
3

The Symmetric Double Well

In this chapter we will consider in detail a simple quantum mechanical system
where “instantons”, critical points of the classical Euclidean action, can be used
to uncover non-perturbative information about the energy levels and matrix
elements. We will also explicitly see the use of the particular matrix element
(2.27) that we consider. The model we will consider has the classical Euclidean
action

SE [z(τ)] =

∫ β
2

−β
2

dτ

(
1

2
(ż(τ))2+V (z(τ))

)
. (3.1)

We choose for convenience the domain [−β
2 ,

β
2 ] and we will choose the potential

explicitly later. We will always have in mind that β→∞, thus if β is considered
finite, it is to be treated as arbitrarily large. The potential, for now, is simply
required to be a symmetric double well potential, adjusted so that the energy is
equal to zero at the bottom of each well, located at ±a, as depicted in Figure 3.1.

3.1 Classical Critical Points

The critical points of the action, Equation (3.1), are achieved at solutions of the
equations of motion

δSE [z(τ)]

δz(τ ′)

∣∣∣∣
z(τ ′)=z̄(τ ′)

=−¨̄z(τ ′)+V ′(z̄(τ ′)) = 0. (3.2)

We assume z̄(τ) satisfies Equation (3.2). Then writing z(τ) = z̄(τ) + δz(τ) and
expanding in a Taylor series, we find

SE [z(τ)] = SE [z̄(τ)]+
1

2

∫
dτ ′dτ ′′

δ2SE [z(τ)]

δz(τ ′)δz(τ ′′)

∣∣∣∣
z(τ)=z̄(τ)

δz(τ ′)δz(τ ′′)+ · · · ,

(3.3)
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14 The Symmetric Double Well

V(z)

–a a

Figure 3.1. A symmetric double well potential with minima at ±a

where we note that the first-order variation is absent as the equations of motion,
Equation (3.2), are satisfied. The second-order variation is given by

δ2SE [z(τ)]

δz(τ ′)δz(τ ′′)

∣∣∣∣
z(τ)=z̄(τ)

=

(
− d2

dτ ′2
+V ′′(z̄(τ ′)

)
δ(τ ′− τ ′′). (3.4)

Then we have

SE [z(τ)] = SE [z̄(τ)]+
1

2

∫ β
2

−β
2

dτδz(τ)

(
− d2

dτ2
+V ′′(z̄(τ))

)
δz(τ)+ · · · . (3.5)

We can expand δz(τ) in terms of the complete orthonormal set of eigenfunctions
zn(τ) of the hermitean operator entering in the second-order term(

− d2

dτ2
+V ′′(z̄(τ))

)
zn(τ) = λnzn(τ), n= 0,1,2,3, · · · ,∞ (3.6)

supplied with the boundary conditions

zn(−
β

2
) = zn(

β

2
) = 0. (3.7)

Completeness implies
∞∑
n=0

zn(τ)zn(τ
′) = δ(τ − τ ′) (3.8)

while orthonormality gives ∫ β
2

−β
2

dτzn(τ)zm(τ) = δnm. (3.9)

Thus expanding

δz(τ) =

∞∑
n=0

cnzn(τ) (3.10)

we find

SE [z(τ)] = SE [z̄(τ)]+
1

2

∞∑
n=0

λnc
2
n+o(c3n) (3.11)
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3.2 Analysis of the Euclidean Path Integral 15

using the orthonormality Equation (3.9) of the zn(τ)’s.

3.2 Analysis of the Euclidean Path Integral

The original matrix element that we wish to study, Equation (2.32), is given by

〈y|e−
β
�
ĥ(X̂,P̂ )|x〉= 〈z̄(β/2)|e−

β
�
ĥ(X̂,P̂ )|z̄(−β/2)〉, (3.12)

as we have not yet picked the boundary conditions on z̄(±β/2). Then we get

〈z̄(β/2)|e−
β
�
ĥ(X̂,P̂ )|z̄(−β/2)〉=N

∫
Dz(τ)e−

1
�

(
SE [z̄(τ)]+ 1

2

∑∞
n=0λnc

2
n+o(c3n)

)

= e−
SE [z̄(τ)]

� N
∫
Dz(τ)e−

1
�

(∑∞
n=0

1
2
λnc

2
n+o(c3n)

)
.

(3.13)

Now we will begin to define the path integration measure as

Dz(τ)→
∞∏
n=0

dcn√
2π�

, (3.14)

integrating over all possible values of the cn’s as a reasonable way of integrating
over all paths. The factor of

√
2π� in the denominator is purely a convention

and is done for convenience as we shall see; any difference in the normalization
obtained this way can be absorbed into the still undefined normalization
constant, N . Then the expression for the matrix element in Equation (3.13)
becomes

〈z̄(β/2)|e−
β
�
ĥ(X̂,P̂ )|z̄(−β/2)〉= e−

SE [z̄(τ)]
� N

∞∏
n=0

∫
dcn√
2π�

e
− 1

�

(∑∞
n=0

1
2
λnc

2
n+o(c3n)

)
.

(3.15)
Scaling cn = c̃n

√
� gives for the right-hand side

= e−
SE [z̄(τ)]

� N
∞∏
n=0

∫
dc̃n√
2π
e
−
(

1
2
λnc̃

2
n+o(�)

)

= e−
SE [z̄(τ)]

� N
∞∏
n=0

(
1√
λn

(1+o(�))

)
. (3.16)

This infinite product of eigenvalues for the operators which arise typically does
not converge. We will address and resolve this difficulty later and, assuming that
it is so done, we formally write “det” for the product of all the eigenvalues of the
operator. This yields the formula

〈z̄(β/2)|e−
β
�
ĥ(X̂,P̂ )|z̄(−β/2)〉= e−

SE [z̄(τ)]
�

(
Ndet

− 1
2

[
− d2

dτ2
+V ′′(z̄(τ))

]
(1+o(�))

)
.

(3.17)
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16 The Symmetric Double Well

Thus we see the matrix element has a non-perturbative contribution in �

coming from the exponential of the value of the classical action at the critical
point divided by �, e−

SE [z̄(τ)]
� , multiplying the yet undefined normalization and

determinant and an expression which has a perturbative expansion in positive
powers of � .

3.3 Tunnelling Amplitudes and the Instanton

To proceed further we have to be more specific. We shall consider the following
matrix elements

〈±a|e−
β
�
ĥ(X̂,P̂ )|a〉= 〈∓a|e−

β
�
ĥ(X̂,P̂ )|−a〉. (3.18)

The equality of these matrix elements is easily obtained here by using the
assumed parity reflection symmetry of the Hamiltonian,

〈x|e−
β
�
ĥ(X̂,P̂ )|y〉= 〈x|PPe−

β
�
ĥ(X̂,P̂ )PP|y〉

= 〈−x|Pe−
β
�
ĥ(X̂,P̂ )P|− y〉

= 〈−x|e−
β
�
ĥ(X̂,P̂ )|− y〉, (3.19)

where P is the parity operator which satisfies P2 = 1, P|x〉 = | − x〉 and
[P, ĥ(X̂, P̂ )] = 0.

The equation which z̄(τ) satisfies is

− ¨̄z(τ)+V ′(z̄(τ)) = 0, (3.20)

which is exactly the equation of motion for a particle in real time moving in the
reversed potential −V (z), as in Figure 3.2. Because of the matrix elements that
we are interested in, Equation (3.18), the corresponding classical solutions are
those which start at and return to either ±a or those that interpolate between

–V(z)
–a a

Figure 3.2. Inverted double well potential for z̄(τ)
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3.3 Tunnelling Amplitudes and the Instanton 17

±a and ∓a, and each in time β. The trivial solutions

z̄(τ) =±a (3.21)

satisfy the first condition while the second condition can be obtained by
integrating Equation (3.20). Straightforwardly,

¨̄z(τ) ˙̄z(τ) = V ′(z̄(τ)) ˙̄z(τ), (3.22)

which implies

˙̄z(τ) =
√
2V (z̄(τ))+ c2, (3.23)

where c is an integration constant. Integrating one more time and choosing the
solution that interpolates from −a to a, we get

∫ z̄(τ)

−a

dz̄√
2V (z̄)+ c2

=

∫ τ

−β
2

dτ = τ +
β

2
(3.24)

and c is determined by ∫ a

−a

dz̄√
2V (z̄)+ c2

= β. (3.25)

We note that this last Equation (3.25) does not depend on the details of
the solution, but only on the fact that it must interpolate from −a to a.
Obviously from Equation (3.23), c is the initial velocity. The initial velocity
is not arbitrary, the solution must interpolate from −a to a in Euclidean time
β, and Equation (3.25) implicitly gives c as a function of β. There is no solution
that starts with vanishing initial velocity but interpolates between ±a in finite
time β; vanishing initial velocity requires infinite time.

As β→∞, the only way for the integral in Equation (3.25) to diverge to give
an infinite or very large β is for the denominator to vanish. This only occurs
for V (z̄)→ 0 and for c→ 0. V (z̄)→ 0 occurs as z̄→±a, which is near the start
and end of the trajectory. Also, physically, if the particle is to interpolate from
−a to a in a longer and longer time, β, then it must start out at −a with a
smaller and smaller initial velocity, c. For larger and larger β, c must vanish in
an appropriate fashion. Heuristically, for small c, the solution spends most of its
time near z̄=±a and interpolates from one to the other relatively quickly. Then
the major contribution to the integral comes from the region around z̄ = ±a.
Since the integral diverges logarithmically when c = 0, for a typical potential
V (which must vanish quadratically at z̄ = ±a as V has a double zero at ±a),
the integral must behave as − lnc, i.e. β ∼− lnc which is equivalent to c∼ e−β ,
which means that c must vanish exponentially with large β. For sufficiently large
β we may neglect c altogether.
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18 The Symmetric Double Well

a

–a

z[τ]–

Figure 3.3. Interpolating kink instanton for the symmetric double well

The action for the constant solutions, Equation (3.21), is evidently zero. For
the interpolating solution implicitly determined by Equation (3.24), it is

SE [z̄(τ)] =

∫ β
2

−β
2

dτ

(
1

2
˙̄z2(τ)+V (z̄(τ))

)

=

∫ β
2

−β
2

dτ
(
˙̄z2(τ)− c2

)
=

(∫ β
2

−β
2

√
2V (z̄(τ))+ c2

dz̄

dτ
dτ

)
−βc2

=

(∫ a

−a
dz̄

√
2V (z̄)+ c2

)
−βc2. (3.26)

For large β, we neglect c in the integral for SE [z̄(τ)]≡ S0, and the term −βc2,
yielding

S0 =

∫ a

−a
dz̄

√
2V (z̄). (3.27)

This is exactly the action corresponding to the classical solution for β = ∞
depicted in Figure 3.3. Such Euclidean time classical solutions are called
“instantons”.

For large τ the approximate equation satisfied by z̄(τ) is

dz̄

dτ
= ω(a− z̄), (3.28)

obtained by expanding Equation (3.23) as z̄→ a− from below and where ω2 is the
second derivative of the potential at z̄ = a. There is a corresponding, equivalent
analysis for τ →−∞. These have the solution

|z(τ)|= a−Ce−ω|τ |. (3.29)

Thus the instanton is exponentially close to ±a for |τ |> 1
ω . Its size is 1

ω which
is of order 1, compared with � and β. For large |τ | , the solution is essentially
equal to ±a, which is just the trivial solution. The solution is “on” only for an
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3.4 The Instanton Contribution to the Path Integral 19

“instant”, the relatively short time compared with β, during which it interpolates
between −a and +a. Hence the name instanton. Reversing the time direction
gives another solution which starts at +a and interpolates to −a, aptly called
an anti-instanton. It clearly has the same action as an instanton.

3.4 The Instanton Contribution to the Path Integral

3.4.1 Translational Invariance Zero Mode

As we have seen, for very large β, the instanton corresponding to infinite β

is an arbitrarily close and perfectly good approximation to the true instanton.
Evidently with the infinite β instanton, we may choose the time arbitrarily at
which the solution crosses over from −a to +a. The solution of∫ z̄(τ)

0

dz√
2V (z)

= τ − τ0 (3.30)

corresponds to an instanton which crosses over around τ = τ0 . Thus the position
of the instanton τ0 gives a one-parameter family of solutions, each with the
same classical action. The point is that for large enough β, there exists a one-
parameter family of approximate critical points with action arbitrarily close to
S0. The contribution to the path integral from the vicinity of these approximate
critical points will be of a slightly modified form, since the first variation of
the action about the approximate critical point does not quite vanish. Thus the
contribution will be of the form, the exponential of the negative action at the
approximate critical point, multiplied by a Gaussian integral with a linear shift,
the shift coming from the non-vanishing first variation of the action. The shift
will be proportional to some arbitrarily small function f(β) as β →∞ . The
higher-order terms give perturbative corrections in �, as in Equation (3.16), and
can be dropped. Then, considering a typical Gaussian integral with a small linear
shift, as arises in the integration about an approximate critical point, we have∫ ∞

−∞

dx√
2π
e−

1
�
(α2x2+2f(β)x) = e

f2(β)

�α2
1

α
. (3.31)

We see that to be able to neglect the effects of the shift, f(β) must be so small
that f2(β)

�
� 1, given that α, being independent of � and β, is of order 1.

Typically, f(β) is exponentially small in β, just as earlier c was found to be.
f(β) needs to be determined and depends of the details of the dynamics. In any
case, β must be greater than a certain value determined by the value of �. This
is, however, no strong constraint other than imposing that we must consider
the limit that β is arbitrarily large while all other constants (especially �) are
held fixed. Hence, assuming β is sufficiently large, we can neglect the effect of the
linear shift and we must include the contribution from these approximate critical
points. To do so, we simply integrate over the position of the instanton and
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20 The Symmetric Double Well

perform the Gaussian integral over directions in path space which are orthogonal
to the direction corresponding to translations of the instanton.

The easiest way to perform such a constrained Gaussian integral is to use the
following observations. In the infinite β limit, the translated instantons become
exact critical points and correspondingly the fluctuation directions about a given
instanton contain a flat direction. This means that the action does not change
to second order for variations along this direction. Precisely, this means that the
eigenfrequencies, λn, contain a zero mode, λ0 = 0. We can explicitly construct
this zero mode since(

− d2

dτ2
+V ′′(z̄(τ − τ1))

)
dz̄(τ − τ1)

dτ1
=− d

dτ
(−¨̄z(τ − τ1)+V ′(z̄(τ − τ1))) = 0,

(3.32)
the second term vanishing by the equation of motion, Equation (3.20), which is
clearly also valid for z̄(τ − τ1). This mode occurs because of the time translation
invariance when β is infinite. The corresponding normalized zero mode is

z0(τ) =
1√
S0

d

dτ1
z̄(τ − τ1). (3.33)

Clearly∫ ∞

−∞
dτ

(
1√
S0

d

dτ1
z̄(τ − τ1)

)2

=
1

S0

∫ ∞

−∞
dτ

(
1

2
˙̄z2(τ − τ1)+V (z̄(τ − τ1))

)
= 1

(3.34)
using the equation of motion, Equation (3.23), with c= 0 (infinite β).

Integration in the path integral, Equation (3.15), over the coefficient of this
mode yields a divergence as the frequency is zero∫

dc0√
2π�

e−
1
�
λ0c

2
0 =

∫
dc0√
2π�

1 =∞. (3.35)

However, integrating over the position of the instanton is equivalent to
integrating over c0. τ1 is called a collective coordinate of the instanton
corresponding to its position in Euclidean time. Indeed, if z̄(τ−τ1) is an instanton
at position τ1, the change in the path obtained by infinitesimally changing τ1 is

δz(τ) =
d

dτ1
z̄(τ − τ1)dτ1 =

√
S0z0(τ). (3.36)

The change induced by varying c0 is, however,

δz(τ) = z0(τ)dc0. (3.37)

Thus
dc0√
2π�

=

√
S0

2π�
dτ1 (3.38)

and when integrating over the position τ1 we should multiply by the normalizing

factor
√

S0
2π� . Clearly for infinite β the integral over τ1 diverges, reflecting the

equivalent infinity obtained when integrating over c0.

https://doi.org/10.1017/9781009291248.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291248.004


3.4 The Instanton Contribution to the Path Integral 21

This divergence is not disturbing, since for a positive definite Hamiltonian the
infinite β limit of the matrix element, Equation (2.32), is strictly zero, and for
large β it is an expression which vanishes exponentially. Thus in the large β

limit, the Gaussian integrals in the directions orthogonal to the flat direction
must combine to give an expression which indeed vanishes exponentially with β,
as we will see. For the time being, for finite β, the integration over the position
then gives a factor that is linear in β√

S0

2π�
β. (3.39)

Thus, so far the path integral has yielded

〈a|e−
β
�
ĥ(X̂,P̂ )|−a〉= e−

S0
�

(
S0

2π�

) 1
2

βN
(
det′

[
− d2

dτ2
+V ′′(z̄(τ)

])− 1
2

, (3.40)

where det′ means the “determinant” excluding the zero eigenvalue. We will leave
the evaluation of the determinant for a little later when will show that

N
(
det′

[
− d2

dτ2
+V ′′(z̄(τ))

])− 1
2

=KN
(
det

[
− d2

dτ2
+ω2

])− 1
2

, (3.41)

where ω was defined at Equation (3.28), and we will evaluate K, which is, most
importantly, independent of � and β.

3.4.2 Multi-instanton Contribution

To proceed further, we must realize that there are also other approximate critical
points which give significant contributions to the path integral. These correspond
to classical configurations which have, for example, an instanton at τ1, an anti-
instanton at τ2 and again an instanton at τ3. If τi are well separated within the
interval β, these configurations are approximately critical, with an error of the
same order as for the approximate critical points previously considered. More
generally we can have a string of n pairs of an instanton followed by an anti-
instanton, plus a final instanton completing the interpolation from −a to a. We
denote such a configuration as z̄2n+1(τ). The positions are arbitrary except that
the order of the instantons and the anti-instantons must be preserved and they
must be well separated. The action for 2n+1 such objects is just (2n+1)S0 to
the same degree of accuracy.

One would, at first sight, conclude that this contribution, including the
Gaussian integral about these approximate critical points, is exponentially
suppressed relative to the contribution from the single instanton sector. Indeed,
we would find that the contribution of the 2n+1-instantons and anti-instantons

https://doi.org/10.1017/9781009291248.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291248.004


22 The Symmetric Double Well

to the matrix element1,

〈a|e−
β
�
ĥ(X̂,P̂ )|−a〉2n+1 = e−

(2n+1)S0
� N

(
det

[
− d2

dτ2
+V ′′(z̄2n+1(τ)

])− 1
2

(3.42)

is suppressed by e−
2nS0

� relative to the one instanton contribution. This is true;
however, we must analyse the effects of zero modes.

For 2n + 1 instantons and anti-instantons there are 2n + 1 zero modes
corresponding to the independent translation of each object. This is actually
only true for infinitely separated objects with β infinite; however, for β large, it
is an arbitrarily good approximation. Thus there exist 2n+ 1 zero frequencies
in the determinant which should not be included in the path integration and,
correspondingly, we should integrate over the positions of the 2n+1 instantons
and anti-instantons. This integration is constrained by the condition that their
order is preserved. Hence we get the factor∫ β

2

−β
2

dτ1

∫ β
2

τ1

dτ2

∫ β
2

τ2

dτ3 · · ·
∫ β

2

τ2n−1

dτ2n

∫ β
2

τ2n

dτ2n+1 =
β2n+1

(2n+1)!
. (3.43)

Furthermore, from exactly the same analysis as the integration over the position
of the single instanton, the integration is normalized correctly only when each

factor is multiplied by
(
S0
2π�

) 1
2 . Thus we find〈

a
∣∣∣e−β

�
ĥ(X̂,P̂ )

∣∣∣−a〉
2n+1

=

(
e−

S0
�

(
S0

2π�

) 1
2

β

)2n+1

N
(2n+1)!

(
det′

[
− d2

dτ2
+V ′′(z̄2n+1(τ))

])− 1
2

, (3.44)

where det′ again means the determinant with the 2n+1 zero modes removed.
We will show later that

N
(
det′

[
− d2

dτ2
+V ′′(z̄2n+1(τ))

])− 1
2

=K2n+1N
(
det

[
− d2

dτ2
+ω2

])− 1
2

(3.45)

for the same K as in the case of one instanton, as in Equation (3.41).
Now even if e−

S0
� is very small, our whole analysis is done at fixed � with

β→∞; the relevant parameter, as can be seen from Equation (3.44), is

δ =

(
S0

2π�

) 1
2

e−
S0
� Kβ, (3.46)

which is arbitrarily large in this limit. Thus it seems that the contribution from
the strings of instanton and anti-instanton pairs is proportional to δ2n+1 and

1 Here the subscript 2n+1 signifies that we are calculating only the contribution to the
matrix element from 2n+1 instantons and anti-instantons.
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3.4 The Instanton Contribution to the Path Integral 23

seems to get larger and larger. However, the denominator contains (2n+ 1)!,
which must be taken into account. For large enough n, the denominator always
dominates, δ2n+1 � (2n+1)!, and so renders the contribution small.

We require, however, for the consistency of our approximations that when n

is large enough so that this is true, the average space per instanton or anti-
instanton, β

2n+1 , is still large compared to the size of these objects ∼ 1/ω, which
is independent of both � and β. This is satisfied as β→∞. Hence we require n
large enough such that

δ2n+1

(2n+1)!
� 1; (3.47)

however, with
β

2n+1
� 1

ω
. (3.48)

Taking the logarithm of Equation (3.47) after multiplying by (2n+1)! yields in
the Stirling approximation

(2n+1)lnδ� (2n+1)ln(2n+1)− (2n+1). (3.49)

Neglecting the second term on the right-hand side and combining with
Equation (3.48) yields

δ =

((
S0

2π�

) 1
2

e−
S0
� K

)
β� 2n+1� ωβ. (3.50)

That such an n can exist simply requires
(
S0
2π�

) 1
2 e−

S0
� K≪ ω. We will evaluate

K explicitly and find that it does not depend on � or β. The inequality then is
clearly satisfied for �→ 0, which brings into focus that underneath everything
we are interested in the semi-classical limit.

A tiny parenthetical remark is in order: in integrating over the positions of the
instantons, we should always maintain the constraint that the instantons are well
separated. Thus we should not integrate the position of one instanton exactly
from that of the preceding one to that of the succeeding one, but we should
leave a gap of the order of 1

ω which is the size of the instanton. Such a correction

corresponds to a contribution which behaves to leading order as 1
ω
βn−1

(n−1)! , which

is negligible in comparison to βn

n! if 1
ω � β.

When the density of instantons and anti-instantons becomes large, all of
our approximations break down, and such configurations are no longer even
approximately critical. Thus we do not expect any significant contribution to
the path integral from the regions of the space of paths which include these
configurations. Hence we should actually truncate the series in the number of
instantons for some large enough n; however, this is not necessary. We will
always assume that we work in the limit that β should be sufficiently large and
� sufficiently small so that the contribution from the terms in the series with
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•
•
•

•
•
•

4S0

3S0

2S0

S0

Figure 3.4. A simple function analogous to the action

n greater than some N is already negligible, while there is still a lot of room
per instanton, i.e. β/N is still large. This should still correspond to a dilute
“gas” of instantons and anti-instantons. Then the remaining terms in the series
can be maintained, although they do not represent the contribution from any
part of path space. It is simply easier to sum the series to infinity, knowing that
the contribution added in from n greater than some N makes only a negligible
change. The sum to infinity is straightforward. We find

〈
a
∣∣∣e−β

�
ĥ(X̂,P̂ )

∣∣∣−a〉=

(
N

(
det

[
− d2

dτ2
+ω2

])− 1
2

)
sinh

((
S0

2π�

) 1
2

e−
S0
� Kβ

)
.

(3.51)

3.4.3 Two-dimensional Integral Paradigm

A simple two-dimensional, ordinary integral which serves as a paradigm
exhibiting many of the features of the path integral just considered is given by

I =

∫
dxdye−

1
�
(f(x)+α2

2 y2) (3.52)

where y corresponds to the transverse directions and plays no role. f(x) is a
function of the form depicted in Figure 3.4 and increases sharply in steps of S0,
and the length of each plateau is βn

n! . In the limit that the steps become sharp,
the integral can be done exactly and yields

I =
(2π�)

1
2

α

∞∑
n=0

e−
nS0
�

(
βn

n!

)
=

(2π�)
1
2

α
e

(
βe

−S0
�

)
. (3.53)
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3.5 Evaluation of the Determinant 25

Obviously this is exactly analogous to the path integral just considered for β→∞
and �→ 0 . The plateaux correspond to the critical points. Clearly we cannot
consider just the lowest critical point since the volume associated with the higher
critical points is sufficiently large that their contribution does not damp out until
n becomes large enough. In terms of physically intuitive arguments, the volume
is like the entropy factor associated with n instantons, β

n

n! , while the exponential,

e−
nS0
� , is like the Boltzmann factor. In statistical mechanics, even though the

Boltzmann factor is much smaller for higher energy levels, their contribution to
the partition function can be significant due to a large enough entropy. We can
further model the aspect of approximate critical points by giving the plateaux
in Figure 3.4 a very small slope. Clearly the integral is only negligibly modified
if the slope is taken to be exponentially small in β.

3.5 Evaluation of the Determinant

Finally, we are left with the evaluation of the determinant. We wish to show for
the case of 2n+1 instantons and anti-instantons(
N

(
det′

[
− d2

dτ2
+V ′′(z̄2n+1(τ))

])− 1
2

)
=K2n+1

(
N

(
det

[
− d2

dτ2
+ω2

])− 1
2

)
(3.54)

and to evaluate K. Physically this means that the effect of each instanton
and anti-instanton is simply to multiply the free determinant by a factor of
1
K2 . Intuitively this is very reasonable, and we expect that for well-separated
instantons their effect would be independent of each other.

To obtain the det′ we will work in the finite large interval, β, with boundary
conditions that the wave function must vanish at the end points. Consider first
the case of just one instanton. Because of the finite interval, time translation will
not be an exact symmetry and the operator − d2

dτ2
+ V ′′(z̄(τ)) will not have an

exact zero mode. However, as β→∞ one mode will approach zero. The det′ is
then obtained by calculating the full determinant on the finite interval, β, and
then dividing out by the smallest eigenvalue. There should be a rigorous theorem
proving first that the operator in question has a positive definite spectrum on
the finite interval, β, for any potential, V (z), of the type considered and the
corresponding instanton, z̄(τ), and secondly as β→∞, one bound state drops
to exactly zero; this is reasonable and taken as a hypothesis. Thus we will study
the full determinant on the interval β which has the path-integral representation

N
(
det

[
− d2

dτ2
+V ′′(z̄(τ − τ1))

])− 1
2

=N
∫
Dz(τ)e

− 1
�

∫ β
2

−β
2

dτ 1
2
(ż2(τ)+V ′′(z̄(τ−τ1))z2(τ))

(3.55)
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–a a

V˝(z)

ω 2

Figure 3.5. The behaviour of V ′′(z) between ±a

with the boundary conditions that z(β2 ) = z(−β
2 ) = 0 in the path integral. The

path integral on the right-hand side is performed in exactly the same manner as
in Equation (3.15). This determinant actually corresponds to the matrix element
of the Euclidean time evolution operator with a time-dependent Hamiltonian,

〈z = 0|T
(
e
− 1

�

∫ β
2

−β
2

dτ

(
1
2
P̂2+

V ′′(z̄(τ−τ1))

2
X̂2
))

|z = 0〉, (3.56)

where T denotes the operation of Euclidean time ordering. This time ordering is
effectively described by the product representation of Equation (2.33), where the
appropriate Hamiltonian is entered into each Euclidean time slice. This can be
shown to give the path integral, Equation (3.55), adapting with minimal changes
the demonstration in Chapter 2. We leave it to the reader to confirm the details.

Consider first the behaviour of V ′′(z) which controls the Euclidean time-
dependent frequency in the path integral Equation (3.55). V ′′(±a) = ω2 is the
parabolic curvature at the bottom of each well. In between, at z = 0, V ′′(0) will
drop to some negative value giving the curvature at the top of the potential hill
separating the two wells. We will have a function as depicted in Figure 3.5. Thus
V ′′(z̄(τ)) will start out at ω2 at τ =−∞, until z̄(τ) starts to cross over from −a
to a, where it will trace out the potential well of Figure 3.5, and again it will
regain the value ω2 for z̄(τ) = a at τ =∞, corresponding to the function of τ as
in Figure 3.6. Thus the path integral in Equation (3.55) is exactly equal to the
matrix element or “Euclidean persistence amplitude” that a particle at position
zero will remain at position zero in Euclidean time β in a quadratic potential
with a time-dependent frequency given by V ′′(z̄(τ)) depicted in Figure 3.6.
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V˝(z[τ ])

ω 2

–

Figure 3.6. The behaviour of V ′′(z(τ) between τ =±∞

We will express the matrix element in terms of a Euclidean time evolution
operator U

(
β
2 ,−

β
2

)
as

N
∫
Dz(τ)e

− 1
�

∫ β
2

−β
2

dτ 1
2
( ˙̄z2(τ)+V ′′(z̄(τ−τ1))z2(τ))

≡
〈
z = 0

∣∣U (
β
2
,−β

2

)∣∣z = 0
〉

(3.57)

with explicitly,

U
(
β
2
,−β

2

)
= T

(
e
− 1

�

∫ β
2

−β
2

dτ

(
1
2
P̂2+

V ′′(z̄(τ−τ1))

2
X̂2
))

. (3.58)

Now

U
(
β
2
,−β

2

)
= U

(
β
2
,τ1+

1
2ω

)
U (τ1+ 1

2ω ,τ1− 1
2ω )U

(
τ1− 1

2ω ,−β
2

)
≈U0

(
β
2
,τ1+

1
2ω

)
U (τ1+ 1

2ω ,τ1− 1
2ω )U0

(
τ1− 1

2ω ,−β
2

)
, (3.59)

where on the intervals
[
τ1+

1
2ω ,

β
2

]
and

[
−β

2 , τ1−
1
2ω

]
we can replace the full

evolution operator with the free evolution operator

U0 (τ,τ ′) = T

(
e
− 1

�

∫ τ
τ ′ dτ

1
2

(
−�

2 d2

dz2
+ω2z2

))
= e−

(τ−τ ′)
�

ĥ0(X̂,P̂ ) (3.60)

as V ′′(z̄(τ) is essentially constant and equal to ω2 on these intervals. Then
inserting complete sets of free eigenstates, which are just simple harmonic
oscillator states |En〉 for an oscillator of frequency ω , we obtain

U
(
β
2
,−β

2

)
=

∑
n,m

e
−
(

β
2
−τ1− 1

2ω

)
En
� |En〉〈En|U (τ1+ 1

2ω ,τ1− 1
2ω ) |Em〉

× 〈Em|e−
(
τ1− 1

2ω+β
2

)
Em
� (3.61)
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28 The Symmetric Double Well

Now we use the “ground state saturation approximation”, i.e. when β is huge
and the instanton is not near the boundaries, only the ground state contribution
is important. Using this twice we obtain

U
(
β
2
,−β

2

)
≈ e

(
β
2
−τ1− 1

2ω

)
E0
� |E0〉〈E0|U (τ1+ 1

2ω ,τ1− 1
2ω ) |E0〉〈E0|e−

(
τ1− 1

2ω+β
2

)
E0
�

= U0
(
β
2
,τ1+

1
2ω

)
|E0〉〈E0|U0 (τ1+ 1

2ω ,τ1− 1
2ω ) |E0〉〈E0|U0

(
τ1− 1

2ω ,−β
2

)
×

× 〈E0|U (τ1+ 1
2ω ,τ1− 1

2ω ) |E0〉
〈E0|U0 (τ1+ 1

2ω ,τ1− 1
2ω ) |E0〉

≈
∑
n,m

U0
(
β
2
,τ1+

1
2ω

)
|En〉〈En|U0 (τ1+ 1

2ω ,τ1− 1
2ω ) |Em〉〈Em|U0

(
τ1− 1

2ω ,−β
2

)
×

× 〈E0|U (τ1+ 1
2ω ,τ1− 1

2ω ) |E0〉
〈E0|U0 (τ1+ 1

2ω ,τ1− 1
2ω ) |E0〉

= U0
(
β
2
,−β

2

) 〈E0|U
(
τ1+

1
2ω , τ1−

1
2ω

)
|E0〉

〈E0|U0 (τ1+ 1
2ω ,τ1− 1

2ω ) |E0〉
≡ U0

(
β
2
,−β

2

)
κ, (3.62)

where κ is the ratio of the two amplitudes over the short time period during
which V ′′(z̄(τ) is non-trivially time-dependent. κ is surely independent of the
position τ1 of the instanton. The full evolution operator in fact simply does not
depend on the position, nor does the denominator. Indeed,

U (τ1+ 1
2ω ,τ1− 1

2ω ) = T

⎛
⎝e− 1

�

∫ τ1+
1
2ω

τ1− 1
2ω

dτ 1
2

(
−�

2 d2

dz2
+V ′′(z̄(τ−τ1))z2

)⎞
⎠

= T

⎛
⎝e− 1

�

∫ 1
2ω

− 1
2ω

dτ ′ 1
2

(
−�

2 d2

dz2
+V ′′(z̄(τ ′))z2

)⎞
⎠ , (3.63)

since the integration variable is a dummy, thus exhibiting manifest τ1
independence.

Clearly for n well-separated instantons the result applies also, we simply
apply an appropriately adapted version of the same arguments. We convert
the determinant into a persistence amplitude for the related quadratic quantum
mechanical process, which we then further break up into free evolution in the gaps
between the instantons and full evolution during the instanton, use the ground
state saturation approximation, giving the result, to leading approximation

N
(
det

[
− d2

dτ2
+V ′′(z̄2n+1(τ))

])− 1
2

=N
(
det

[
− d2

dτ2
+ω2

])− 1
2

κ2n+1. (3.64)

The relationship of κ to the K fixed by Equation (3.41) is obtained by dividing
out by the lowest energy eigenvalue, call it λ0. We will show that this eigenvalue
is exponentially small for large β. For 2n+ 1 instantons there are 2n+ 1 such
eigenvalues which are all equal, in first approximation, and we must remove them
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all giving

N
(
det′

[
− d2

dτ2
+V ′′(z̄2n+1(τ))

])− 1
2

=N

⎛
⎝det

[
− d2

dτ2
+V ′′(z̄2n+1(τ))

]
λ2n+1
0

⎞
⎠

− 1
2

=N
(
det

[
− d2

dτ2
+ω2

])− 1
2
(
κλ

1
2
0

)2n+1

.(3.65)

Hence

K = κλ
1
2
0 . (3.66)

It only remains to calculate two things, the free determinant and the correction
factor K.

3.5.1 Calculation of the Free Determinant

To calculate the free determinant, we will use the method of Affleck and Coleman
[31, 114, 36]. Consider the more general case

det

[
− d2

dτ2
+W (τ)

]
, (3.67)

where the operator acts on the space of functions which vanish at ±β
2 . Formally

we want to compute the infinite product of the eigenvalues of the eigenvalue
problem (

− d2

dτ2
+W (τ)

)
ψλn(τ) = λnψλn(τ), ψλn

(
±β
2

)
= 0. (3.68)

The eigenvalues generally increase unboundedly, hence the infinite product is
actually ill-defined. Consider, nevertheless, an ancillary problem(

− d2

dτ2
+W (τ)

)
ψλ(τ) = λψλ(τ), ψλ

(
−β
2

)
= 0,

d

dτ
ψλ (τ)

∣∣∣∣
−β

2

= 1. (3.69)

There exists, in general, a solution for each λ; the second boundary condition
can always be satisfied by adjusting the normalization. On the other hand, the
equation in λ

ψλ

(
β

2

)
= 0 (3.70)

has solutions exactly at the eigenvalues λ=λn. Affleck and Coleman [31, 114, 36]
propose to define the ratio of the determinant for two different potentials as

det
[
− d2

dτ2
+W1(τ)−λ

]
det

[
− d2

dτ2
+W2(τ)−λ

] =
ψ1
λ

(
β
2

)
ψ2
λ

(
β
2

) . (3.71)
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30 The Symmetric Double Well

The left-hand side is defined as the infinite product

∞∏
n=1

(λ1n−λ)
(λ2n−λ)

, (3.72)

where the potentials and the labelling of the eigenvalues are assumed to be such
that as the eigenvalues become large, they approach each other sufficiently fast,

lim
n→∞(λ1n−λ2n) = 0 (3.73)

so that the infinite product in Equation (3.72) does conceivably converge. To
prove Equation (3.71) we observe that the zeros, λ = λ1n, and poles, λ = λ2n, of
the left-hand side are at the same place as those of the right-hand side, as evinced
by the solutions of Equation (3.70). Thus the ratio of the two sides

∏∞
n=1

(λ1n−λ)
(λ2n−λ)

ψ1
λ

(
β
2

)
/ψ2

λ

(
β
2

) ≡ g(λ) (3.74)

defines an analytic function g(λ) without zeros or poles. Now as |λ| →∞ in all
directions except the real axis, the numerator in Equation (3.74) is equal to 1.
For the denominator, as λ→∞ the potentials W1 and W2 become negligible
perturbations compared to the term on the right-hand side of Equation (3.69),
which we can consider as a potential −λ. Neglecting the potentials, clearly
ψ1
λ

(
β
2

)
and ψ2

λ

(
β
2

)
approach each other, and hence the denominator also

approaches 1 in the same limit. Therefore, g(λ) defines an everywhere-analytic
function of λ which approaches the constant 1 at infinity, and now in all directions
including the real axis, as it does so infinitesimally close to the real axis. By a
theorem of complex analysis, a meromorphic function that approaches 1 in all
directions at infinity must be equal to 1 everywhere

g(λ) = 1 (3.75)

establishing Equation (3.71). Reorganizing the terms in Equation (3.71), formally
we obtain

det
[
− d2

dτ2
+W1(τ)−λ

]
ψ1
λ

(
β
2

) =
det

[
− d2

dτ2
+W2(τ)−λ

]
ψ2
λ

(
β
2

) , (3.76)

where both sides are constants independent of the potentials Wi.
We now finally choose N by defining

det
[
− d2

dτ2
+W (τ)

]
ψ0

(
β
2

) ≡ 2π�N 2 (3.77)
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and we will show that this choice is appropriate. Then

Ndet
− 1

2

[
− d2

dτ2
+ω2

]
=

(
2π�ψ0

0

(
β
2

))− 1
2 , (3.78)

where ψ0
0(τ) is the solution of Equation (3.69) for the free theory. It is easy to

see that this solution is given by

ψ0
0(τ) =

1

ω
sinhω

(
τ +

β

2

)
(3.79)

giving

Ndet
−1
2

[
− d2

dτ2
+ω2

]
=

(
2π�

(
eωβ − e−ωβ

2ω

))− 1
2

≈
( ω

π�

) 1
2 e

−ω β
2 . (3.80)

We can compare this result with the direct calculation of the Euclidean
persistence amplitude of the free harmonic oscillator. We find

Ndet
− 1

2

[
− d2

dτ2
+ω2

]
=

〈
x= 0

∣∣∣∣∣e−
β
�

(
− �

2

2
d2

dx2
+ 1

2
ω2x2

)∣∣∣∣∣x= 0

〉

= e−
βE0
� 〈x= 0| E0〉〈E0| x= 0〉+ · · · , (3.81)

where |E0〉 is the ground state. Clearly the normalized wave function is

〈x |E0〉=
( ω

π�

) 1
4
e−

ω
2�x

2
(3.82)

while
E0 =

1

2
�ω (3.83)

giving

〈x= 0| E0〉=
( ω

π�

) 1
4
. (3.84)

Hence Equation (3.81) yields

Ndet
− 1

2

[
− d2

dτ2
+ω2

]
=

( ω

π�

) 1
2
e
−ω β

2 (3.85)

in agreement with Equation (3.80), and confirming the definition of the
normalization N chosen in Equation (3.77).

3.5.2 Evaluation of K

Finally we must evaluate the factor K. K is given by the ratio

1

K2
=

det′
[
− d2

dτ2
+V ′′(z̄(τ − τ1)

]
det

[
− d2

dτ2
+ω2

] (3.86)
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from Equations (3.64) and (3.66) for n= 0. Thus

1

K2
=

⎛
⎝ψ0

(
β
2

)
/λ0

ψ0
0

(
β
2

)
⎞
⎠, (3.87)

where λ0 is the smallest eigenvalue in the presence of an instanton. To calculate
ψ0

(
β
2

)
and λ0 approximately we describe again the procedure given in Coleman

[31]. First we need to solve(
−∂2τ +V ′′(z̄(τ))

)
ψ0(τ) = 0 (3.88)

with the boundary conditions ψ0(−β/2) = 0 and ∂τψ0(−β/2) = 1. We already
know one solution of Equation (3.88), albeit one that does not satisfy the
boundary conditions: the zero mode of the operator in Equation (3.30) due to
time translation invariance, we will call it here x1(τ):

x1(τ) =
1√
S0

dz̄

dτ
. (3.89)

x1(τ) → Ae−ω|τ | as τ → ±∞. A is determined by the equation of motion,
Equation (3.30), which integrated once corresponds to

˙̄z(τ) =
√
2V (z̄(τ)). (3.90)

Once we have A we can compute ψ(β2 ) and λ0.
We know that there must exist a second independent solution of the differential

Equation (3.88), y1(τ) which we normalize so that the Wronskian

x1
dy1
dτ

− y1
dx1
dτ

= 2A2. (3.91)

We remind the reader that the Wronskian between two linearly independent
solutions of a linear second-order differential equation is non-zero, and with no
first derivative term, as in Equation (3.88), is a constant. Then as τ →±∞ we
have

ẏ1(τ)±ωy1(τ) = 2Aωeω|τ | (3.92)

using the known behaviour of x1(τ). The general solution of Equation (3.92) is
any particular solution plus an arbitrary factor times the homogeneous solution

y1(τ) =±Aeω|τ |+Be∓ω|τ |, (3.93)

where B is an arbitrary constant. Evidently the homogenous solution is a
negligible perturbation on the particular solution, and y1(τ) → ±Aeω|τ | as
τ →±∞. Then we construct ψ0(τ) as

ψ0(τ) =
1

2ωA

(
eωβ/2x1(τ)+ e

−ωβ/2y1(τ)
)
, (3.94)
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verifying

ψ0(−β/2) =
1

2ωA

(
eωβ/2x1 (−β/2)+ e−ωβ/2y1(−β/2)

)
≈ 1

2ωA

(
eωβ/2Ae−ωβ/2+ e−ωβ/2(−A)eωβ/2

)
= 0 (3.95)

while

dψ0(−β/2)
dτ

∣∣∣∣−β
2

≈ 1

2ωA

(
eωβ/2

d

dτ
Aeωτ

∣∣∣∣−β
2

+ e−ωβ/2
d

dτ
(−A)e−ωτ

∣∣∣∣−β
2

)
= 1.

(3.96)
Then it is also easy to see

ψ0(β/2) =
1

ω
, (3.97)

which we will need later.
We also need to calculate the smallest eigenvalue λ0 of Equation (3.69). To

do this we convert the differential equation to an integral equation using the
corresponding Green function. The Green function satisfying the appropriate
boundary conditions is constructed from x1(τ) and y1(τ) using standard
techniques and is given by

G(τ,τ ′) =

{
1

2A2 (−y1(τ ′)x1(τ)+x1(τ ′)y1(τ)) τ > τ ′

0 τ < τ ′
. (3.98)

Then the differential equation is converted to an integral equation

ψλ(τ) = ψ0(τ)+
λ

2A2

∫ τ

−β
2

dτ ′(x1(τ ′)y1(τ)− y1(τ ′)x1(τ))ψλ(τ ′)

≈ ψ0(τ)+
λ

2A2

∫ τ

−β
2

dτ ′(x1(τ ′)y1(τ)− y1(τ ′)x1(τ))ψ0(τ
′). (3.99)

This wave function vanishes for the lowest eigenvalue λ0 (and actually for all
eigenvalues λn) at τ = β/2 by Equation (3.70), thus

ψ0(β/2) +
λ

2A2

∫ β
2

−β
2

dτ ′(x1(τ ′)y1(β/2)− y1(τ ′)x1(β/2))ψ0(τ
′)

≈ 1

ω
− λ

2A2

∫ β
2

−β
2

dτ ′(x1(τ ′)y1(β/2)− y1(τ ′)x1(β/2))

1

2ωA

(
eωβ/2x1(τ

′)+ e−ωβ/2y1(τ ′)
)

≈ 1

ω
− λ

2A2

∫ β
2

−β
2

dτ ′(x1(τ ′)eωβ/2− y1(τ ′)e−ωβ/2)

1

2ω

(
eωβ/2x1(τ

′)+ e−ωβ/2y1(τ ′)
)
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≈ 1

ω
− λ

2A2ω

∫ β
2

−β
2

dτ ′(x21(τ
′)eωβ − y21(τ ′)e−ωβ)

≈ 1

ω
− λ

4A2ω

∫ β
2

−β
2

dτ ′x21(τ
′)eωβ =

1

ω
− λ

4A2ω
eωβ = 0.

(3.100)

In the penultimate equation, we can drop the second term because it behaves at
most as ∼ β, since y1(τ)∼ eβ/2 at the boundaries of the integration domain at
±β/2, while the first term behaves as ∼ eβ since

∫
x21(τ)dτ is normalized to 1.

This gives quite simply
λ0 ≈ 4A2e−ωβ . (3.101)

Then finally we get

K =

(
ψ0
0 (β/2)

ψ0 (β/2)/λ0

) 1
2

=
eωβ/2ω

(1/ω4A2e−ωβ)
= 2A2. (3.102)

Thus we have found that the matrix element

〈a|e−βĥ(X̂,P̂ )/�|−a〉= sinh

((
S0

2π�

) 1
2

e−S0/�2A2β

)( ω

π�

) 1
2 e

−ω β
2 . (3.103)

To see explicitly see how to compute A, we can consider a convenient,
completely integrable example, V (x) = (γ2/2)(x2 − a2)2, which has ω2 =

V ′′(±a) = (2γa)2. Then Equation (3.30) yields∫ z̄(τ−τ1)

0

dz

γ(z2−a2) = τ − τ1 (3.104)

with exact solution
z̄(τ) = atanh(aγ(τ − τ1)). (3.105)

Thus A is determined by

x1(τ) =
˙̄z(τ)√
S0

=
a2γ√

S0 cosh
2(aγ(τ − τ1))

, (3.106)

which behaves as

lim
τ→±∞x1(τ) =

4a2γ√
S0

e−2aγ|τ | =
2aω√
S0

e−ω|τ | =Ae−ω|τ |. (3.107)

√
S0 is calculated from Equation (3.27), giving

S0 =

∫ a

−a
dzγ(z2−a2) = 4

3
γa3 =

2

3
ωa2. (3.108)

Hence A= 2aω√
(2/3)ωa2

=
√

6
ω , for this example.
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3.6 Extracting the Lowest Energy Levels

On the other hand, the matrix element of Equation (3.103) can be evaluated
by inserting a complete set of energy eigenstates between the operator and the
position eigenstates on the left-hand side, yielding

〈a|e−βĥ(X̂,P̂ )/�|−a〉= e−βE0/�〈a|E0〉〈E0|−a〉+ e−βE1/�〈a|E1〉〈E1|−a〉+ · · · ,
(3.109)

where we have explicitly written only the first two terms as we expect that the two
classical states, |±a〉, are reorganized due to tunnelling into the two lowest-lying
states, |E0〉 and |E1〉. Indeed, comparing Equation (3.103) and Equation (3.109)
we find

E0 =
�

2
ω−�

(
S0

2π�

) 1
2

e−S0/�2A2 (3.110)

while

E1 =
�

2
ω+�

(
S0

2π�

) 1
2

e−S0/�2A2. (3.111)

It should be stressed that our calculation is only valid for the energy
difference, not for the corrections to the energies directly. Indeed, there are
ordinary perturbative corrections to the energy levels which are normally far
greater than the non-perturbative, exponentially suppressed correction that
we have calculated. However, none of these perturbative corrections can see
any tunnelling phenomena. Thus our calculation gives the leading term in the
correction due to tunnelling. Thus, the energy splitting which relies on tunnelling
is found only through our calculation, and not through perturbative calculations.

We also find the relations

〈a|E0〉〈E0|−a〉=
( ω

π�

) 1
2 (3.112)

in addition to

〈a|E1〉〈E1|−a〉=−
( ω

π�

) 1
2 (3.113)

while a simple adaptation of our analysis yields

〈a|E0〉〈E0|a〉=
( ω

π�

) 1
2 (3.114)

in addition to

〈a|E1〉〈E1|a〉=
( ω

π�

) 1
2 . (3.115)

These yield 〈E0| − a〉 = 〈E0|a〉 while 〈E1| − a〉 = −〈E1|a〉 which are consistent
with |E0〉 being an even function, i.e. |E0〉 being an even superposition of the
position eigenstates |a〉 and | − a〉 while |E1〉 being an odd function and hence
an odd superposition of these two position eigenstates.
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Figure 3.7. A generic periodic potential with minima occurring at na with
n ∈ Z, where a is the distance between neighbouring minima

3.7 Tunnelling in Periodic Potentials

We will end this chapter with an application of the method to periodic potentials.
Periodic potentials are very important in condensed matter physics, as crystal
lattices are well-approximated by the theory of electrons in a periodic potential
furnished by the atomic nuclei. The idea is easiest to enunciate in a one-
dimensional example. Consider a potential of the form given in Figure 3.7. A
particle in the presence of such a potential with minimal energy will classically,
certainly, be localized in the bottom of the wells of the potential. If there is no
tunnelling, there would be an infinite number of degenerate states corresponding
to the state where the particle is localized in state labelled by integer n∈Z. This
could also be a very large, finite number of minima. However, quantum tunnelling
will completely change the spectrum. Just as in the case of the double well
potential, the states will reorganize so that the most symmetric superposition
will correspond to the true ground state, and various other superpositions will
give rise to excited states, albeit with excitation energies proportional to the
tunnelling amplitude. The tunnelling amplitude is expected to be exponentially
small and non-perturbative in the coupling constant.

As in the case of the double well potential, the instanton trajectories will
correspond to solutions of the analogous dynamical problem in the inverted
potential in Euclidean time (as depicted in Figure 3.8), where the trajectories
commence at the top of a potential hill, stay there for a long time, then quickly
fall through the minimum of the inverted potential, and then arrive at the top of
the adjacent potential hill, and stay there for the remaining positive Euclidean
time.

For the simple, real-time Lagrangian

L=
1

2
ẋ2−V (x), (3.116)
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Figure 3.8. The inverted generic periodic potential with maxima occurring at
na with n ∈ Z

where ẋ= dx(t)
dt , while the Euclidean Lagrangian is simply

L=
1

2
ẋ2+V (x), (3.117)

where ẋ = dx(τ)
dτ . As V (na) = 0 for n ∈ Z, we impose the boundary conditions

x(τ =−∞)=na but x(τ =∞)= (n+1)a for an instanton and x(τ =∞)= (n−1)a

for an anti-instanton and look for solutions of the Euclidean equations of motion

d2x(τ)

dτ2
−V ′(x(τ)) = 0. (3.118)

This immediately affords a first integral; multiplying by ẋ(τ) and integrating
gives

1

2
ẋ2(τ)−V (x(τ)) = 0, (3.119)

where we have fixed the constant with the boundary conditions. This equation
admits a solution in general, the instanton, but it does depend on the explicit
details of the potential. However, we can find the action of the corresponding
instanton, which only depends on an integral of the potential, by first isolating

ẋ=
√
2V (x), (3.120)

and then

S0 =

∫ ∞

−∞
dτ

1

2
ẋ2+V (x) =

∫ ∞

−∞
dτ

(
1

2
ẋ
√
2V (x)+

1

2
ẋ
√
2V (x)

)

=

∫ (n+1a

na

dx
√
2V (x). (3.121)

Although we may naively want to compute the amplitude for tunnelling
between neighbouring vacua, it is actually more informative to compute the
amplitude for a transition from vacuum n to vacuum n+m. Naively we would
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approximate this amplitude by summing over any number of pairs of widely
separated instanton anti-instanton configurations appended by a string of m
instantons. However, this logic would be faulty. There is no reason to restrict the
order of the instantons and anti-instantons except that they should tunnel from
the immediately preceding vacuum to an adjacent vacuum, and finally we should
arrive at the minimum indexed by n+m. Thus, one can choose the instantons
or anti-instantons in any order, as long as they start at n and end at n+m.
This means that if there are N instantons, which must be greater than m, then
there must be N −m anti-instantons. Thus there are as many distinct paths of
instantons as there are ways to order N plus signs and N −m minus signs. This
gives a degeneracy factor of

(2N −m)!

N !(N −m)!
. (3.122)

Furthermore, when we integrate over the Gaussian fluctuations for each instanton
or anti-instanton, we get the usual determinantal factor K for each instanton or
anti-instanton, but we do encounter one zero mode corresponding to each one’s
position, which we omit in the determinant. Then we integrate over the positions
of the instantons and anti-instantons, except that the position of each instanton
or anti-instanton must occur at the position after the preceding one, as the
instantons and anti-instantons correspond to specific tunnelling between specific
vacua. This gives the integral∫ β/2

−β/2
dτ1

∫ β/2

τ1

dτ2 · · ·
∫ β/2

τ2N−1

dτ2N−m =
β2N−m

(2N −m)!
. (3.123)

As usual, the action for any instanton or anti-instanton is the same and equal to
S0. Thus, for N instantons and N −m anti-instantons we get

〈n+m|e−βĥ(X̂,P̂ )/�|n〉=
∞∑

N=m

e−(2N−m)S0/�K2N−m (2N −m)!

N !(N −m)!

β2N−m

(2N −m)!
.

(3.124)
This sum is unclear for identifying the underlying spectrum and the contribution
of each energy eigenstate; however, if we re-write the sum as a double sum
over N instantons and M anti-instantons with a constraint M = N −m we
have

〈n+m|e−βĥ(X̂,P̂ )/�|n〉=
( ω

π�

)1/2

e−βω/2

×
∞∑

N,M=0

e−(N+M)S0/�KN+M βN+M

N !M !
δN−m,M , (3.125)

where ω2 = V ′′(na). Now the Kronecker delta can be expressed via its Fourier
series as

δN−m,M =

∫ 2π

0

dθ

2π
eiθ(N−m−M) (3.126)
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E(θ ) E(θ )

θ

Figure 3.9. The energy band as a function of θ

and so we easily find

〈n+m|e−βĥ(X̂,P̂ )/�|n〉=

=
( ω

π�

)1/2

e−βω/2
∫ 2π

0

dθ

2π

∞∑
N,M=1

(Kβe−S0/�)N+M

N !M !
eiθ(N−m−M)

=
( ω

π�

)1/2

e−βω/2
∫ 2π

0

dθ

2π
e−imθ

∞∑
N,M=1

(Kβe−S0/�)N+M

N !M !
eiθ(N−M)

=
( ω

π�

)1/2

e−βω/2
∫ 2π

0

dθ

2π
e−imθe

(
Kβe−S0/�eiθ

)
e

(
Kβe−S0/�e−iθ

)

=
( ω

π�

)1/2

e−βω/2
∫ 2π

0

dθ

2π
e−imθe

(
Kβe−S0/�(eiθ+e−iθ)

)

=
( ω

π�

)1/2

e−βω/2
∫ 2π

0

dθ

2π
e−imθe

(
2Kβe−S0/� cosθ

)
. (3.127)

But this expression for the matrix element has a clear interpretation in terms of
the spectrum. We see that the spectrum has become a continuum, parametrized
by θ. If we write

〈n+m|e−βĥ(X̂,P̂ )/�|n〉=
∫ 2π

0

dθ

2π
e−βE(θ)/�〈n+m|E(θ)〉〈E(θ)|n〉 (3.128)

we identify
E(θ) = �ω/2− 2�Ke−S0/� cosθ (3.129)

and

〈n+m|E(θ)〉〈E(θ)|n〉=
( ω

π�

)1/2 e−imθ

2π
, (3.130)

which affords the identification

〈n|E(θ)〉=
( ω

π�

)1/4 e−inθ√
2π

. (3.131)
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Thus our infinitely degenerate spectrum of discrete classical vacua has turned
into a continuum of states, what is called a band in condensed matter physics,
with an energy that varies as cosθ, as depicted in Figure 3.9. The states are
now in a continuum, and hence must be normalized in the sense of a Dirac delta
function rather than a Kronecker delta. The amplitude of the band 2�Ke−S0/�

contains the tell-tale factor of the exponential of minus the Euclidean action, the
hallmark of a tunnelling amplitude.

We will see in future chapters that periodic potentials appear commonly and
play an important role in various instanton calculations.
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