
STRUCTURE OF SEMIGROUPS 

HANS-JÛRGEN H O E H N K E 

The treatment of semigroups given in a previous paper (3) is based upon 
representations of a semigroup by means of transformations of a set (cf. also 
12). In this paper we try to remove the assumption of the existence of a zero 
element proposed in (3). In accordance with our general programme explained 
at the beginning of (3) we utilize certain minimum conditions in order to gain 
more information on the structure of semigroups. 

Our main results are structure theorems on primitive semigroups which have 
irreducible right ideals generated by idempotents (§§15-17). As we have shown 
in (5), these theorems permit the explicit construction of primitive semigroups. 
The form of these theorems corresponds to a similar statement on primitive 
rings with minimal right ideals which arises if the density theorem of Chevalley-
Jacobson in Jacobson's form (7, p. 75) is reformulated in an equivalent purely 
algebraical manner. In the case of semigroups, we cannot expect a density 
theorem but only a sequence of transitivity conditions (for a finite degree of 
transitivity) whose limit would be the density condition equivalent to countable 
transitivity). 

In contrast to the main results mentioned above, the lemmas and theorems 
of §§2-14 are preliminary in character. Nevertheless they are indispensable 
for our more general purpose to build up a systematic theory of semigroups. 
Thus these lemmas and theorems fall into three classes: Either they reformulate 
our fundamental concepts, or they elucidate these concepts in some simple 
cases, or they yield applications in subsequent sections (mainly §§15-17). 
Especially, we point out Theorem 9.4, which shows that the analogue of 
Schur's Lemma for semigroups holds not only for totally irreducible 5-systems. 
The results, for instance, of §§15-17 depend upon this observation. 

1. Terminology and notation. Let 5 be a semigroup with multiplication 
as its binary operation. It is not assumed that 5 contains a zero element. Let M 
be a set on which the elements a £ S act as right multipliers inducing mappings 

pa : x —» xpa — xa (x G M) 

of M into M. Such a set M is called an S-systern if 

(xa)b = x(ab) for all x 6 M and a, b Ç 5. 

It follows that the correspondence A : a —» pa is a homomorphism of S onto a 
subsemigroup SM of the semigroup TM of all transformations (single-valued 
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mappings) of the set M into itself. SM is called the representation of S generated 
by the 5-system M. The representation SM is said to be faithful if A is an 
isomorphism into TM. Two S-systems Mi (i = 1,2) are homomorphic, 
Mi CH M2 [isomorphic, M\ c^ M2], if there is a single-valued [and invertible] 
mapping cj> of Mi onto M2 such that 

<t>(xa) = (<j>x)a for all x G Afi and a G 5. 

If ilf 1 ^ Af2, then 5 M l ~ 5 M 2 and 5 M l , 5 M 2 are called equivalent. A homo-
morphism <f> of Af 1 onto M2 is trivial if 0 is an isomorphism or if M2 has only 
one element. An S-subsystem of ikf is a non-void subset L of M such that 
LS C L. If <£ : Mi —» ikf2 is a homomorphism into, then 0(Afi) is an S-sub
system of M2. Any non-void subset of the set 

FM = {x\x G M,xa = x for all a G S} 

of all elements of M invariant with respect to S is an 5-subsystem of M. An 
5-subsystem L C M is trivial iî L = ikforif |L| = 1(|L| is the cardinal number 
ofL). 

A congruence in ikf is an equivalence relation X (regarded as a subset of 
M X M) such that 

(xi, X2) G X => (#1 a, x2 a) G X (a G S). 

[x]x (shorter [x] if no misunderstanding is possible) denotes the congruence 
class containing the element x G M, and M/\ is the set of all congruence 
classes of M with respect to X. Under the composition 

[x]\a = [xa]\y x G M, a G S, 

M/X becomes an S-system. Let L be an S-subsystem of M. The difference 
system M/L = M/\ is defined by means of the congruence 

!

Xi = X2 

or 
Xly X2 G £ • 

Evidently, F (M/L) 9* 0 as L G F (M/L). U FM C L ^ 0, then F (M/L) = 
{L},i.e.,\F(M/L)\ = 1. 

An S-system ikf (a representation SM) is called irreducible if 

(1.1) MS (I FM, 

(1.2) M has no non-trivial 5-subsystems. 

Condition (1.1) yields Filf ^ ikf; by (1.2) 

(1.3) \FM\ < 1. 

Further 

(1.4) MS = M, 
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for if \MS\ = 1, MS = {x\, then xa = x (for all a 6 S) and MS C FM 
contrary to (1.1). 

An 5-system M (a representation SM) is totally irreducible if 

(1.5) MS (^ FM, 

(1.6) M has no non-trivial homomorphisms. 

Every totally irreducible S-system M is irreducible. For if M contains a 
non-trivial S-subsystem L, then the canonical mapping of M onto M/L yields 
a non-trivial homomorphism, contrary to (1.6). 

If the representation SM contains a zero element a = ps, the elements of 5 
that are mapped onto a form an ideal (= two-sided ideal) A" 1^} of S. This 
ideal is the kernel of the representation SM- We note that FM = Ma. If 5 
itself contains a zero element 0, then M and SM are said to be 0-faithful if 

A-MPO} = {0}. 

2. The radical rad S. The representation SM defines a congruence 
OM C S X S in 5 through 

( « 1 , « 2 ) G <5M <=> Pai = Pa2-

Let K C A be two congruences in 5* and let [a]K be the congruence class with 
respect to K containing a £ S. In the semigroup S/K of all congruence classes 
with respect to K, the congruence X//c is defined through 

([a]Ky[b]K) e \A<=>(o f f t ) e x. 
It satisfies (S/K)/(\/K) ~ S/\. The following lemma is obvious. 

2.1. LEMMA. Le/ X 6e any congruence in S. 
(a) / / 

(2.2) X C M - S ) , 

//zew /&e S-system M becomes an S'/X-system under the rule 

x[a]\ = xa (x Ç M, a £ 5) 
a w d 7£;e /zaz;e 

(2.3) M S / X ) = ôM(S)/\. 

(b) Conversely, an S/\-system M becomes an S-system satisfying (2.2) and 
(2.3) if we define xa = x[a]\. 

(c) Any congruence in the S-system M remains a congruence in M regarded as 
an S/X-system and vice versa. 

(d) An element of M is invariant with respect to S if and only if it is invariant 
with respect to S/\. 

The congruence 

rad 5 = C\Mei ÔM 
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where I is the set of all irreducible 5-systems is the radical of 5. By convention, 
rad 5 = 1 (where 1 is the universal relation) if I = 0. If rad 5 = 0 (where 0 
is the identical relation), 5 is said to be radical-free. If rad 5 = 1 , then 5 is 
called a radical semigroup. 

2.4 THEOREM, rad (5/rad 5) = 0. 

Proof. Applying Lemma 2.1 with rad 5 C àM (M G I ) , we see that every 
irreducible 5-system M remains irreducible as an (5/rad 5)-system and vice 
versa. Therefore 

rad (5/rad 5) = n M € 7 ôM(5/rad 5) = r\Mei (5^(5)/rad 5) 

= ( n M € / ô M ( 5 ) ) / r a d 5 = (rad 5)/rad 5 = 0. 

3. The 0-radical rad°5. With each 5-system M we associate the set 

M° = M°(S) = {a\a G 5 and every equation xab = x where x G M and b G 5 1 

implies x G FM}. 

Here 5 1 is the semigroup obtained from 5 by adjoining an identity-element 1. 
M° is void or an ideal in 5. 

Let K and L be subsets of M, K ^ 0. Define 

i ^ L = {a\a £ S,Ka CL}. 

3.1. LEMMA. Let M be an irreducible S-system. Then M° = M~XFM. 

Proof. (1) Suppose a G M~XFM and xaô = x(x G M, b G 5 1) .Thenxa G FM 
and x = xab G (FM) 6 C FM. 

(2) Let a G M"0, x G M. Assume xa g FM. This would imply that xaS1 = M 
and xab = x with suitable 6 G 51. Hence x G F M and xa G FM. 

3.2. COROLLARY. Let M be an irreducible S-system, M° ^ 0. 77œ» M° ts the 
kernel of the representation SM. 

With every element a G 5 we associate the congruence K(O) defined in 5 by 
means of S/n(a) = S/S1aS1. Here S/S^S1 is the difference semigroup of 5 in 
the sense of Rees with respect to the principal ideal S^S1. 

3.3. LEMMA. Let a G 5, M G / . Then 

nia) C ôM^a G M0. 

Proof. (1) Let *(a) C ôM and xab = x (x £ M, b £ S1). From c G 5, 
(a&, ata) G «(a), we infer that yab = yabc for every y G M. In particular we 
obtain x = xa& = xafo = xc for every c G 5 and hence x G FM. 

(2) Let a G M0; hence 5 W C M0. By Corollary 3.2, M0 is a congruence 
class with respect to ôM; whence K(O) C àM. 

An element a G 5 such that 

as = a for every 5 G 5 
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is a left zero of 5. The set 0(S) of all left zeros of 5 is either void or an ideal in 5. 
The difference semigroup S/0(S) then contains zero. The nilradical 
nil rad (5/0(5)) (i.e., the sum of all nil right ideals or equivalently the sum of 
all nil ideals of S/0{S)) defines an ideal N(S) in 5 through 

N(S)/0(S) = nil rad (5/0(5)) , N(S) D 0(S) s* 0. 

If 0(S) = 0, put iV(5) = 0. For any 5-system M, we have MO (5) C FM, 
hence 0(5) C M~lFM = If0 for an irreducible Jlf. 

3.4. LEMMA. Z>/ 0(5) F^ 0. J ^ w ez/er;y irreducible S-systern M is an irreducible 
5/0(5)-system and vice versa. Moreover, 

(3.5) M° (S/0(S)) = itf°(5)/0(5). 

Proof. 0(5) C M° implies M° 5̂  0. Hence if0 is a congruence class with 
respect to ôM- Since 0(S) C M°, Lemma 2.1 can be applied. The relation (3.5) 
follows from Lemma 2.1 (d) and Lemma 3.1. 

3.6. THEOREM. Let 

(3.7) rad0 5 = r\Mel M° 

(by convention rad0 5 = 5 if I = 0). FAe» iV(5) C rad0 5. 

Remark. Obviously rad0 5 may be void. If 5 contains zero, then rad0 5 is 
the 0-radical in the sense of (3). In general rad0 5 is called the generalized 
0-radical. 

Proof of Theorem 3.6. If N(S) 5* 0 and M G I, then as in (3) 

(3.8) N(S)/0(S) = nil rad (S/0(S)) 

c nMelM°(s/o(S)) = nM€7M°(5)/o(5) 
= (rad0 5 ) / 0 (5). 

The following theorem is a special consequence of a surprising characteriza
tion of our congruence rad 5 (6; 11). It is stronger than Theorem 3.6. We state 
it without proof. 

3.9. THEOREM. N(S) = rad0 5. 

4. Primitive semigroups. A semigroup 5 is called (right) primitive 
(^-primitive, totally primitive) if it has a faithful irreducible (O-faithful irreduc
ible, faithful totally irreducible) 5-system. Since the regular representation of 
a group G is transitive, every group (distinct from identity) is a primitive 
semigroup. Obviously every primitive permutation group is a totally primitive 
semigroup. The semigroup TM is primitive but not left primitive. If a completely 
simple semigroup 5 is faithfully represented by a regular matrix semigroup 
(over a group or group with zero) with the defining matrix P, then 5 is primi
tive if no two different columns of P have a common right multiple (12). 
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A congruence ir in a semigroup 5 is primitive {totally primitive) if S/w is a 
primitive (totally primitive) semigroup. This definition implies 

4.1. LEMMA. The congruence T in S is primitive (totally primitive) if and only 
if w = ôM where M is an irreducible {totally irreducible) S-system. 

4.2. LEMMA. Primitive semigroups are radical free. 

4.3. THEOREM. A radical-free semigroup S satisfies 

Thus it is subdirectly decomposable into primitive semigroups S/8M. 

Proof. By Lemma 2.1, every irreducible 5-system M is an irreducible 
•Sy^M-system. Hence S/ôM is primitive if M Ç / . Since (^M^I^M = 0, the 
Theorem follows immediately from a theorem of Birkhoff (1, p. 92, Theorem 9). 

It is natural to introduce the following notion. A semigroup 5 with zero 0 
is weakly free of zero-divisors if for all a and b Ç S: 

(4.4) aS'b = {0} => a = 0 or b = 0. 

This condition is equivalent to 

(4.5) aSb = {0} =* a = 0 or b = 0. 

Obviously (4.5) implies (4.4). Conversely, if (4.4) is true and aSb = {0}, b ^ 0, 
then asSxb = {0} (for all s £ S); hence as = 0, i.e., aS = {0} and in particular 
ab = 0. Hence aSlb = {0} and (4.4) implies a = 0. 

A semigroup 5 is weakly left cancelling if for all a, bi, and bi Ç 5 the following 
statement is true: 

(4.6) If asbi = asbz for all 5 G S1 and if b\ ^ 62, then 5 contains left zeros and 
a Ç 0{S). 

4.7. LEMMA. Every weakly left cancelling semigroup with zero is weakly free of 
zero-divisors. 

Proof. aSlb = {0} implies asb\ b = asb2 b = 0 for all bi, 62, s Ç S1; hence 
a = 0 or bib = bib. Choose 61 = 1, 62 = 0. Then the second case yields 
b = 0b = 0. 

The congruence 7r in a semigroup 5 is a {right) prime congruence if 5/7r is 
weakly left cancelling (in commutative semigroups with identity this concept 
of a prime congruence is equivalent to a definition due to K. Drbohlav). As 
usual, an ideal P in 5 is a prime ideal if AB C P, B ÇL P implies A Cl P 
whenever A and B are ideals in S. 

4.8. LEMMA. The ideal P C S is a prime ideal of S if and only if S/P is 
weakly free of zero-divisors. 
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Proof. (1) Let S/P be weakly free of zero-divisors and AB C P, B (J_ P. 
For all a Ç A and K 5 w e have aSlb (Z AB Q P. Since b may be chosen such 
that b d P, we deduce that a Ç P. 

(2) Let P be a prime ideal and aS1* C P . Then (5^5*) ^ ^ S 1 ) C P and 
a £ S^S* CPorbe S^S1 C P . 

4.9. THEOREM. Pe£ P 6e aw idea/ of the semigroup S and let T be the correspond
ing congruence in S such that S/TT = S/P. If w is a prime congruence, then P is a 
prime ideal. 

Proof. Cf. Lemmas 4.7 and 4.8. 

4.10. THEOREM. Every primitive congruence in a semigroup S is a prime 
congruence. 

Proof. Let w be a primitive congruence in 5. Then S/T has a faithful irreduc
ible 5-system M. If asbi = asbi for all 5 Ç 51, then xasbi = xasbi for all x £ M. 
If a (? 0(5) , then M contains at least one element x such that xaS1 = M. 
For if xaS1 C FM = {x0} holds for every x Ç M, then xas = xa for all x Ç M", 
i.e., as = a for all 5 Ç 5, whence a G 0(5) , a contradiction. From xaS1 = AT, 
it follows that yb\ = ybi for all y £ M"; hence b\ = £2. 

5. Cyclic 5-systerns. An 5-system Z is cyclic (strictly cyclic) if Z contains 
an element z such that Z = {z} \J zS (Z = z5). The element z is a generator 
(strict generator) for Z. If Z is strictly cyclic, then every generator for Z is 
strict. The set Z of all the non-generators of the cyclic 5-system Z is void or 
an 5-subsystem of Z distinct from Z. If Z contains at least two different 
elements, then 

(5.1) PZ C Z ^ Z. 

Indeed x 6 FZ implies that xS = {x} ^ Z and x G Z. 

5.2. THEOREM, (a) An irreducible S-system M is strictly cyclic with FM = M. 
(b) Let Z be a strictly cyclic S-system containing at least two elements. If 

Z = 0, then Z is irreducible. If Z ^ 0, then the difference system Z/Z is irreducible. 

Proof, (a) xS = M holds for every x 6 M — FM. For otherwise xS C FM, 
i.e., 

L = {y\y e M, yS C FM} <£ FM; 

hence L = M (note that L is an 5-subsystem of M). The property LS C PM" 
of L implies MS C P&f, a contradiction. At the same time, it follows that 
M C FM. By (5.1), PikT C M\ thus PM = M. 

(b) Z = s5yields ZS = Zand, by (5.1), 

(5.3) ZS (£2, ZS (Z FZ. 

Let W be an 5-subsystem of Z; W (J_ Z. Then W contains an element w such 
that wS = Z; therefore Z C WS C W, and hence Z = W. From (5.3), we 
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deduce that Z is irreducible if Z = 0. Let Z ^ 0 . Then F(Z/Z) = [Z], by 
(5.1). On account of (5.3), we have 

(Z/Z)S(ZF(Z/Z). 

Since every 5-subsystem of Z/Z is expressible as a quotient W/Z where W 
is an 5-subsystem of Z such that Z C W, we obtain (1.2) for M = Z/Z, i.e. 
M is irreducible. 

6. Some characterizations of rad 5. Interpreting the semigroup 5 as an 
5-system with respect to right multiplication, we have 0(S) = FS. A right 
congruence >LC of the semigroup 5 then is identical with a congruence in the 
5-system 5. The 5-system 5//x is defined as in §1. We call a right congruence /x 
in 5 modular if there is an element e £ S such that [e]a = [a] Ç 5//x for all 
a Ç 5. The following Lemma is due to Tully (12). 

6.1. LEMMA. The S-systern Z is strictly cyclic if and only if Z ~ 5//x, where /x 
denotes a modular right congruence in the semigroup 5. 

For the sake of completeness we give a short proof. Let Z = zS be strictly 
cyclic. ^ : a —•» za is a homomorphism of the 5-system 5 onto Z and 

(a, b) £ n t=$ \pa = \//b 

yields a right congruence in the semigroup 5 such that 5//x ~ Z. Choosing 
e Ç 5 such that ze = z, we have zea = za, i.e., [e]a = [ea] = [a] for all a G S. 
The converse is obvious. 

Let M be an irreducible 5-system. Since M is strictly cyclic, there exists a 
modular right congruence \x in 5 such that M c^S/n. This remark immediately 
yields 

6.2. THEOREM, ylw S-sy stem M is totally irreducible if and only if M c^ 5//x, 
where fiis a maximal modular right congruence in 5. 

6.3. THEOREM. For every maximal right congruence /x in S the following two 
conditions are equivalent: 

(a) 5/M is a totally irreducible S-sy stem. 
(b) At most one of the right congruence classes of S with respect to JJL is a right 

ideal R of S and, if this is the case, then S2 (£_ R. 
Proof. A right congruence class of 5 with respect to /x belongs to F(S/n) if 

and only if it is a right ideal R of 5. 

REMARK. Comparing Theorems 6.2 and 6.3, the following question arises, 
which corresponds to a question on rings due to Kertész and solved by Leavitt 
(9, p. 84): Let /x be a maximal right congruence in the semigroup 5 satisfying 
condition (b). If 5 has a left identity or if 5 is commutative, then xx is modular. 
(This is obvious if a left identity exists. If 5 is commutative, the assertion is 
easy to verify.) Is this true in general? As the following example shows, the 
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answer is negative (in analogy with the situation in rings). Let K be the free 
semigroup generated by two non-commuting symbols a and b. Set S = K/K 
where K is the congruence in S generated by the two pairs (a, a2) and (a, ab). 
Then S consists of the elements [a], [b]n[a], [b]m (m, n = 1, 2, . . .). Let R be the 
maximal right ideal of S containing all elements of 5 but [a]. Obviously, the 
right congruence /* in 5 defined by S/n = S/R is maximal. Since [a]2 = [a] G S2, 
we have S2 (£_ R. We can easily verify directly that there is no element [e] G S 
such that ([e] [x], [x]) G /x for all [x] G S. 

From (3, Theorems 16 and 17), we readily obtain a necessary and sufficient 
condition for a maximal right congruence to be modular. 

6.4. LEMMA. Let a be a right congruence in the semigroup S. Let A be a right 
congruence class of S with respect to a. Let Ë denote the complete lattice of all right 
congruences in S. Then 

HA = sup#{/x|/j 6 $, A is a right congruence class with respect to JJL) 

is the unique maximal right congruence relative to A (i.e., relative to the property 
of having A as a class). JJLA is modular if and only if S contains an element e such 
that 

ea G A £=> a £ A for all a G S. 

Proof. Let $ be the equivalence relation 

P = (A X A) V ((S - A) X (S - A)). 

Set 
0* = SUP^{M|M G S , / i C l ? ) 

and 

(6.5) PC = {(a, b) | (as, bs) G 0 for all s G S1}. 

Then JJLA = /3* = fiC, as can be seen by arguments similar to those given in the 
proof of (3, Theorem 15). Since 

a C £* = PC C ft 

A is a class with respect to /xA. By (6.5), [xA is modular if and only if S contains 
an element e such that (eas, as) G P for all a G S and 5 G S1. 

6.6. THEOREM. The maximal right congruence ju in S is modular if and only 
if at least one right congruence class A of S with respect to JJL satisfies the condition 

(6.7) ea £ A <=$a £ A for alla G 5 

with a suitable e G S. 

Proof. Since JJL is maximal, we have /x = M A- Hence by Lemma 6.4, the 
assertion (6.7) is obvious. 
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REMARK. Contrary to the situation in rings (cf. the theorem in (9, p. 84)), 
condition (6.7) is not equivalent to 

(6.8) e(S - A) CS - A for suitable e G S. 

Indeed, let S be the semigroup 5 = {a, b}, where a2 = ab = a, b2 = ba = b. 
The identical relation 0 is maximal in S and (6.8) is satisfied, e.g., A = {a}, 
e = b. But 0 is not modular. 

6.9. LEMMA. Let n be a modular right congruence in S. Suppose S contains an 
ideal 12 with the following property: If co denotes the congruence in S defined by 
S/œ = 5/12, then the right congruence /z0 = sup${co, /z} in S is distinct from 1. 
Then /J is contained in a maximal (necessarily modular) right congruence in S. 

Proof. The modular right congruence /z0 determines a modular right con
gruence no/œ 7e- 1 in S/co. Since the class 12 is the zero-element of 5/co, (3, 
Theorem 14) implies that ii0/co is contained in a maximal right congruence 
/x*/co in S/co. Hence M* is a maximal right congruence in S and M C Mo C M*-

Choose 12 = 0(5) ^ 0. Then /x0 ^ 1. This yields 

6.10. THEOREM. Let 0(S) 9e 0. Then every modular right congruence \i 7^ 1 
in S is contained in a maximal one. 

6.11. THEOREM. Let JJL be a modular right congruence in S. If M = S//JL is an 
irreducible S-system and M° 9^ 0, then n is contained in a maximal modular 
right congruence in S. 

Proof. Let 12 = M°. Then /x0 5* 1, for the ideal 

is a congruence class with respect to bM. This implies co C àM. Hence by Lemma 
2.1, M is an irreducible 5/co-system. Because /x is modular, there exists e £ 5 
such that MMcz = [a]M (Gikf) for all a G 5. Going back to our definition, we 
obtain [a]M [6]w = [a]M b for [6]w G S/co (} G S). The relation 

([a]„, [&]„) G M'OA> «=* M M [<*]« = M M [&]« 

** H M = [&L* <=> (a , &) € M 

defines a right congruence M'O/CO in 5/co, /x'0 being the corresponding right 
congruence in 5. By our construction, /x'0 = co o/x o co (o being the usual 
product of relations), hence /x'0 = Mo = sup^jco, >u}. Furthermore, 

M - ( 5 / C O ) / ( M O / C O ) 

relative to 5/co; hence /x0 ^ 1. 

Let ikf be an 5-system and x £ M". Then 

(a, b) £ nx<^> xa = xb 

defines a right congruence \xx in 5. 
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6.12. LEMMA. Let M be any S-system. Then 

$M = l\xÇM Vx-

If x G FM, or more generally \xS\ = \,then\xx = 1. 

Proof. 

(a, b) G à M ^ (\/# G M)xa — xb <=̂  (\/x G .M") (#, Ô) G Mx« 

6.13. LEMMA. If e w a modular right congruence in S, J/zew 

5,S/e C €. 

Proof. Suppose e G S satisfies [e]€ a = [a]e for all a G 5. Then 

hence, by Lemma 6.12, ôS/e C *. 

6.14. THEOREM. Let M be an irreducible S-system. Let 

EM = {e\e G ®, e modular, S/ec^ M}. 

Then 

Proof. If S/e^M, then 5S/É = 5M; hence, by Lemma 6.13, 5M C € for 
e £ EM. On the other hand, every JJLX of 

^M = Dx^M-FM Ms 

belongs to £ M ; hence 

and therefore equality holds. In particular, we can verify that 

EM = U | * G M - FM}. 

6.15. COROLLARY. Let E be the set of all those modular right congruences 
e in S for which S/e is irreducible. Then 

rad 5 = P\e€# e. 

Similar to rad 5 we may consider the congruence 

rad S = DM$7 5M 
def 

where I is the set of all the totally irreducible 5-systems. We note that 

r^d (S/râd S) = 0. 

6.16. COROLLARY. Let È be the set of all the maximal modular right congruences 
inS. Then 

rad S = De^Ë € O r a d S). 
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6.17. THEOREM. Let M be an irreducible S-system. Put 

KM = [e\e g ®,S/e~M}. 
Then 

KM — \\t£KM £ 
def 

is a congruence in S contained in o M' 

Proof. Let (a, b) G KM and (xa, xb) (£ KM for a suitable x Ç S. Then 
(xa, x£>) € 6 for a suitable e £ i^M- Hence [x]€ S = S/e and 

5 / / i W , ~ 5 / € ~ M . 
This yields 

/ % ] € € X M a n d (a, b) 6 i%]e, 

i.e., [x]ca = [x]e b and [xa]c = [xb]e, respectively, a contradiction. 

6.18. COROLLARY. Let K be the set of all those right congruences e in S for 
which S/e is irreducible. Then r^eeK e is a congruence in S contained in rad S. 

6.19. COROLLARY. Let K denote the set of all those right congruences e in S for 
which S/e is totally irreducible. Then 

is a congruence in S contained in rad S. 

An S-system M is 2-minimal if 

(6.20) \M\ > 2, 

(6.21) M contains no non-trivial 5-subsystems. 

Every irreducible 5-system is 2-minimal. If the right congruence /x in 5 is 
maximal, then S/\x is 2-minimal. 

6.22. LEMMA. If /x is a right congruence in S such that S/n is reducible and 
2-minimal, then n is a congruence in S. 

Proof. Let (a, b) £ fx. If 5 contains an element x such that (xa, xb) (j? jut, 
then [x]nS = S/fx and (S/fx)S (2 F(S/n). Hence S/LI is irreducible, a con
tradiction. 

6.23. THEOREM. The intersection of all maximal right congruences in S is a 
congruence in S contained in rad S. 

REMARK. In an oral communication, A. Kertész pointed out to me that an 
analogous statement holds for the intersection of all the maximal right ideals 
of a ring; cf. A. Kertész, Vorlesungen ilber Artinsche Ringe (in preparation). 

Proof. If /z is a maximal right congruence in S, then S/fx is either totally 
irreducible or 2-minimal reducible. Thus our theorem follows from Corollary 
6.19 and Lemma 6.22. 
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Kertész (8) stated a connection between the Frattini-subgroup of a group 
and the Jacobson-radical of a general ring. An analogous characterization of 
the 0-radical of a semigroup with zero was given in (5). We now proceed to 
characterize the congruence rad S in a similar manner. 

Let $(S) be the set of all the pairs (a, b) £ S X S such that (sa, sb) for 
every s £ S may be omitted from every right generating relation of 1 in S 
(containing it) ; thus if a is any relation in S, then 

(6.24) {{(sa, sb)} U a } r = 1 => {a}T = 1. 

Here {a}T denotes the right congruence in S generated by a, i.e. the inter
section of all 7 G $ such that a C 7-

6.25. THEOREM, rad S = $(S). 

Proof. 1. Let (a, b) G S X S and (a, b) (L $(S). Then there exist x G 5 and 
P CS XSsuch that 

(6.26) {{(xa,xb)} U / 3 } r = 1 

and {/3}T 9e 1. Choose fx Ç $ maximal such that 

By (6.26), fx is maximal in $ . Hence S//z is totally irreducible. Suppose that 

(a, b) e r\Ma àM-
Then [y]^ a = [;y]M & for all y Ç 5; in particular (xa, xb) Ç /*, a contradiction. 
Hence (a, £) $ rad 5. 

2. Conversely, if (a, 5) G 5 X 5 and (a, &) g rad 5, then by definition there 
exists M £ Î such that yua = yub does not hold for all y £ M and u £ S. 
Hence, JSTO 9e zvb for some s £ ikf and y Ç 5; i.e. (m, fl£) g /x2. On the other 
hand, ixz is a maximal right congruence in S, whence {{(va, vb)} \J fj,z}T = 1, 
fx2 ?± 1. Thus (a,b) (2 $(5). 

REMARK. Consider the set 3>*(S) of all the pairs (a, b) £ S X S that may be 
omitted from every right generating relation of 1 in S (containing (a, b)). 
Then, by a general principle, $*(S) will be the intersection of all maximal right 
congruences in 5 (therefore 3>*(S) C $(S)). Indeed, let A be any set. Let 
s/be a class of subsets of A with the intersection property, i.e., 38 C<$f 
implies 

If 38 = 0, define 
nB,^B = A. 

In addition, assume that \JBÇ.égB Ç J ^ for every 38 Ci S^ that is simply 
ordered with respect to set inclusion. It is natural to regard the subsets of A 
belonging to s& as the se -substructures of A. Let X be any subset of A. Put 

38 = {BlBesf^CB}, {X}s/ = nBe<%B. 
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Obviously {X} $tf Ç se . The subset X is called a generating system for 4̂ if 
{X} j / = J4. Let $ j / (A) C 4̂ be the set of all those elements x £ A that 
may be omitted from every generating system for A (containing x). Zorn's 
Lemma implies that $$/ {A) is the intersection of all maximal elements oisé. 
(An element B Ç stf is called maximal \i B ^ A and if, for every C £ J^, 
5 C C implies A = C or B = C.) Hence 3>j/ (̂ 4) is an ^-substructure, 
the Frattini-s/ -substructure of A. Note that, in contrast to (10, pp. 73~86), 
this definition of $^/ (A) is independent of the special concepts of "A-
substructures relative to a set of axioms A" and "substructures of the same 
kind." In our case take A = S X S and s/ = Ê. Then **(5) - *«(5 X S). 

7. The socle of an S-system. In this section we investigate the concept 
of a socle for S-systems corresponding to the socle of a module (7, p. 63). 

7.1. LEMMA. Every 2-minimal S-system M is either irreducible or it satisfies 
MS = FM; in the latter case we have either 

\FM\ = 1, \M\ = 2, 
or 

\FM\ = 2 , M = FM. 

Proof. If M is reducible, then MS C FM. Because M is 2-minimal, we have 
| MS\ = 1 or MS = M = FM. The first case yields \FM\ = 1, and MS = /Of. 
For FM = ikf would imply MS = M, \MS\ > 1, a contradiction. The set 
{x, y} (where x £ M — FM and y G FM) is an S-subsystem of M, con
sequently {x, 3>} = M. 

In the case MS = M = FM, every non-void subset of Mis an S-subsystem; 
hence \M\ = 2. 

7.2. LEMMA. Z,e/ <£ : Mi —» M2 be a homomorphism of the irreducible (of the 
2-minimal) S-system Mi into the S-system M2. Either 4>(M\) is an irreducible 
(a 2-minimal) S-subsystem of Mi or \<j>(Mi)\ = 1, <j>(Mi) C FM2. 

Proof. Let M± be irreducible. The pre-image <i>~lL of any non-trivial S-
subsystem L C <t>(Mi) is a non-trivial S-subsystem of Mi. Thus <f>(Mi) contains 
only trivial S-subsystems, whence \F<t>(Mi)\ < 1. For otherwise 

(*) F4>{Mi) = 4>{Mi). 

Every subset of F<j>(Mi) is an S-subsystem and (*) would imply 

4>(Mi) = {xhx2}, xi^x2, ^{xi} n4r1{x2] = 0; 

hence, by the irreducibility of Mi, either <j)~l{xi} = Mi or <j>~l{x2) = Mi, a 
contradiction. We therefore have 

<t>(Mi)S = <f>(MiS) = 4>(Mi) <£ F<t>(Mi) 

if <t>(Mi) y£ 1; while for |0(Mi) | = 1, the S-system <j>(Mi) consists of only one 
fixed element of M2. 

https://doi.org/10.4153/CJM-1966-048-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-048-1


STRUCTURE OF SEMIGROUPS 463 

Let / be the set of all the irreducible S-subsystems of an S-system M. T h e 
sum 

(7.3) © = ULeJLU FM 

is called the socle of M. If Ha is the set of all the irreducible S-subsystems of M 
isomorphic to a given irreducible S-subsystem K of M, then 

£« = ULeHaLUFM 

is called the homogeneous component of the socle determined by K. 
UHa 9* 0 and He j * 0, then 

§ « n ^ = FM for a ^ (3. 

Otherwise, there would exist La £ Ha and Lp 6 Hp such t h a t La C\ Lp (2 FM, 
whence La = Lp and # « = Hp, a = /3. 

Given two S-subsystems X and Y of M, we write X ^ Y if there is a finite 
number of S-subsystems Mt C M(i = 1,2, . . . ,n) with M i = X , M n = Y, 
such tha t 

M , ^ Mi+1 or M<+i ^ Af, 

for every i = 1,2, . . . , n — 1. Obviously this relation is an equivalence t h a t 
induces a decomposition of the set J = U / , into mutual ly disjoint classes / , . 
T h e S-subsystems 

are called the semi-homogeneous components of the socle ©. If /<r ^ 0 and 

J T ^ 0, then 

3 , H 3 T = FJIf for ajéT. 

M is said to be completely reducible {semi-homogeneous, homogeneous) if 
M = @ ( M = 3 „ M = $ a ) . 

Lemma 7.2 implies the following 

7.4. T H E O R E M , (a) Let Mt be an S-system with the socle ©* ^ 0 (i = 1, 2 ) . 
Every homomorphism 0 0/ ikfi w/0 Af2 induces a homomorphism of ©1 iwfo ©2. 

(b) Every homomorphic image of a completely reducible S-system is completely 
reducible. 

7.5. T H E O R E M . Every S-subsystem M' of a completely reducible S-system M is 
completely reducible. 

Proof. Choosing © = M in (7.3), we obtain 

M' = M' C\ M = ULeJ (AT r\L)\J (AT H FM) 
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where Mf C\ FM = FM' and 

M' C\L = 0 or M' n L C FAf7 or M' C\L = L. 

Hence 

8. The socle of a semigroup. A right ideal R of a semigroup 5 is called 
irreducible (2-minimal) if it is irreducible (2-minimal) as an 5-system. Con
sidering 5 as an 5-system, its socle ©, its homogeneous components § a , and 
its semi-homogeneous components 3v are called the (right) socle of the semi
group 5, its (right) homogeneous, and its (right) semi-homogeneous components 
respectively. Every element u G 5 induces an endomorphism a —•» ua (a Ç 5) 
of the 5-system 5. Therefore by Theorem 7.4, © is either void or an ideal of 
the semigroup 5 such that 0(S) C ©• By Lemma 7.2, every non-void 3v is 
an ideal of 5. Through © = U3v, the socle © is decomposed into the ideals 
3?*- such that 

3 , H 3 T = 0(5) i f e r ^ r . 

This implies that 

3 , - 3 T = 0(5) i f ( 7 ^ r . 

Thus © has at most one semi-homogeneous component, © = 3v (or © = 0) 
if 0(5) is void. 

8.1. LEMMA, (a) A n irreducible 5- system M is irreducible as a T-system for every 
ideal T of S for which MT <£ F M holds. 

(b) Every 2-minimal reducible S-system M is 2-minimal relative to each sub-
semigroup of 5. 

Proof, (a) Let M be an irreducible 5-system; x Ç M — FM. Then xT = M; 
for xT = FM would imply that the 5-subsystem {x\x G M, xT C FM} 
contains at least two distinct elements; hence it would be equal to M while 
MT <t FM. 

(b) Cf. Lemma 7.1. 

8.2. THEOREM. Suppose the semigroup 5 satisfies the following condition: 
Either 0(S) = 0, or S/0(S) is a semigroup without nilpotent ideals distinct 

from zero. 
Under this condition we have either © = 0 or © is completely reducible. 

Proof. Let R be an irreducible right ideal of 5. If i?© (£ FR, then R is an 
irreducible ©-system by Lemma 8.1(a). If R® C FR, we obtain 

R* C FR = Rr\0(S). 

Hence R C 0(5) and RS C FR, a contradiction. 
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8.3. THEOREM. Let S be a completely reducible semigroup. 
(a) An S-system M satisfying MS = M is completely reducible. 
(b) Every irreducible S-system is the homomorphic image of a right ideal of S. 

Proof. Let S = U RKJ 0{S) where R ranges over the set of irreducible right 
ideals of S. 

(a) Observing MO{S) C FM, we obtain 

M = MS = \JRMR\J FM = \JR \JXZM xR U FM. 

The mapping r —> xr {r £ R) defines a homomorphism of R onto xR {x G M). 
Hence, by Lemma 7.2, xR is either irreducible or contained in FM. 

(b) If M is an irreducible 5-system, then MS (£. FM. Thus there exists an 
irreducible right ideal R C S such that MR (£ FM. Hence xR (£ FM for 
some x G M, i.e., xR = M and R ^ M by r —> xr (r G i£). 

9. An analogue of Schur's Lemma. Let Horn {Mi, M2) denote the set 
of all the homomorphisms 4> : M\ —> M2 of the 5-system Mi into the 5-system 
M2. We write 0ac for the image of x G Mi. Then Horn (Af, M) = TM is the 
centralizer oi Mil Mi = M2 = M (3). 

9.1. THEOREM. The centralizer of a cyclic {of a strictly cyclic) S-system is a 
homomorphic image of a suitable subsemigroup ofS1 {of S). 

Proof. Let M = xS1 (Let M = xS {x G M)). If y G TM, then S1 (then 5) 
contains an element c such that yx = xc. Thus y(xa) = {yx)a — xca, a being 
any element of S1 (of S). Since 7 is a mapping we have 

(9.2) xa = xb => xca = xcZ> for all a, 6 in S1 (in 5) . 

Conversely if C is the set of all the elements of 5 1 (of S) which satisfy (9.2), 
then C is non-void {TM contains the identical mapping); moreover C is a 
subsemigroup of S. If d G C, then xa = x6 implies xda = xdb. This yields 
xcda = xcdb for every c G C; hence cd G C. Each element cÇ C induces an 
endomorphism yc G TM through yc{xa) = xca. The correspondence c —» 7C 

yields a homomorphism of Conto TM. 

REMARK. The mapping c —•> YC induces a homomorphism gCg ^ TM for 
every element g of the pre-image of the identity of TM. In our two cases these 
pre-images are the semigroups 

{g|g G S1, xg = x] and {g\g G S, xga = xa for all a £ S}. 

9.3. LEMMA. Let e be an idempotent of S and let M be an S-system. Then 
Horn {eS, M) = Me; in particular TeS = eSe. 

Proof. If ^ G Horn {eS, M) and a G S, then 

<£(ea) = 4>{eea) = {<j>e)ea. 
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This implies that 4>e = (<t>e)e G Me. Conversely, each y G Me determines a 
homomorphism (j>y : eS —» M through 4>v{ea) = ya = yea; thus <t>ye = y. The 
correspondence y —> <\>v is one-one. If M = eS, x = e, it is an isomorphism. 
Thus y and <f>y may be identified. 

9.4. THEOREM. Let e be an idempotent of S. 
(a) If the right ideal M = eSis irreducible, then 

(9.5) either eSe is a group, or it is a group with zero and e G 0(5) , 
also, eSe = \e) or 0(eSe) = eSe C\ 0(S). 

(b) Assume that either 0(S) is void or that S/0(S) has no nilpotent ideals but 
zero. Then (9.5), conversely, implies the irreducibility of eS. 

Proof, (a) Let Tbe a right ideal of eSe. Then TS = eTS C eS. If TS C F(eS), 
then T = Te C F(eS) and |T| = 1. If TS <£ F(eS), we conclude that TS = eS 
and T C eSe = TeSe C T, i.e., T = eSe. Hence the only right ideals of eSe 
are eSe and (if F(eS) 9e 0, i.e., \F(eS)\ = 1) F(eS). In particular, we obtain 
0 (eSe) = eSe or 0 (eSe) = F(eS) C 0 (S) ; in the former case we have eSe = {e}. 
Let a be any element of eSe. From aeSe C F{eS), it follows that a is the zero-
element of eSe. For on the one hand, we have a G F(eS), i.e., as = a for all 
s £ 5. On the other hand, let b G e5e. Then 6as = &a for all 5 G 5 where 
ba G eSe C e5; hence 6a G F(eS) = {a} and ba = a. Now let aeSe Çf_ F(eS). 
Then (a5 = eS and) a^5e = eSe, i.e., for every 3/ G e5e the equation ax = 3/ 
has a solution x G eSe. Thus e5e is a group or a group with zero. 

(b) Conversely, assume that eSe satisfies (9.5). If eSe is a group with zero, 
then 0{eSe) contains only this zero-element. If eSe is a group, then 0(eSe) = 0 
or 0(eSe) = eSe = {e}. Observing that e G 0(5), we deduce that e G F(eS) and 
(eS)5 Ç£ F(eS). Let ea be any element of e5 — F(eS). Then ea5 (£ 0(5) . For 
otherwise ea £ Q = 0(S)S-K From QS C 0(5) it follows that Q2 C 0(5) C (?. 
Hence Q/0(S) is a nilpotent ideal of S/0(S)t i.e., <2 = 0(S). This would 
imply that ea G 0(5) , while ea G F(eS). 

Now e a 5 ( £ 0 ( 5 ) implies that (m5)2 (Z; 0 (5 ) ; therefore eaSe(£0(S)\ 
hence by (9.5), either eSe = \e) or eaSe Çj_ 0(eSe). In the latter case, there 
exists b G 5 such that eabe G 0(eSe). Since #5e is a group or a group with zero, 
the equation eabc = e has a solution c G e5e. Hence the equation eau = ed 
has a solution u £ S for every ea7 G e5. This is true even if eSe = {e}. Thus 
eS is irreducible. 

9.6. COROLLARY. Let S be a semigroup satisfying at least one of the following 
two conditions: 

(a) 5 contains no one-sided zero-elements. 
(b) 5 contains zero but no nilpotent ideals except {0}. 
Let e be an idempotent of 5. Then eS is irreducible if and only if Se is left 

irreducible. 
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An idempotent e £ Sis called (right) primitive if 

eu = ue = u=^u = e 

for every idempotent u $ 0(5) . 

9.7. LEMMA. Let e be an idempotent of S. IfeS is irreducible, then e is primitive. 

Proof. Assume that eu = ue = u where u2 = u $ 0(S). Then uS = eS. 
Hence e = uv for some v and thus u = ue = u2v = uv = e. 

9.8. LEMMA. Let eS and fS be two irreducible right ideals of S generated by the 
idempotents e andf. Then 

(a) eS~fS*=>eSf(ZO(S). 
(b) eS~fS=>eSe~fSf. 
(c) Every homomorphism of fS into eS is trivial. 

Proof. Lemma 9.3 yields Horn (fS, eS) = eSf. 
(a) If eS^fS, there is c Ç eSf such that cfS = eS. Since eS Çt 0(S), we 

have c = cf g 0(5) . 
Conversely, eSf (jL 0(S) implies that eSf (£_ F(eS), eSfS = eSy and hence 

eSffSe = eSe (£. 0(S). We can, therefore, find elements a G eSf and b € fSe 
such that ab = e. Obviously, ba is idempotent and a(ba)b = e d 0(S) implies 
that ba (? 0(S). Moreover, fba = baf = ba. Since / is primitive, we obtain 
ba = f. Hence ab = e implies that b induces an isomorphism of eS onto fS. 

(b) The mapping 5 —» bsa (s G eSe) is an isomorphism of the semigroup eSe 
onto fSf. 

(c) If eSf C 0(S)y then every homomorphism of fS into eS is the trivial 
mapping onto the fixed element of eS. We may therefore assume that 
eSf <t 0{S). 

Let a be an element of eSf not contained in 0(S). Then aS = eS; hence 
afSe — eSe and repeating the argument in the proof of (a), we conclude that 
a induces an isomorphism of fS onto eS. 

10. Vector sets . Let A be a group or a group with 0, the identity of A being 1. 
Put 

_ A ( A - {0} if 0 G A, 
(A otherwise. 

A left A-system M is called a (left) vector set over A if Af is unital (i.e., lx = x 
for all x G M) and the following four conditions are fulfilled: 

(10.1)! \FM\ < l o r FM = M. 

(10.2) r FM = M =>|A|' = 1. 

(10.3)i 0 ^ FM ^ M^ (A(ikf - FM)) C\FM * 0. 

(10.4) ! For all 7, ô G A, * Ç M, yx = ôx implies 7 = Ô or x G FM.-
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10.5. LEMMA. Let M be a vector set over A satisfying 0 ^ FM ^ M. Then 

\FM\ = 1, 0 G A, FM = OM. 

Proof. Choose x G M — jpikf and ô G A according to (10.3)! such that 
ôx G FM. Then Y<5X = 5x and, by (10.4)!, yd = Ô. Hence 5 = 0 G A or 7 = 1 
for all 7 G A. But A = {1} and FM 7* M are inconsistent. 

Relative to the group ~A the set M decomposes according to 

(10.6) M = Ux£N~Ax 

into domains of transitivity ~Ax where x ranges over a set of représentants N 
of these domains. The dimension of M is defined by 

\N\ - 1 if \M\ > \FM\ = 1, 
\N\ otherwise. 

For each x G M — FM, the set Ax is an irreducible left A-system. On 
the one hand if A(Ax) C F (Ax) C FM, then \FM\ = 1, \Ax\ = 1, |A| = 1, 
and FM = M while M — FM ^ 0. On the other hand from ôx G F (Ax) we 
deduced ^ Oand A<5x = A5_1dx = Ax, i.e.,<5x G Ax. 

Since either 

M = Ur €M—FM Ax or M = F M = ^JXGFM AX 

and since 5x —* <5;y(<5 G A) for x, 3/ G M — F M is an isomorphism of Ax onto 
Ay, we see that M is homogeneous. 

Let M be a vector set over A. Every homomorphism of M into the (left) 
vector set A = A • 1 over A is called a linear form on M. The set M* of all 
linear forms on M i s a (right) A-system relative to the composition 

*(/«) = (*/)« (* 6 M , / e i * , ^ A). 

10.7. LEMMA. 7/ |A| F^ 1, /Ac» 

I FM* I 9* 0 <^ I FM* I = 1, 0 G A, FM* = M*0. 

Proof. Let / G FM*, x G M, and 5 G A. Then (xf)ô = x(fô) = x/. Since 
I A| ^ 1, we have xf = 0 G A, |FM*| = 1. 

Note that 

(10.8) |M*| = |A|dimM. 

Indeed, if x ranges over N, then there exists one and only one linear form 
/ G M* such that xf takes given values in A under the restriction that 
(FM)f = {0} when \M\ > \FM\ = 1. 

In particular, it follows from (10.8) that M* ^ 0. We prove that M* is a 
right vector set over A. 

Obviously (10.1)r (the analogue of (10.1)i with "left" and "right" inter
changed) is true in M*. 

dim M 
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(10.2)r: Let FM* = M* and |A| > 1. By Lemma 10.7, \M*\ = 1. Since 
dim M > 1, (10.8) implies that \M*\ > |A| > 1, a contradiction. 

(10.3)r: From Lemma 10.7, it follows that | A| = 1 implies that 

\FM*\ = \M*\ = 1. 

(10.4) r: If fy = fô, y ?* Ô, and / G M* - FM* ^ 0, then |A| j* 1. For ail 
x G M, (xf(y = (xf)Ô, and hence xf = 0 G A, and s o / G Filf*. 

We call M* the (algebraic) conjugate (vector) set of Tkf. If the cardinals of A 
and M are finite, 

' |A| - 1 if | M | > m = *' 
|A|dimM-i otherwise. 

Indeed, if \M\ > \FM\ = 1, we have 0 G A. Then M* is isomorphically 
represented by the system of all ordered sets (0, 5i, . . . , 5dim M) where 
ôi, . . . , ôdim M are arbitrary elements of A. A set of representatives of the 
domains of transitivity relative to ~A is given by 

(0, 1, 02, . . . , <5dlm jtf), (0, 0, 1, 73, . . . , Tdim M), • • • i 

( 0 , 0 , 0 , . . . , 0,1), ( 0 , 0 , . . . , 0), 

where yu 8jf . . . run over A. We can argue similarly in the second case. 

10.9. THEOREM. Let M be an irreducible S-system with the centralizer I\ 
F s M (FT M) denotes the set of all the fixed elements of M with respect to S (to T). 

(a) / / \FS M\ = 1, then 0 6 Y and FT M = 0M. 
(b) If\T\9* 1, then FT M = Fs M. 
(c) Let Y be a group or a group with zero. Then M is a vector set over Y. 

Proof, (a) Let FSM = {y} and Ox = y for all x G M. Then 

0(xa) = y = ya = (0x)a 

for all a G S. Thus 0 G T. For y G r and x G M we have 

(0Y)X = 0(YX) = y = Ox; 

hence O7 = 0. On the other hand, we have (yy)a = y(ya) = yy if a G S; 
therefore y y G Fs M and y y = y. Thus 

(70)x = 7(0x) = yy = y = Ox 

for ail x G M, i.e., 7O = 0. \M\ 9* 1 implies that 0 ^ 1 . Therefore 0 is the 
zero-element of Y. 

(b) Let x G ^r M, y G T, and a £ S. Then 7xa = xa. H x d Fs M, then 
xS = M and 7 = 1 for all 7 G I\ contrary to | T| 9* 1. Hence Fr M C FSM 
and in virtue of \FS M\ < 1 equality holds. On the other hand, \FS M\ = 1 
in connection with (a) implies that 0 G Y and Fr M = 0M 9^ 0. Therefore, 
F r M = 0 and Fs M ^ 0 are inconsistent. 
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(c) From (b) it follows that (10.1)! and (10.2)! hold with A = r . (10.3),: 
Let 0 5* FT M ^ M. Obviously |T| ^ 1. Then (b) implies Fs M 9* 0 and 
(a) yields 0 G T and Fr M = 0M. Since \FT M\ = 1, we have also 

FT M = 0 ( A f - FTM). 

(10.4)i: Let yx = ôx where 7, 5 G T, 7 ^ ô, and x ^ I - ^ I . Then 
|T| 5* 1, FT M = Fs M and x £ F 5 M. Hence xS = M. Therefore, from 
yxa = bxa {a G 5) we obtain 7 = 5, a contradiction. 

Suppose that TMl the centralizer of an irreducible 5-system M, is a group or 
a group with zero. Then the representation SM of 5, generated by Af, can be 
regarded as a semigroup of certain monomial matrices over TM\ cf. (3). More 
generally the following theorem holds. 

10.10. THEOREM. Suppose M is both an S-system and a vector set over the 
group or group with zero A such that 

(10.11) (6x)a = ô(xa) for allô G A, x G M, a G 5, 

and 

(10.12) FAM C F a M # | M | > |FAAf| = 1. 

77&0W 5 M , the representation of S generated by M} can be interpreted as a monomial 
representation of S over A. 

Proof. In virtue of (10.6), each a G «S determines a mapping va of N into JV 
and a mapping ya of iV into A such that 

xa = (xya)(xva) (x G N). 

Here we set xya = 0 and xva = y if xa G FA M = {y} and |M| > |FA Af| = 1. 
From 

Xa6 = (*7a&) (**a&) = ( W K T ^ K ^ ) , 

we have 

(10.13) xyab = (xya)(xvayb) 

and 

(10.14) xvab = xva vb. 

We need only consider the case \M\ > \FA M\ = 1. If xab 9e y, then 
xvab ?* Ji ocvavb 9^ y, and (10.13), (10.14) are true. Next let xab = y. Then 
ooyab — 0, xvab = y. If xa = y, then X7a = 0, xva = 3/, and (10.13) is valid. 

(10.14): 
xva b = (x*>a 7Ô) (xva vb) = yb = y 

implies that xva vb = y. Now let xa 9^ y\ then X7a ^ 0 and xva 9^ y. From 
xab = y = (x7a)((xi/a)6), we deduce (xva)b = 3/, x^a 76 = 0, and xvavb = 3/. 
Thus (10.13) and (10.14) are again true. 
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The relations (10.13) and (10.14) ensure that the mapping 

Pa ** V^Ya Oxva,y) 

(where bXtV denotes the Kronecker symbol) is an isomorphism of SM onto a 
semigroup of monomial matrices; cf. (3). 

11. The ideal SeS. The intersection 5JÎ of all the (two-sided) ideals of a 
semigroup 5 is either void or the kernel of 5. If 0(S) ^ 0, then $ft = 0(S) is 
the intersection of all the left ideals of 5. An element or a subset of 5 is said 
to be $ft-potent if some power of it is contained in çHl. Every 9^-potent right 
(left) ideal of 5 is contained in an 9t-potent ideal of 5 (2, p. 841, Lemma 5.2). 

Let R be an irreducible right ideal of 5. Either R is 0(5)-potent and hence 
R2 C 0(S) or R is not 0(5)-potent and R2 = R. In the latter case, there 
exists an x G R such that xR = R. 

The sum $ of all the 0(5)-potent ideals of 5 is either void or an ideal of 5 
containing 0(S). 

11.1. LEMMA. Let R be any non-0 (5)-potent irreducible right ideal of S; 
3 = SR. 

(a) R is contained in the minimal non-0 {S)-potent ideal 3 of 5. 
(b) If 0(S) * 0, then 3 H Ç « 0(S)-potent. 
(c) Either 3 itself {if 0(S) = 0) or 3 = 3 / ( 3 H $) (if 0(S) ^ 0) is a 

simple semigroup with irreducible right ideals. 

Proof, (a) Since R2 = R, we have i ? C 3 - The ideal 3 is minimal non-
0(5)-potent. For if B is an ideal of 5 contained in 3> then RB C Rf hence 
RB = R or RB C FR = R C\ 0(S). In the latter case, B2 C 3 # C 0(5) 
and J5 is 0(5)-potent. In the former case, we have R C B and 3 C SB C -#• 
Therefore 3 = B. 

(b) 3 P\ $ is an ideal of 5 contained in 3 . Suppose that 3 P $ = 3- Then 
i? C 3 C $. Since i^ (^ 0(5) , there exists an 0(5)-potent ideal P of 5 such 
that RHP <Z0(S). Since i ^ H P C ^ a n d the irreducibility of R implies 
R (^ P = R, we find R <Z Pj i.e., i? is 0(5)-potent, a contradiction. Hence 
3 H ^ 3 and, by (a), 3 "H $_is 0(5)-potent. 

(c) Since J5 is an ideal of 3> there exists an ideal B of 3 such that 
3 H K ^ C 3 and B = B/($ Pi $ ) . Consider the ideal 3 ^ 3 of 5. 
Obviously, 3 ^ 3 C B C 3- By (a), either 3 ^ 3 = 3 or 3 ^ 3 is 0(5)-potent. 
In the former case, 3 C ^ and thus B = 3 and S = 3- In the latter case, we 
have 3 ^ 3 C $ ; hence ( 3 ^ ) 2 C 3 H f and ( £ 3 ) 2 C 3 H $ . Therefore, 
by (b), 3 5 U 5 3 C $. Since the ideal SBS of 5 lies in 5 3 5 C 3 we have 
SBS = 3 or SBS C Ç. In either event, (5£)2 = 5 £ 5 - 5 C 3 H ? and, by 
(b), SB C 3 H % C 5 . Similarly, BS C B so that 5 is an ideal of 5. Hence 

£ = 3 o r £ = 3 P $ -
Since 5 is a domain of right operators, 

R= ( i ?w(3n?) ) / (3n?) -^n3n$) =R/FR~R UOÇS) ^0. 

https://doi.org/10.4153/CJM-1966-048-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-048-1


472 HANS-JURGEN HOEHNKE 

Therefore F ~ F with respect to both 3 and 3 because 

F ( 3 r\ $) c (F3) n (F<p) c F n y = FR. 

This implies that | F ( 3 P $ ) | = 1. Let f G F5 R (r 6 F)j_then m = r for all 
a G 3 , and \r$\ = 1. Hence r Ç f 5 C FF, and F§ F = FF . The assumption 
F 3 C F3 F yields F 3 C F F and F = F 3 C F S F C FF, contrary to the 
irreducibility of F . Clearly, the irreducibility of F is proved if it is shown that 
F contains only trivial right ideals of 3 or, equivalently, that F contains only 
trivial 3-subsystems. Let U be an ^-subsystem of F . From U$ C U C F , 
it follows that either £73 = F or £73 C FF. The first alternative implies 
that U = F . The second alternative implies that 

UCV= {x\xe F , x 3 C FR}. 
def 

The right ideal V of 5 is contained in F . Hence either V = FR and [/ = FRy 

or F = F and F = F 3 C F 5 F C FF, a contradiction. 
Note that the irreducibility of F , regarded as a right ideal of 3» can also 

be obtained by Lemma 8.1 (a). 

11.2. THEOREM. Let R be any non-0 (S)-potent irreducible right ideal of S. 
Suppose that 3 = SR contains at least one minimal non-0 (S)-potent left ideal 
ofS. Then 3 is completely simple. 

Proof. A right ideal F of S is said to be [0-]minimal if either S contains 
zero, R 9e {0} and F contains no right ideals of 5 except {0} and F , or S has 
no zero-element and F contains no right ideals of S except F . This notion will 
also be used later in the paper. 

Let L be any minimal non-0 (S)-potent left ideal of 5 contained in 3 . The 
corresponding left ideal of 3 is L. Set L = L and 3 = 3 if 0(S) = 0. Then 
L is [0-]minimal. For if K is a left ideal of 3 contained in L where K is the 
corresponding left ideal of 3 such that 

3nK^CLW(3n|)c3, 
then 

3 i£CFU(3n^ ) and 3^ = ( 3 ^ n L ) u (3^n^p). 
Since 3F^ P L is either void or a left ideal of 5 contained in L, we obtain 
either 3F: Pi L C 3 P $ or $K P L = L. In the former case, 

K* C 3 ^ C 3 r\ % 

and by Lemma 11.1(b) X C S ^ K ^ i.e., I = 3 H $ . The latter case 
yields 

L \J (3 n ç) = o x P L) u (3 P <p) = 3F: U (3 n $) c X; 
hence X = L U (3 Pi $ ) . Thus Z = L or |Z | = 1, K = {3 H ^5}. Moreover 
\L\ > 1 if 5 contains zero. Indeed, consider first the case 0(5) ^ 0. If |L| = 1, 
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then L = { S n $ } , since 3 Pi ^ is the zero-element of 3 . Hence L C 3 H $ ; 
thus by Lemma 11.1 (b), L is 0(5)-potent, contrary to the hypothesis. Now 
let 0(5) = 0. Then 3 = 3 contains no zero-element. For otherwise, 3 would 
contain an ideal distinct from 3- But in the proof of Lemma 11.1 (c) we have 
seen that 5 = 3 contains no ideals except 5 and possibly ( 3 ^ ^ ) (if 
0(S) y£ 0). Since 5 contains [0-]minimal right ideals and [0-]minimal left 
ideals, 3 is completely simple. 

11.3. THEOREM. Let R be any non-0 (S)-potent irreducible right ideal of 5. 
Suppose the minimal non-0 {S)-potent ideal 3 = SR of S has at least one minimal 
non-0 {S)-potent left ideal of 5. Then R contains an idempotent e (? 0(S) such 
that R = eS. 

Proof. By Theorem 11.2, 3 *s completely simple. Thus R contains an idem-
potent ë (e being an element of R) such that R = ë^j. If e £ 3 ^ $> then 
R would be the zero-ideal of 3 Î this contradicts the irreducibility of R stated 
in the proof of Lemma 11.1 (c). 

11.4. LEMMA. Let R = eS be an irreducible right ideal of S where e is an 
idempotent of S. 

(a) The ideal 3 = SR is equal to 

R' = VR*<QQUO(S) 

where Q ranges over the set of all the irreducible right ideals of S homomorphic to R. 
(b) If Qi is any irreducible right ideal of S contained in I, then R ^ Q\. 
(c) ^ C\ *§ is the sum 9î of all the 0(S)-potent irreducible right ideals of S 

homomorphic to R and of 0 (5). 

Proof, (a) If 5 is any element of 5, the correspondence r —» sr where r ranges 
over R is a homomorphism of R onto sR. By Lemma 7.2, sR is either irreducible 
or contained in 0{S). Hence sR C Rr and 3 C Rr• Conversely, let Q be an 
irreducible right ideal of 5 homomorphic to R. Then Q3 is a right ideal of 5 
such that Q3 C Q H 3- Hence either Q3 = 3 or (33 C FQ. In the latter 
case, Lemma 9.3 would imply that 

Horn (eS, Q) = Qe C 0(S) 

and eS = R^H Q would yield Q C 0(5) , a contradiction. Hence Q = Q3 C 3-
On the other hand, the ideal 3 contains 0(S). Therefore R' C 3 and equality 
holds. 

(b) Since Qi C 3 , there exists a Q such that R CH Q and 0 ^ Q i H Q <£ 0(5) . 
The irreducibility of Q and Qi implies Q Pi Qi = Ç = Ci and i? s* Ci. 

(c) Let Q be an 0(5)-potent irreducible right ideal and Rc^Q. Then 
Q C 3 H $ yields 9Î C 3 H $. Conversely, the relations 

3 H $ = W ^ ( $ n f f l U 0 ( 5 ) 
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and 

<2C3n<p 
^nQ^CO(S)or 

imply 3 Pi ty C 9?; thus equality holds. 

12. Further properties of the socle. In the following discussion we have 
to keep in mind that $ = 0(S) equivalently means either 0(5) = 0, or 
S/0(S) contains no nilpotent ideals except zero. Note also that 0(5) is either 
void or the intersection of all the left ideals of 5. We further adopt the con
vention that T/0 = T for any subsemigroup T of 5. 

12.1. THEOREM. Let © be the socle of any semigroup S; © (J_ ty. 
(a) We have the decomposition 

© = @/(@n?) = u,3, 
where 3„ is a certain ideal of © and also a simple semigroup with irreducible 
right ideals. 

(b) If 0(5) T^ 0, then distinct 3„ annihilate one another. 
(c) If 0(5) = 0, then (& = $v is a simple semigroup with irreducible right 

ideals. 

Proof. Let © <£ $. Then g = U i ^ U ( g n ^ ) , where i? runs over the 
set of all the non-0(5)-potent irreducible right ideals of 5. By Lemma 11.1 (a), 
R is contained in a minimal non-0(5)-potent ideal 3„ of S. Since R C S H 3 r 
where 3„ is minimal non-0 (5)-potent and since R is non-0 (5)-potent, we have 
@ P i 3 ^ = 3»» i-e-> 3* C ©. From the relation 

3, = (3, u (@ n $))/(© n ?) ~ 3,/(3, n <p) = 5, 
and Lemma 11.1 (c), we see that $jv is a simple semigroup with irreducible 
right ideals. Since 3x 3? C ^x ^ 3* and since 3>x and ^v are simple, we have 
|3x H 5 , | = 1 or 

3x n 5, = 3x = 3„ x = ». 
When 0(5) 7e 0, this implies that 3 x 5 ? must be zero for X =̂  v. When 
0(S) = 0 (where 5̂ = 0 and 3 , = 3 , for all *>), |3x H 3 , | = 1 is impossible; 
for otherwise 5 contains zero, contrary to 0(S) = 0. Hence in this case X = v 
and © = 3>„. 

The ideals 3„ are called the simple constituents of ©. 

12.2. COROLLARY. Z,e/ S be a completely reducible semigroup and suppose that 
S 9e 0(S) = ^ . Then S = 5 /0 (5) decomposes into ideals that are simple 
semigroups with irreducible right ideals. Any two distinct simple constituents 
annihilate each other. If 0(S) = 0, then S is itself a simple semigroup with 
irreducible right ideals. 
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The following lemma is well known. 

12.3. LEMMA. Let S be a semigroup with [0-]minimal right ideals. Then the 
sum T = U RRojall the [0-]minimal right ideals R of Sis an ideal of S. 

12A. THEOREM. Every simple semigroup S with [0-]minimal right ideals is 
semi-homogeneous. 

Proof. Let T = U R be the sum of all the [0-]minimal right ideals R of 5. 
If 5 contains zero, then \S\ > 1 and \T\ > 1; thus T = S. If 5 contains no 
zero-element, then either (i) \S\ = 1 and S = T, or (ii) \S\ > 1, \T\ > 1, and 
again 5 = T. If S = 0(5) , 5 is homogeneous by definition. Therefore, let 
5 ^ 0(S). Then \S\ > 1 and |0(5) | < 1. If R is [0-]minimal and \R\ = 1, 
theni? C 0(5) , and hence 10(5) | = 1, i.e., 5contains zero 0. But then R = {0} 
contrary to the hypothesis that it is not [0-]minimal. Thus \R\ > 1. By 
definition, each R contains no right ideals distinct from R and possibly {0} 
(if 0 6 5). Suppose RS C FR (C0(5 ) ) . Then RS = {0}, i.e., R C A where 

A = {a\a e S,aS = {0}} 

is an ideal of 5 which is necessarily equal to 5. Hence 52 = {0}, contrary to 
the definition of simplicity. Therefore, RS (£ FR. Thus R is irreducible. 

R is not nilpotent. For otherwise, R would belong to the ideal 

B = {b\b e S,Rb = {0}} 

of 5 because of R2 = {0}. This would lead to RS = {0}, a contradiction. 
Since R C SR} we have 

S = SR = ^JsessR 

where Rom sR and either sR = {0} or it is irreducible. Therefore 5 is semi-
homogeneous. 

REMARK. By the hypothesis of Theorem 12.4, any. two irreducible right 
ideals Ri and R2 of 5 satisfy i?i ^ R2 and i?2 ^ Ri, but not necessarily 
Ri~R2. 

13. Primitive semigroups with minimal ideals. Let 5 be any [0-] 
primitive semigroup (i.e., either a primitive or 0-primitive semigroup) with 
or without a zero. Then \S\ > 1 and |rad°5| < 1. Indeed if 5 is 0-primitive, 
then rad°5 = {0}. If 5 is primitive and r a d ° 5 ^ 0, then, by (3.7) and 
Corollary 3.2, rad°5 is a congruence class with respect to rad 5 = 0. Since 

0(S) C y$CN(S) C r a d ° 5 , 
the relation 

(13.1) 0(S) = $ = N(S) = rad» 5 = | { ^ ! j f
f °Q | £ 

is true for every [0-]primitive semigroup. 
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13.2. LEMMA. Suppose that S is a [0-]primitive semigroup with [0-]minimal 
right ideals. 

(a) Every [0-]minimal right ideal R of S is irreducible and [0-]faithful 
(i.e., faithful and O-faithful respectively). 

(b) Every [0-]faithful irreducible S-system M is homomorphic to each 
irreducible right ideal of S. 

Proof. Let R be any [0-]minimal right ideal. Assume that \R\ = 1. Then 
RCO(S), i.e., \0(S)\ = 1. Since \S\ > 1, it follows that 0 f 5 and 
R = 0(S) = {0}, contrary to R ^ {0}. Thus, \R\ > 1. 

Let M be any [0-]faithful irreducible S-system; then MR (£ FM. For 
otherwise, we would have \FM\ = 1 and, since M is [0-]faithful, |i?| = l, a 
contradiction. M being irreducible, it follows that MR = M. Hence there is 
an element x G M such that xR = M. The mapping <£ : r —> xr (r G R) 
yields a homomorphism of R onto M. Hence R is a [0-]faithful ^-system. 
Indeed, suppose 5 is 0-primitive. From Ra = {0}, a G 5, it follows that 

FM = 0({O}) = $(2to) = 0(i^)a = Ma, 

whence a = 0. On the other hand, if 5 is primitive and ra = rb for all r G R 
and fixed a,b £ S, then 

tf>0)a = tf>(ra) = <t>(r)b, 

i.e., 3>a = yb for all y G M. Therefore a = b. Moreover, RS (Ji FR, for other
wise FR = {0} (observe that \R\ > 1) and i?5 = {0} ; hence R would not be 
0-faithful. Thus R is irreducible. 

13.3. THEOREM. Let S be any [0-]primitive semigroup with [0-]minimal right 
ideals. Then the socle © of S is a simple semigroup with irreducible right ideals. 

Proof. By Lemma 13.2, |©| > 1 and hence © <£ $ . By Theorem 12.1, we 
have S = U X where the ideals 3„ are simple semigroups having irreducible 
right ideals. If 0 g 5, then © = $, . 

If 0 G S, then 3x3v = {0} (\ 9^ v). Every [0-]primitive semigroup with 
zero is obviously 0-primitive. In every 0-primitive semigroup, {0} proves to 
be a prime ideal. Hence 3x = {0} or 3„ = {0}, contrary to the hypothesis. 
Thus @ = 3 , also if 0 G S. 

13.4. THEOREM. For every semigroup S with zero the following three conditions 
are equivalent: 

(a) 5 is 0-primitive and has ^-minimal right ideals. 
(b) S is weakly free of zero-divisors and has ^-minimal right ideals. 
(c) S is weakly free of zero-divisors and contains an ideal that is a simple 

semigroup having 0-minimal right ideals. 

Proof, (b) => (a). Let R be any 0-minimal right ideal. Assume RS = {0}. 
Then rSb = {0} for every r G R and b G S. Choose b 3̂  0. Then by (4.5), 
r = 0 for all r G R, i.e., i? = {0}, a contradiction. Hence, RS (£_ FR, i.e., R 
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is irreducible and R = aS (a ^ 0). If Rb = {0}, then aSb = (0). Hence by 
(4.5), b = 0 and R is 0-faithful. 

(a) => (c). This follows from Lemma 13.3. 
(c) => (b). Let U be any ideal of 5 which is a simple semigroup with 0-

minimal right ideals. As the proof of Theorem 12.4 shows, U is the sum 
U = U Ç o f the irreducible right ideals Q of £/. We first prove that Q is a 
right ideal of 5. Consider ()£/; it is a right ideal of 5 contained in Q. Thus 
QU = Q or QU = {0}. In the latter case, qSu = {0} for all q G Q and z£ £ £/, 
hence Ç = {0} or U = {0} contrary to the hypothesis. Therefore, the right 
ideal Q of 5 is irreducible with respect to U C 5 and thus also with respect to 5. 

13.5. THEOREM. For any semigroup 5, the following three conditions are 
equivalent: 

(a) S is primitive and contains [0-]minimal right ideals. 
(b) 5 is weakly left cancelling, contains [0-]minimal right ideals, and satisfies 

the condition \S\ > 1. 
(c ) 5 is weakly left cancelling and contains an ideal which is a simple semigroup 

with [0-]minimal right ideals; further the condition \S\ > 1 holds. 

Proof. We first note that if 5 is weakly left cancelling, |5 | > 1 and asx = asy 
for a G 0(5) , 5 G S1, and x je y, imply a = 0 6 5 and 0(5) = {0}. 

(b) =$ (a). Let R be any 0-minimal right ideal. To prove that R is an 
irreducible 5-system, we first assume that \R\ = 1. Then R C 0(S), 0 (E 5, 
and R = 0(S) = {0}, contrary to R 9* {0}. Therefore \R\ > 1. From 
|0(5) | < 1, we have R ^ FR; hence \FR\ < 1. If RS C FR, then \FR\ = 1, 
0 G 5, and i?5 = {0}, which by Lemma 4.7 and (4.5) would yield R= {0}, 
contrary to \R\ > 1. Hence, i? is irreducible and R = xS = x5x (x ^ 0). 
Moreover, R is faithful. Indeed if xsa = xsb for all s G 5 1 and fixed a, Z> G 5, 
then since 5 is weakly left cancelling and since x 9e 0, it follows that a = b. 

(a) => (c). This follows from Theorem 13.3. 
(c) =» (b). This can be verified by using an argument analogous to that used 

to prove the assertion (c) => (b) in Theorem 13.4. 
(Note that, because |0(5) | < 1, every irreducible right ideal of 5 is also a 
[0-]minimal right ideal. For (a) <=» (b) cf. also (12).) 

13.6. THEOREM, (a) Every semigroup S with zero and without zero-divisors 
is ^-primitive. 

(b) If S is a commutative semigroup with zero, then S is ^-primitive if and only 
if it contains no zero-divisors. 

Proof, (a) Since 5 is free of zero-divisors, let M = {m, 0} where m is any 
symbol distinct from 0. Define 

_ (m if a G 5 - {0}, 
ma " \0 G M if a = 0 G 5, 
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and assume that 05 = {0} for 0Ç M. Then M is a O-faithful irreducible 
5-system, i.e., 5 is O-primitive. 

(b) If 5 is O-primitive, then {0} is prime, i.e., 5 contains no divisors of zero 
(except 0). 

13.7. THEOREM. Let S be any commutative semigroup with zero. For S to be 
a O-primitive semigroup and to have 0-minimal ideals it is necessary and sufficient 
that 5 be of the form 5 = H U {0} where H is any commutative homogroup. 

Proof. For every commutative O-primitive semigroup 5, the set H = 5 — {0} 
is multiplicatively closed. If 5 contains 0-minimal ideals, then, by Theorem 
13.3, the socle © of 5 is a simple commutative semigroup. It has therefore the 
form © = G U {0} where G is both a group and an ideal of H. Thus if is a 
homogroup. Conversely, if H is an arbitrary commutative homogroup, then 
by Theorem 13.4, 5 = H\J {0} (where HO = OH = {0}) is a commutative 
0-primitive semigroup with 0-minimal ideals. 

13.8. THEOREM. The commutative semigroup S is primitive and has [0-]minimal 
ideals if and only if it is either an abelian group which contains at least two 
elements or an abelian group with zero added. 

Proof. The socle © of any commutative primitive semigroup 5 with [0-]mini-
mal ideals must be either a group containing at least two elements or a group 
with zero. Let a be any element of 5 and e be the identity of ©. By (4.6), 
the conditions ea = e(ea) and e ^ 0 imply that a = ea 6 ©a C © and 
5 C ©• Thus equality holds. 

14. Property A. We say that a semigroup 5 has the property A if the 
following three conditions are fulfilled: 

(14.1) y = 0(5) . 

(14.2) <&DO(S), ®9*0(S). 

(14.3) Every 0 (S)-minimal ideal of 5 (i.e., minimal with respect to the property 
of being an ideal of 5 that is different from 0{S)) contains an 0(5)-minimal 
left ideal of 5. 

14.4. THEOREM. Let S be a semigroup with the property A. 
(a) Every semi-homogeneous component 3v of the socle & of S is homogeneous 

and 3ff = Qafor some a. 
(b) ^>a/0(S) is completely simple. 
(c) ®/0(S) is the sum 

®/0(S) = W (&,/0(S)) 

of the ideals &a/0(S). 
(d) If 0(S) ^ 0, then any two different $Qa/0(S) annihilate each other. 
(e) 7 /0 (5) = Qithen^ = &a is completely simple. 
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Proof. By (14.2), S possesses an irreducible right ideal R. By (14.1), R is 
non-0(S)-potent. Hence by Theorem 11.3 and (14.3), the O(^-minimal 
ideal 3 = SR contains an idempotent e (? 0(S) such that R = eS. By Lemma 
9.8 (c), every irreducible right ideal of 5 homomorphic to R is clearly iso
morphic to R. Hence (a) is true. Lemma 11.4 implies S = &a for a suitable a. 
From Theorem 11.2, we also obtain (b). Now (c) is evident, and (d) and (e) 
follow from Theorem 12.1. 

14.5. THEOREM. Let S be a semigroup with the property A. In addition suppose 
that S either contains a zero-element or has neither right nor left zeros. 

(a) The socle S = U § a of S is contained in the left socle ©i of S. 
(b) Every homogeneous component &a of © is both an ideal of S and a com

pletely simple semigroup equal to some homogeneous left component ©# of © h 

(c) If S contains neither right nor left zeros, then © = ©! = ©^ = Qa is 
completely simple. 

Proof. Let R be an irreducible right ideal. As we have seen in the proof of 
Theorem 14.4, R has the form R = eS where e is an idempotent. By Corollary 
9.6, Se is irreducible, i.e., Se C ©i- Since ty is the sum of all the nilpotent ideals 
of S (hence "self-dual" relative to the interchange of "right" and "left") 
and since |^}| < 1, it follows that ©! (£_ ty, i.e., the assumption of Theorem 
12.1 is fulfilled, whence ©i = U ®v where the $v are ideals of @! which are 
simple semigroups with irreducible left ideals. Different $„ annihilate each 
other. Furthermore, © = U &a where each § a is of the form § a = SR = SeS. 
Since e £ Se C ©i, there exists $tv such that e 6 ®v and thus § a C Sy. Since 
$„ is simple, equality holds. Let I be any irreducible left ideal of S homo
morphic to Se. Since $„ = LS, L = Se, Lemma 11.4 implies that 1 C $*. 
Since $„ = §« is completely simple, there exists an irreducible left ideal 
V = $tve' generated by an idempotent e' ( ^0 ) £ ®v such that I H l ' ^ O . 
Hence I Pi V = I', i.e., e' 6 I' C L. Since I is irreducible and Se' C I, we see 
that I = Se'. Thus every irreducible left ideal of S homomorphic to Se is 
generated by an idempotent. By Lemma 9.8, every irreducible left ideal 
homomorphic to Se is also isomorphic to Se. By Lemma 11.4, $„ = LS (L = Se) 
is equal to the sum ©# of all those irreducible left ideals of 5 that are isomorphic 
to L. Since different $v annihilate each other, we conclude that 

when 0 & S. 

14.6. COROLLARY. Let S be a completely reducible semigroup with the property 
A. Further suppose that S contains either a zero-element or has neither right nor 
left zeros. 

(a) S is completely left reducible. 
(b) The semi-homogeneous left components of S are equal to the semi-homo

geneous components as well as to the homogeneous left components and also to the 
homogeneous components of S and therefore they are completely simple. 
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(c) If S contains neither right nor left zeros, then it is homogeneous as well as 
left homogeneous, and completely simple. 

14.7. COROLLARY. Let S be any semigroup satisfying the conditions of Theorem 
14.5. Further let S satisfy the dual condition of (14.3) : 
(14.8) Every [0-]minimal ideal of S contains a [0-]minimal right ideal of S. 

(a) The socle © of S is equal to the left socle ©i of S. 
(b) The semi-homogeneous left components of © are equal to the semi-homo

geneous components as well as to the homogeneous left components and to the 
homogeneous components; thus they are completely simple. 

(c) If S has neither right nor left zeros, then it has only one homogeneous 
component. 

14.9. THEOREM. The socle of every [0-]primitive semigroup S with both [0-]mini-
mal right ideals and [0-]minimal left ideals is equal to the left socle ©! of S; 
moreover it is completely simple. 

Proof. By Theorem 13.3, the socle © is a simple semigroup containing 
irreducible right ideals. Let T = U L be the sum of all the [0-]minimal left 
ideals of S. By Lemma 12.4, T is an ideal of S. Then |©L| > 1. For otherwise, 
5 would contain a right zero and hence a zero-element 0. Since |@L| = {0}, 
L is contained in the ideal 

z = {x\x e s , @x = {o}}. 
X satisfies © Ï = {0}. Since {0} is prime in 5 and © =̂  {0}, we find that 
Z = {0}, a contradiction to {0} ^ L C X. 

|©L| > 1 and @L C L, together with the fact that L is a [0-]minimal left 
ideal, yield ©L = L. Therefore, L is an irreducible left ideal of S and 
L = ©L C ©• Hence, @i = T C ©• The simplicity of © implies that ©! = ©. 
Since ©i contains at least one irreducible left ideal of S, © is a simple semigroup 
containing both [0-]minimal right and left ideals; hence © is completely simple. 

15. Dual vector sets. In this section we study concepts analogous to 
those occurring in the theory of dual vector spaces (7, pp. 68-74). In this way 
we develop a structure theorem for primitive semigroups with irreducible 
right ideals that are generated by an idempotent. 

Let M' be a right vector set over A. A mapping/of the product set M X M' 
into A is called a bilinear form on M and M' if 

f(ax, xr) = af(x, x') and f{x, x'a) = f(x, x')a 

for all x G M, x' G M', and a Ç A. The bilinear form fis said to be non-degen
erate if 

(15.1) f(x, x') = f(y, x') for all xf G M' => x = y 

and 

(15.2) f{x, x') = f(x, y') for all x Ç M => x' = yf. 
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We further consider the following conditions: 

(15.3) If 0 G A and/(x, x') = 0 for all x' G M', then x G FM, 

(15.4) If 0 € A and/(x, x') = 0 for all x ^ I , then x' G Filf'. 

(M", M7) is called a ^>air 0/ dual vector sets over A if there exists a bilinear 
form / on M and M' that satisfies the conditions (15.3) and (15.4). For 
instance, every non-degenerate bilinear form / satisfies (15.3) and (15.4). 
If there exists a non-degenerate bilinear form on M and ikP, the pair {M, Mr) 
is said to be non-degenerate. It is convenient to use the symbol (x, xf) for a 
fixed bilinear form on ikf and M'. 

Let {M, M') be a pair of dual vector sets over A. Let 2{M) be the semigroup 
of all endomorphisms of M (i.e., the set of all homomorphisms of the A-system 
M into itself). A mapping s' of M' into itself is called an adjoint in M' of the 
element s G 2 {M) relative to the bilinear form {x,.x') if 

for all x G M and xf G M'..If {x, xr) satisfies condition (15.2), then sf is 
uniquely determined by s and belongs to %{M'). The following lemma can be 
verified directly. 

15.5. LEMMA. If Si G 2{M) has the adjoint s't {i = 1, 2), then sf
2s\ is an 

adjoint of Si s2. 

If {M, Mf) is a pair of dual vector sets over A, then by Lemma 15.5 the set 
2M> {M) of all those elements of 2{M) that have an adjoint in M' is a subsemi-
group of %{M). 

Note that every A-subsystem of a vector set over A is either again a vector set 
over A or it contains only one element (which then is the unique fixed "zero" 
of M). Let %{M) denote the set of all the endomorphisms s G 8(Af) such 
that the image Ms is either a vector subset of dimension 1 or contains only 
the zero-element. Let 

S i r W = ${M)n2M,{M). 

The set %M>{M) is an ideal of 2M>(M). 

15.6. LEMMA. Let {M, M') be a pair of dual vector sets over A. An element s of 
2 {M) belongs to %M

f {M) if and only if it has the form x —> {x, y')u where y' G M ' 
and u G M. 

Proof. Let 5 G %{M)\ then for every x G M, we have xs = a{x)u with a 
suitable u G M. If 0 G A and w G ^iW = QM, we set cr(x) = 0. Then <r(x) G A 
is uniquely determined by x. Evidently, x —> <r{x) is a linear form on M. If 
w G FM, then obviously a{x)u — (x, y ) ^ = w for each y' G M'. Let u $ /^M. 
If 5 has an adjoint s'', then (xs, xr) = (#, xV) . This implies that 

<T{X) {uy x') = (x, xV) . 
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Choose x' G M' such that (u, x') = a 9e 0. (Obviously this condition only 
occurs in the case of 0 6 A.) Then a(x) = (x, yr) and y' = x's'cC1. Conversely, 
if s G 8(M) has the form x —> (x, /)w(w € M, / € AT), define xV = yf(u, xf). 
Then 

(xs, x') = (x, y')(u, xf) = (x, xV) . 

Thus s' is an adjoint of s. 

15.7. THEOREM. The following two conditions are equivalent: 
(a) 5 is a primitive semigroup with an irreducible right ideal generated by an 

idempotent. 
(b) There exists a pair of dual vector sets (M, M') (where \M\ 9e- 1) over A 

such that S is isomorphic to a subsemigroup of %M* (M) containing $M> (M). 
If S is isomorphically represented as in (b), then its socle is %M' (M). 

Proof, (b) => (a). Let S be a subsemigroup of %M>(M) containing %M
f(M). 

Let y' be any element of M' and let Ry* be the set of all the mappings of M 
into itself of the form r: x —> xr = (x, y')u, u G M. Since x(rs) = {x,yr)us, 
Ry> is a right ideal. Let u\ be any element of M. Suppose that u\ (? FM( = 0M) 
if 0 G A. Choose / i ^ I ' either arbitrarily (if 0 € A) or such that 

« = (ulty\) 5*0 (ifO G A). 

Define 

r\ : x —» xri = (x, y)wi and s : x —> xs = (x, y i)a_1w 

where w is any element of M. Then u\ s = u and xr\ s = (x, y')u = xr, i.e., 
r i 5 = Ry: Suppose that y' g FM' ( = M'O) if 0 G A. Then in any case Ry. 
has at least two elements. The only element of Ry that does not strictly 
generate Ry is r0 : x —> xr0 = (x, y')uo where u0 G FM ( = 0M). This can 
occur only when 0 G A. (If r0 does not strictly generate Ry>, then r0 £ Fs Ry> ; 
for if r0S 9* {r0} and r G r0 5, r 9e- r0, then 

i ^ = r5 C r0 55 C r0 S C 12/» 

i.e., r0 S = Ry^, a contradiction.) Hence Ry> is an irreducible right ideal of 5. 
Let rs = rt (s, t G 5) for all r G i?y/ or equivalently (x, yf)us = (x, y)wJ 

for all x, w G M. Then ws = ut for all u £ M, i.e., s = /. Therefore 5 is a 
primitive semigroup with irreducible right ideals. Choose v G M such that 
(v, y') = p 9* 0. Put 

e : x —> xe = (x, y ) (P^v). 

Then 6 is an idempotent of i*V not contained in FsRyr. Thus i?„/ = eS. Since 
5 is a primitive semigroup with irreducible right ideals, Lemma 11.4 (a) and 
Lemma 13.2 imply that SeS is the socle of S. Therefore %M'(M) is contained 
in SeS. On the other hand, since sr is an element of SeS = SRy>, we find that 

x —> xsr = (xs, yf)u = (x, y's')u 

where sr is an adjoint of 5 in M'. Hence equality holds. 
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(a) => (b). We translate to semigroups an idea that I. Kaplansky has 
applied to prove the analogous statement on rings; cf. (7, pp. 77). Let M = eS 
be an irreducible right ideal of S generated by an idempotent e. Then by 
Lemma 13.2, M is a faithful irreducible 5-system. The centralizer A = eSe 
of M is a group or a group with zero (cf. Theorem 9.4) and i f is a vector set 
over A (cf. Theorem 10.9 (c)). Interpret M' — Se as a A-system relative to 
the right multiplication as A-multiplication. M! is a right vector set over A. 
This is trivial if |A| = 1. In order to prove it if |A| T^ 1, we need the following 
lemma. 

15.8. LEMMA. Let S be a semigroup and let Or(S) be the set of the right zeros ofS. 
If |Or(S)| > 1, then 0T(S) is an irreducible right ideal of S and the centralizer 
Tor(5) consists of a single element. 

Proof. Ox{S) is either void or the intersection of all the right ideals of 5. Let 
e e 0T(S). Then e2 = e and Ov(S) C eS C 0T(S). Hence 0T(S) = eS and 

r0ros) = eSe = {e}. 

We now proceed to prove (a) =» (b). If |A| ^ 1, then S contains either a 
zero-element, or it has neither right nor left zeros. Indeed, assume that 
\0T(S)\ > 1. Then 0(S) = 0. If 0T(S) = fs and / = f\ then obviously 
eSfC£0(S). Hence by Lemma 9.8(a), eS^fS, and by Lemma 9.8(b), 
eSe c^.fSf\ this contradicts Lemma 15.8. Thus we can apply Corollary 9.6 to 
show that Se = M' is an irreducible left ideal of S. By Theorem 10.9 (c), 
M' is a right vector set over A. We define a bilinear form on M and M' by 
(ex, y'e) = exy'e for x, y' G S. The equation 

((ex)a)(y'e) = (ex){a(y'e)) 

shows that the right multiplication pa in M has the left multiplication Xa in 
M' as an adjoint, whence pa G %M>(M). Finally, we have to show that each 
element of %M>(M) is of the form pa for some a G S. The mapping 

ex —> (ex, y'e)ey = exy'ey = expa (a = y'ey) 

indicates that this is the case. 

REMARK. The 5-system Ry used in the proof of (b) => (a) of Theorem 15.7 
is isomorphic to M under the mapping u—*ru(u G M) where 

ru : x —> xru = (x, y')u. 

The mapping u —* ru is also an isomorphism with respect to A if we define 
ôru = rhu for all 8 G A. 

15.9. THEOREM. The following two conditions are equivalent: 
(a) S is a primitive semigroup that has an irreducible right ideal generated by 

an idempotent; in addition, S is left primitive. 
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(b) There exists a non-degenerate pair of dual vector sets (M, Mf) over A 
where |A| ^ 1 such that S is isomorphic to a subsemigroup of 2M>(M) which 
contains \$M'(M). 

Proof, (b) => (a). Since |A| ^ 1, (10.2)x and (10.2)r imply that \M\ 9* 1 
and |ilf'| ^ 1. Let 5 be a subsemigroup of 2M'(M) containing %M

f(M). Then, 
by Theorem 15.7, 5 is a primitive semigroup with an irreducible right ideal 
generated by an idempotent. If we regard M as a right vector set over A' and 
M' as a left vector set over A', such that A' is anti-isomorphic to A, then 
(Mf, M) is a non-degenerate pair of dual vector sets over A' relative to the 
bilinear form (x', x)f = (x, %'). Since (x, x') is non-degenerate, the mapping 
5 —» sf• (where sf is the adjoint of 5 G %M> (M) in M') is an anti-isomorphism of 
2M'(M) onto %M(M'). This anti-isomorphism maps %M>(M) onto $M(M'). 
Indeed, if 5 € %M*(M), i.e., 

5 : x —> (x, y')u = u{y', x) ' , 
then 

s' : xf —» y (w, x') = (xf, u)'yf. 

Hence sf 6 $M(M'), and conversely. The anti-isomorphism of 2M'(M) onto 
8 M (ikf) induces an anti-isomorphism of S onto a subsemigroup 5 ' of £M(ikP). 
Since Siif'C^) C S, we have 5 M ( ^ ) C S'. Thus 5 ' is a primitive semigroup 
that contains an irreducible right ideal generated by an idempotent. Hence S 
is a left primitive semigroup with an irreducible left ideal generated by an 
idempotent. 

(a) => (b). Let S be a primitive semigroup with an irreducible right ideal eS 
generated by the idempotent e. In addition, let S be left primitive. Then 
|0 r (5) | < 1. Hence 5 either contains a zero-element or has neither right nor 
left zeros. Consequently Se is left irreducible. As in the proof of (a) => (b) of 
Theorem 15.7, set M = eS and M' = Se. By Lemma 13.2 (a), M and M' are 
faithful. Hence the bilinear form (ex, y'e) = exy'e is non-degenerate. Therefore 
(M, M') is a non-degenerate dual pair over A = eSe. Moreover, |A| ^ 1. By 
Theorem 9.4 (a), this is clear if 0 G S. In the general case, let xe and ye be any 
two different elements of Se. Since eS is faithful, esxe = esye fails to hold for 
all 5 G S. 

16. Choice of special dual pairs. As we shall see in this section, the 
investigation of 2M

f (M) and $M> (M) can be reduced to the study of dual pairs 
of a special kind. Let M* be the conjugate set of the vector set M over A. 
A vector subset M' of M* is called total if 
(16.1) 0 G A, x G Mf and xf = 0 for a l l / G M1 implies x G FM 
and non-degenerately total if 

(16.2) x, y G .Mandx/ = 3;/for a l l / G M' =» x = y. 

If 0 $ A, in particular if | A| = 1, then by definition, M* as well as each vector 
subset of M* is total. If | A| ^ 1, then M* itself is non-degenerately total. Any 
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vector subset of M* that contains a [non-degenerately] total vector subset of 
M* is again [non-degenerately] total. 

Let M' be a vector subset of M*. Then 

(x,f)=xf (xeM,f£M') 

is a bilinear form on M and Mr. If M' is [non-degenerately] total, then (M, M') 
is a [non-degenerate] pair of dual vector sets over A. Conversely, if (M, Mf) 
is an arbitrary pair of dual vector sets over A, then there is a natural homo-
morphism (with the kernel zero if 0 G A) of M' onto a total vector subset 

M7 C M*. 

Indeed, if y' is any element of M', then 

y : x —> (x, y') 

is a linear form on M and 

, ~7 

y ->y 
is the stated homomorphism of M' (with kernel FM' = M'Q if 0 6 A). If the 
pair (M, M') is non-dégénéra te, then the natural homomorphism of M' is an 
isomorphism onto the non-degenerately total vector subset M'. Hence if 
(M, Mf) is a dual [non-degenerate] pair, then the same is true for (M, Mf). 

For any vector set M over A, the pair (M, M*) is dual with respect to 

(x,f)=xf (xZMjeM*). 

If s G S (M) j then for each / G M*, x —> xsf is a linear form /* on M, and the 
mapping/—*/* is the adjoint of s in M* which is uniquely determined by s. 
Hence, 8M*(.M) = 2(M). More generally the following theorem holds. 

16.3. THEOREM. Let (M, Mf) be a pair of dual vector sets over A, and let M' 
be the image of M' under the natural homomorphism. Then an element s £ 2 (M) 
belongs to %M> (M) if and only if its adjoint in M* maps M' into itself. 

Proof, s G 2M'(M) means that there is a mapping s' of M' into itself such 
that (xs, x') = (xt xV) for x G M and x' G Mf. By setting 

~~7 / /\ 
'V* • 'Y* \ l /y* /y*w 1 

we can write this condition as 

(xs)x = xx s' for x G Af and x' G M'. 

If 5* is the adjoint of 5 in ikf*, then by definition, x(fs*) = (xs)f for x £ M 
a n d / G M*. If s' exists, then 

x(x s*) = xx s (x G M), 
i.e., 

a/s* = x / for all x' G M'-
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Hence s* maps M' into itself. Conversely, if 

Ws* C M7, 
then we define the mapping sf to be the restriction of s* to M'. Then s' as a 
mapping of M' into itself (even when 

t ~7 

is no isomorphism of M' onto Mf) can be chosen such that 

~7~7 ~7~7 
X 5 = X 5 . 

16.4. COROLLARY. Let (M, M') be a pair of dual vector sets over A, and let M' 
be the image of M' under the natural homomorphism. Then %M'(M) = 2~j^(M) 
and%M,(M) = %M'{M). 

REMARK. If (M, Mr) is a dual pair over A satisfying (15.1), then the corres
ponding dual pair (M, Mf) over A is non-degenerate. Hence by Corollary 
16.4, Condition (b) of Theorem 15.9 is equivalent to the following condition: 

(c) There exists a dual pair (M, Mr) over A, where |A| ^ 1, that satisfies 
(15.1) and S is isomorphic to a subsemigroup of 2M>(M) containing $M'(M). 

17. Isomorphism theorems. Theorem 15.7 associates with every primitive 
semigroup S containing irreducible right ideals generated by idempotents a 
pair of dual vector sets (ikf, Mf) such that 5 is isomorphic to a subsemigroup 
of 2M'(M) containing gM>(ikf). This raises the question: How is (ilf, M') 
determined by 5.? As we shall see below, there exist conditions under which 
the corresponding isomorphism theorem of (7, p. 79) and its corollaries 1, 2, 
and 3 become immediately valid for semigroups. 

A mapping s of a vector set M\ over Ai into a vector set M2 over A2 is called 
a semi-linear transformation if there exists an isomorphism <r : ôi —» ôf of Ai 
onto A2 such that for all xi G M± and ôi G Ai, 

(ôiXi)s = ôi a(xi s). 

When the isomorphism a is indicated explicitly, the semi-linear transformation 
5 is written as (s, a). The isomorphism a is uniquely determined by 5 unless 
0 G A2 and 5 is the ''zero-mapping" of M\ onto the fixed element of M2 with 
respect to A2. When (5, a) is a 1-1 semi-linear transformation of Mi onto M2, 
the inverse mapping is the semi-linear transformation (s~l, a--1). 

For i = 1,2, let (Mu Mr
t) be a pair of dual vector sets over A* and let 

{ocuy'i)i be the associated bilinear forms. We generalize the definition of 
adjoint given in §15. A mapping s' of Mf

2 into M\, as well as the pair (sf, o--1), 
is called an adjoint of the semi-linear transformation (5, a) relative to the 
bilinear forms (xu yf i)ui = 1, 2, if 

{xis,y'2)2°~l = (xi, y'2s')i 
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for all xi (E Mi and y'2 Ç M\. If condition (15.2) is valid for (xi, y'i)i, then 
s' is uniquely determined by s and is a semi-linear transformation of M\ over 
A2 into M'i over Ai with the associated isomorphism o-~l. The following 
lemma is obvious. 

17.1. LEMMA. Let (Mu Mr
 t) be a pair of dual vector sets over Au i = 1, 2, 3. 

If (s> °") is a semi-linear transformation of Mi into M2 with the adjoint (V, o--1) 
and (t, T) is a semi-linear transformation of M2 into M% with the adjoint (tf, r - 1 ) , 
then (t's'', T - 1 a--1) is an adjoint of the semi-linear transformation (st, <JT) of M\ 
into M%. 

The dual pairs (Mi, M\) and (M2, M'2) are said to be (algebraically) 
equivalent if there exists a 1-1 semi-linear transformation (s, a) of Mi onto M2 

with the following property: 

/ 1 7 9 \ / (s> o") n a s an adjoint (s', o--1) and 
((s - 1 , o--1) has an adjoint (s", a). 

For i = 1, 2, let (Mu M'\) be a pair of dual vector sets over Aif let 5 be any 
1-1 semi-linear transformation of Mi onto M2, and let ai G 2 (Mi). Then 
s~laxs e 2(M2). If «i G S (Mi), then rt^ G 3(M2) . Hence if <> and s~l 

have adjoints, then the mapping ai —> s_1ai 5 is an isomorphism of %M'i(Mi) 
onto £^'2(^2) which maps %M

fi(Mi) onto 5 M ' 2 ( ^ ) . 

To every 8t £ A*, there corresponds the scalar multiplication 

\Pi) 1 : Xi » 0 j x^ 

in Mt-, a n d 5Z- —•» (§<)i is a n anti-isomorphism of At. Hence A* can be regarded 
as a subset of the centralizer of the 5 rsystem Mt for any subsemigroup St of 
2(Mi). 

17.3. THEOREM. Let (Mu M't) be a pair of dual vector sets over At and 
let Si be a subsemigroup of 2M

fi(Mi) containing %M'i(Mi),i = 1,2. If the 
centralizer of the Si-system Mt is equal to Au i = 1,2, then every isomorphism 
1 : ai —> ai1 of Si onto S2 has the form ai1 = s~lai 5 where ai runs over Si and 
(5, 0-) is a 1-1 semi-linear transformation of Mi onto M2 with the property (17.2). 

Proof. Let 5 be an abstract semigroup such that a —> ai is an isomorphism 
of 5 onto Si. Then a —* aiL is an isomorphism of 5 onto S2, and we may regard 
Mi as well as M2 as a faithful irreducible 5-system. We noted in the Remark 
after the proof of Theorem 15.7 that the 5 rsystem Mt is isomorphic to an 
irreducible right ideal of Sf generated by an idempotent et. Hence the 5-system 
Mi is isomorphic to an irreducible right ideal etS of S. Since S is primitive, 
dS C^L e2 S. Hence there is an isomorphism 5 of the 5-system Mi onto the 
5-system M2. The relation 

xi{ais) = (xiai)s = (xi a)s = (xis)a — (xis)ai'' = xi(sail) 
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holds for all xi G M\ and a,\ G Si. It implies that af = s~%i s. The scalar 
multiplication (5i) i (<5i G Ai) commutes with every element a,\ G 5. Hence 
s - 1 (5i) i ̂  commutes with every element s - 1ai s = ai1 G S2. Since the centralizer 
of the S2-system M2 coincides with A2, there is a scalar multiplication 

(h°) 1 : x2 —> 0^x2 

for ôi0" G A2 such that 5_1(5i)i5 = (ôiff)i. We verify directly that a : 3 —> 5ff 

is an isomorphism of Ai into A2. If 52 is any element of A2, then in a similar 
manner we deduce that 5(62)1 s_1 = (<5i)i for some <5i G Ai. Thus <52 = ôf and 
<r is an isomorphism onto A2. Since (<5i) 1 5 = s^ i ' ) 1, we obtain 

{bi%i)s = Xi(ôi)i5 = Xis(<5ia)i = 51er(xx s), 

whence (s, <r) is a semi-linear transformation. 
We next show that (s, a-) and (s~x, a--1) have adjoints. Let 

r i : ffi—> (xx , 3/1)1 « i 

be any element of ^M^(Mi) such that ux g FMi( = 0ilfi) when 0 G Ai. The 
mapping 

/ : x2 -» (x2 r
-1 , yOi0, 

is a linear form on M2. Since s^Vi 5 G 8^2(^2 ) and 

x2(5_1ri5) = (x2/)(wi5) G A2(wis), 

we have s_1fi s G g;M>2(ikf2). Hence 

(x2f)(uXs) = (X2, / 2) 2 «2 

for suitable y' 2 G .M'2 and u2 G M2. This relation, together with 

« i5 g FM2 ( = 0M2) 

in the case of 0 G A2, yields the equation 

x2f = (x2 s - \ yOi0- = (x2, z
r
2) 

for a certain z'2 G -MV Therefore y\—*z'2 is an adjoint of (s~x, <r_1). By 
symmetry, (5, a-) also has an adjoint. 

17.4. COROLLARY. Let (Mu M't) be a pair of dual vector sets over Aifi = 1,2. 
If (Mi, M'i) and (M2, Mf

2) are equivalent, then 

S M ' I ^ ! ) - ^ , ^ ) . 

Conversely, let St be a subsemigroup of %M
fi(Mi) containing $ M'i (Mi) such that 

the centralizer of the Srsystem Mt coincides with Au i = 1,2, and let Si be 
isomorphic to S2. Then (Mi, M\) and (M2, Mr

2) are equivalent. 

17.5. COROLLARY. Let (M, M') be a pair of dual vector sets over A. / / (s, a) 
is a 1-1 semi-linear transformation of M that satisfies (17.2), then a —> s~*as 
is an automorphism of2M

f (M) and of $M> (M). Conversely, if S is a subsemigroup 
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of %M>(M) containing %M>{M) such that the centralizer of the S-system M coin
cides with A, then every automorphism of S has the form a —» s~xas where s is a 
1-1 semi-linear transformation of M onto itself that satisfies (17.2). 

17.6. COROLLARY. For i = 1,2 let (Mu M't) be a pair of dual vector sets 
over A{. If S t is a subsemigroup of2M

fi(Mi) containing $M'i(Mi) such that the 
centralizer of the Si-system Mt coincides with Au then every isomorphism of S\ 
onto S2 can be extended to an isomorphism of ? M ' I ( - ^ I ) onto S M ^ W ) . 

This result raises the question: When does the centralizer of the 5 rsystem 
Mi coincide with A*? A sufficient condition is contained in the following 
theorem. 

17.7. THEOREM. Let M be a vector set over A, and let S be any subsemigroup of 
2(M) that satisfies the following two properties: 

(a) M is an irreducible S-system. 
(b) If u and v are any two elements of M such that u (£ Fs M and v & Au, 

then there exist two elements a and b of S for which 

ua = ub and va ^ vb. 

Then the centralizer of the S-system M coincides with A. 

Proof. Let c be a mapping of M into itself such that ac = ca for all a G S. 
Let u be any element of M — Fs M where Fs M either consists of the fixed 
element of M with respect to S or is void. Then uc G Au. For otherwise, 5 
would contain elements a and b such that ua = ub and uca 9e ucb, contrary to 

uca = uac — ubc = ucb. 

Thus uc = ou for some ô G A. If x = ua{a G S) is an arbitrary element of M, 
then 

xc = (ua)c = (uc)a = {bu)a = 8(ua) = 5x, 

i.e., c coincides with the left multiplication (ô)i : x —» 8x. 

17.8. THEOREM. Let (M, Mf) be a pair of dual vector sets over A. Then the 
centralizer of the %M

f (M)-system M coincides with A. 

Proof. Put 5 = 2M'(M). Take u, v G M such that u £ FSM and v £ Au. 
If 0 G A, then clearly u (£ FA M = OM. For otherwise, 

u = Ou, ua = (Ou)a = 0(ua) G OM", and \0M\ = 1 

would imply that ua = u for all a G S, a contradiction. Let a be an element 
of $M' (M) such that ua = u and let b be the identical mapping of M. Then 
ua = ub = u, va G Au, vb = v, and hence va ^ v. Therefore, we can apply 
Theorem 17.7. 

17.9. THEOREM. Let (M, Mf) be a pair of dual vector sets over A and let S be 
any subsemigroup of%M

f(M) containing %M'(M). If the associated bilinear form 

https://doi.org/10.4153/CJM-1966-048-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-048-1


490 HANS-JÙRGEN HOEHNKE 

(x, xf) of (M, Mf) satisfies (15.1), the centralizer of the S-system M coincides 
with A. 

Proof. The centralizer of the %M>(M)-system M is equal to A if and only if 
this is also true for every S with %M>(M) C S C 8(M). Thus it is sufficient 
to consider the case S = $M' (M). We know that M is an irreducible S-system. 
Take u,v 6 M such that w = ub & FA M( = 0M) if 0 G A. Then vb = bw for 
some 8 6 A. By (15.1), there is an element yf G M' for which (v, y') ^ (bu, y'). 
Assume first that (u, y ) ^ 0 if 0 G A. Setting 

a : x —* (x, y') (w, 3/) - 1^, 
we obtain 

ua = ub = w, va = (v, y')(u, yf)~lw 7^ bw ~ vb. 

Next let 0 G A and (u, / ) = 0. Set ai : x —> (x, y')w and 61 : Af —> OAf. 
Then wai = ub\ and, since (z/, yf) 7^ 0, mi 7̂  vb\. Hence Theorem 17.7 can be 
applied in either case. 

REMARK. Let 5 be a primitive semigroup with an irreducible right ideal 
eS {e2 = e). As the proof of Theorem 15.7 shows, we can associate with 5 a 
dual pair (M, M') over A such that (i) S is isomorphic to a subsemigroup of 
2M> (M) containing %M' (M) and (ii) the centralizer of the .S-system M coincides 
with A (e.g., put M = eS, M' = Se, A = eSe). By Corollary 17.4, any such 
pair (M, Mr) is uniquely determined by S up to equivalence. In particular, 
A is uniquely determined by 5 up to isomorphism. Therefore, it is very natural 
to call A the group, with or without zero, of S. 

A primitive semigroup 5 with an irreducible right ideal eS {e1 = e) is said 
to be maximal if S is not properly contained in a second primitive semigroup 
with the same socle © = SeS. 

17.10. THEOREM. A primitive semigroup S with an irreducible right ideal 
eS (e2 = e) is maximal if and only if it is isomorphic to a semigroup 2M' (M). 

Proof. Clearly, we may assume that 

© = %M>{M) CSC2M>(M) 

for a suitable dual pair (M, Mf). If 5 is maximal, then necessarily 5 = 2M>(M). 
Conversely, assume that 5 = 8^/ (M). If 5 is properly contained in a primitive 
semigroup T with the same socle © = SeS, then, since eS is an irreducible 
right ideal of T, there is a dual pair (Mi, M'i) over Ai such that Pis isomorphic 
to a subsemigroup Pi of 2M'I(MI) that contains %M^1(Mi) = Si. The iso
morphism P c^iPi induces an isomorphism © ~ ©1 and an isomorphism 
S ~ Si of S onto a subsemigroup Si of Pi that contains $M'i(Mi). 

By Theorem 17.8 the centralizer of the S-system M coincides with A. We 
wish to show that the centralizer of the Si-system Mi coincides with Ai. Since 
S ~ Si, the semigroup Si has an identity e\. More generally, let Si be any 
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semigroup of 2(Mi) that contains both \SM'I(MI) and an identity e\. Since M\ 
is an irreducible $M

fi(Mi)-system, it is also an irreducible Si-system. Any 
element yi £ Mi can be written in the form yi = xi #i where Xi € Mi and 
ai £ Si. From 

yiei = (xiai)ei = Xi(aiei) = xi ai = 3/1 

it follows that ei is the identity mapping of Mi. Hence, the proof of Theorem 
17.8 can be applied to verify that the centralizer of the Si-system Mi is equal 
to Ai. In our former special situation where Sc^Sif this implies that the 
isomorphism of S onto Si can be extended to an isomorphism 

S = 2Mf(M)^2Mfl(Mi)f 

contrary to Si 9^ 2M
fi(Mi). 
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