B'')| \ge |\overline{B}''/B''| = |\overline{B}''| = |B''|^{\aleph_0},$$

the last equalities holding because $|B''| = \aleph$. Moreover, by Szele there is an exact sequence $T \to B \to 0$ which implies $\operatorname{Ext}(Q, T) \to \operatorname{Ext}(Q, B) \to 0$; thus $|\operatorname{Ext}(Q, T)| \ge |\operatorname{Ext}(Q, B)| = |\operatorname{Ext}(Q, B'')| \ge |B''|^{\aleph_0}$. Therefore $|\operatorname{Ext}(Q, T)| = |B''|^{\aleph_0} = \aleph^{\aleph_0}$.

Let $B = \sum_{i=1}^{\infty} Z(p^i)$. We know that Ext(Q, T) is isomorphic to

Ext
$$\left(Q, \sum_{\mathbf{X},\mathbf{X}_0} B\right)$$
,

both being rational vector spaces of dimension X^{*}⁰. By Lemma 2,

$$\operatorname{Ext}\left(Q, \sum_{\mathbf{N}^{\mathbf{N}_0}} B\right) = \sum_{n=2}^{n=\infty} C_n$$

contains $\mathbf{X}^{\mathbf{x}_0}$ nonequivalent extensions for each splitting length $n, 2 \leq n \leq \infty$. Since $|\operatorname{Ext}(Q, T)| = \mathbf{X}^{\mathbf{x}_0}$ hence for some $n, 2 \leq n \leq \infty$, $\operatorname{Ext}(Q, T) = \sum_{n=0}^{n=\infty} C_n$ contains $\mathbf{X}^{\mathbf{x}_0}$ nonequivalent extensions. The question we pose then is: does $\operatorname{Ext}(Q, T)$ contain $\mathbf{X}^{\mathbf{x}_0}$ nonequivalent extensions for all $n, 2 \leq n \leq \infty$.

References

- 1. J. M. Irwin, S. A. Khabbaz, and G. Rayna, The role of the tensor product in the splitting of abelian groups, J. Algebra 14 (1970), 423-442.
- 2. On a submodule of Ext, J. Algebra 19 (1971), 486-495.
- 3. R. Nunke, On the extensions of a torsion module, Pacific J. Math. 10 (1960), 597-606.
- T. Szele, On the basic subgroups of abelian p-groups, Acta. Math. Acad. Sci. Hung. δ (1954), 129-141.
- 5. E. H. Toubassi, On the group of extensions, Acta. Math. Acad. Sci. Hung. 24 (1973), 87-92.
- D. A. Lawver and E. H. Toubassi, Height-slope and splitting length of abelian groups, Publ. Math. Debrecen 20 (1973), 63-71.

University of Arizona, Tucson, Arizona