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Infinitely Many Rotationally Symmetric
Solutions to a Class of Semilinear
Laplace–Beltrami Equations on Spheres

Alfonso Castro and Emily M. Fischer

Abstract. We show that a class of semilinear Laplace–Beltrami equations on the unit sphere in Rn

has inûnitely many rotationally symmetric solutions. _e solutions to these equations are the solu-
tions to a two point boundary value problem for a singular ordinary diòerential equation. We prove
the existence of such solutions using energy and phase plane analysis. We derive a Pohozaev-type
identity in order to prove that the energy to an associated initial value problem tends to inûnity as
the energy at the singularity tends to inûnity. _e nonlinearity is allowed to grow as fast as ∣s∣p−1s
for ∣s∣ large with 1 < p < (n + 5)/(n − 3).

1 Introduction

_e Laplace–Beltrami operator is a generalization to Riemannian manifolds of the
Laplacian. For a diòerentiable function f deûned on a Riemannian manifold M, the
Laplace–Beltrami operator acting on f is deûned as the Laplacian of the extension of
f that is constant on normal directions to M (see [6]). If u is a diòerentiable function
deûned on the unit sphere in Rn , Sn−1, that is rotationally symmetric with respect
to the z-axis, an elementary calculation shows that the Laplace–Beltrami operator is
given by

(1.1) ∆su(x1 , x2 , . . . , xn−1 , z) = (1 − z2)u′′ + (1 − n)zu′ ,

where u′ and u′′ denote the ûrst and second derivative of u with respect to z. _e
goal of this paper is to give suõcient conditions for the semilinear Laplace–Beltrami
equation

(1.2) ∆su + (1 − ∣z∣) f (u) = 0

to have inûnitely many rotationally symmetric solutions. _roughout this paper we
assume that f is super linear, i.e.,

(1.3) lim
∣u∣→+∞

f (u)
u

= +∞.
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Also, for the sake of simplicity in the calculations, we assume that f is nondecreasing
and that f (0) = 0.

Our main result is the following theorem.

_eorem 1.1 Let n ≥ 3 and F(u) = ∫
u
0 f (s)ds. If there exists θ ∈ (2, 2n+2

n−3 ) and
k ∈ (0, 1) such that θF(d) − d f (d) is bounded below and

(1.4) lim
d→+∞

( d
f (d))

(n+1)/2
(θF(kd) − d f (d)) = +∞,

then the boundary value problem (1.2) has inûnitelymany rotationally symmetric solu-
tions on the unit sphere.

From (1.1) we see that ûnding classical solutions to (1.2) is equivalent to ûnding
solutions to

(1.5)
⎧⎪⎪⎨⎪⎪⎩

(1 − z2)u′′ + (1 − n)zu′ + (1 − ∣z∣) f (u) = 0,
u′(1) = u′(−1) = 0.

Since every solution to

(1.6)
⎧⎪⎪⎨⎪⎪⎩

(1 − z2)u′′ + (1 − n)zu′ + (1 − ∣z∣) f (u) = 0,
u′(−1) = u′(0) = 0

yields an even solution to (1.5), we prove _eorem 1.1 by showing that (1.6) has in-
ûnitely many solutions. It is easily veriûed that if f (u) = ∣u∣p−1u for u ≥ 0, and
f (u) = ∣u∣q−1u for u ≤ 0, with 1 < p, q < n+5

n−3 , then f satisûes the hypotheses of_e-
orem 1.1. In this case we say that f has subcritical growth. If p > n+5

n−3 or q > n+5
n−3 , we

say that f has supercritical growth. Suggested by the result in [2], we believe that _e-
orem 1.1 also holds requiring subcritical growth for u > 0 while allowing supercritical
growth for u < 0. Our results extend to the case where the right-hand side in (1.2) is
replaced by a rotationally symmetric function q ∈ L∞. Again, for the sake of clarity
we leave the corresponding calculations for the reader.

Standard contraction mapping principle arguments show that, for each d ∈ R, the
initial value problem

(1.7)
⎧⎪⎪⎨⎪⎪⎩

(1 − z2)u′′ + (1 − n)zu′ + (1 + z) f (u) = 0, z ∈ [−1, 0],
u(−1) = d , u′(−1) = 0

has a unique solution, and that such a solution depends continuously on d in the
C1([−1, 0]) topology.
For u(z, d) solution to (1.7) we deûne the energy function by

(1.8) E(z, d) = (u′(z, d))2

2
+ 1

1 − z
F(u(z, d)).

_e ûrst step in proving the existence of inûnitelymany soltions to (1.6) is to estimate,
in terms of d, the value t0 forwhichu(t0 , d) = kd, and d ≥ u(t, d) ≥ kd for t ∈ [−1, t0]
(see Lemma 2.1). Next, in Lemma 2.2, we establish a version of the Pohozaev identity
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for (1.7). Using the estimate for t0 and our version of the Pohozaev identity, we prove
that

(1.9) lim
d→∞

E(z, d) =∞.

To ûnish the proof, we consider the (u, u′) phase plane. From (1.9) we have that for
suõciently large d, we can deûne a continuous argument function η(z, d) such that
η(−1, d) = 0. We prove that

lim
d→∞

η(0, d) =∞.

_en, by the intermediate value theorem, we can say that there are inûnitely many
solutions where u′(0, d) = 0, and hence there are inûnitely many rotatationally sym-
metric solutions to (1.2). Our argument resembles those in [3],where radial solutions
to similar semilinear elliptic equations in balls were considered. Despite the similar-
ity in the equations, the critical exponent arising here is surprisingly bigger than the
one in [3]. _e reader is referred to [7] for recent results on the existence ofmultiple
solutions to semilinear Laplace–Beltrami equations on general compact Riemannian
manifolds using variational methods. Also, the reader is referred to [4] for the role of
hypotheses such as (1.4) in the existence of dead core and bursts solutions to quasi-
linear equations.

2 Energy Analysis

First we estimate the quantity t0 in terms of d.

Lemma 2.1 Let k ∈ (0, 1) be as in _eorem 1.1 and let u(z, d) ∶= u(z) be the solution
to (1.7). _ere exists D1 > 0, k2 > k1 > 0 such that if d > D1, u(t0) = kd, and u(z) ≥ kd
for all z ∈ [−1, t0], then

(2.1) k1(d/ f (d))
1/3 ≤ t0 + 1 ≤ k2(d/ f (kd))

1/3
.

Proof Let D1 > 0 be such that f (kd) > 0 for d > D1. Multiplying the second order
diòerential equation in (1.7) by (1 − z2)(n−1)/2, and integrating on [−1, t) we have

(1 − t2)(n−1)/2u′(t) = −∫
t

−1
(1 − z2)(n−1)/2(1 + z) f (u(z))dz

≥ − f (d)2(n−1)/2 ∫
t

−1
(1 + z)(n+1)/2dz

= −2(n+1)/2

n + 3
f (d)(1 + t)(n+3)/2 .

Hence there exists a constant c1 > 0, independent of d, such that

u′(t) ≥ −c1 f (d)(1 + t)2 .

Integration on [−1, t0] yields
t0 + 1 ≥ 3c1(d/ f (d))1/3 ∶= k1(d/ f (d))1/3 .

_e existence of k2 follows similarly.
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In order to prove (1.9),we develop a formof the Pohozaev identity for our problem
in the next lemma.

Lemma 2.2 If u(z) ∶= u(z, d) is the solution to (1.7), then

(2.2)
P(z) ∶= (1 − z2) n+1

2 h(z)(u′)2 + (1 − z2) n−1
2 uu′ + 2(1 − z2) n−1

2 (1 + z)h(z)F(u)

= ∫
z

−1

(1 − y2) n−1
2

1 − y
[F(u)(h(y)(6y − 4ny + 2) − 2) − u f (u)]dy,

where h(z) = (1 − z2) n−3
2 ∫

0
z (1 − y2) 1−n

2 dy.

Proof First we observe that

(2.3) lim
z→−1+

h(z) = 1
n − 3

for n > 3 and lim
z→−1+

h(z)
ln( 1

2(1+z))
= 1

2
for n = 3.

Let p(z) = (1 − z2) n−3
2 and q(z) = 2(1 − z2) n−1

2 h(z). Multiplying (1.7) by p(z)u gives
us

(1 − z2) n−1
2 uu′′ + (1 − n)(1 − z2) n−3

2 zuu′ + (1 − z2) n−3
2 (1 + z)u f (u) = 0.

_en integrating, we have

(2.4) (1 − z2) n−1
2 uu′ − ∫

z

−1
(1 − y2) n−1

2 (u′)2dy = −∫
z

−1

(1 − y2) n−1
2

1 − y
u f (u)dy.

On the other hand,multiplying (1.7) by q(z)u′ yields

(2.5) (1 − z2) n+1
2 h(z)u′u′′ + (1 − n)(1 − z2) n−1

2 h(z)z(u′)2

+ (1 − z2) n−1
2 (1 + z)h(z)u′ f (u) = 0.

A simple calculation shows that

h′(z) = −(1 − z2)−1 − (n − 3)(1 − z2) n−5
2 z∫

z

−1
(1 − y2) 1−n

2 dy,

so

(2.6) (1 − z2)h′(z) = −1 − (n − 3)zh(z).
Integrating (2.5) and using (2.6) gives us

(2.7)
1
2
(1 − z2) n+1

2 h(z)(u′)2

+ 1
2 ∫

z

−1
(1 − y2) n−1

2 (u′)2dy + (1 − z2) n−1
2 (1 + z)h(z)F(u)

= ∫
z

−1

(1 − y2) n−1
2

1 − y
F(u)[h(y)(3y − 2ny + 1) − 1]dy.

Multiplying (2.7) by 2, adding to (2.4), and simplifying, (2.2) follows.

Now, from (2.2), we estimate the energy deûned in (1.8) as d tends to +∞.

Lemma 2.3 If n, f are as in _eorem 1.1, then limd→∞ E(z, d) = ∞ uniformly for
z ∈ [−1, 0].
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Proof First we consider the case where n > 3. From (2.3) we see that there exists
T ∈ (−1,−1/2) such that if y ∈ [−1, T]; then h(y)(6y−4ny+2)−2 ≥ θ (see (1.4)). Let
D2 > D1 be such that for d > D2, t0 < T < −1/2 (see (2.1)). Replacing these in (2.2)
we have

(2.8)
P(t0) ≥ (θF(kd) − d f (d)) ∫

t0

−1
(1 + y) n−1

2 dy

≥ (θF(kd) − d f (d)) 2
n + 1

(1 + t0)
n+1
2 .

Let M < 0 be such that θF(s) − s f (s) ≥ M for all s ∈ R. Hence, for t ∈ [t0 , T],

(2.9)
P(t) ≥ P(t0) +M ∫

t

t0
(1 − y)(n−3)/2(1 + y)(n−1)/2dy

≥ P(t0) +M2(n−3)/2 .

From equations (1.4), (2.1), and (2.8), limd→+∞ P(t0) = +∞. _is and (2.9) give
limd→∞ P(z, d) = +∞ uniformly for z ∈ [t0 , T]. _us, from the deûnition of P we
have limd→∞ E(z, d) = +∞ uniformly for z ∈ [t0 , T].
From (1.8), for t ∈ [−1, t0], E(t, d) ≥ F(kd). Hence,

(2.10) lim
d→∞

E(z, d) = +∞ uniformly for z ∈ [−1, T].

From (1.8) and (1.7),

E′(z, d) = (n − 1)z(u′(z))2/(1 − z2) ≥ −2(n − 1)E(z, d)/(1 − T2) ∶= −CE(z, d).
Integration on [T , z] yields E(z, d) ≥ E(T , d)e−C , which together with (2.10) prove
the lemma for n > 3.

If n = 3, then multiplying (1.7) by (1 + z)u′ and integrating results in

(2.11) ( (u′)2

2
)(1 − z)(1 + z)2 + F(u)(1 + z)2 =

1
2 ∫

z

−1
(u′)2(1 + t)2dt + 2∫

z

−1
(1 + t)F(u)dt.

_us, for d > D2 and z ∈ [−1, t0], (1 − z)E(z, d) ≥ F(kd). Since F is bounded from
below, from (2.11), for z ∈ [t0 , 0] we have

lim inf
d→+∞

(1 − z)E(z, d) ≥ lim inf
d→+∞

F(kd) = +∞,

which concludes the proof of the lemma.

3 Phase Plane Analysis

Let x(z, d) = u(z, d) and y(z, d) = u′(z, d). From Lemma 2.3, there exists D3 > D2

such that if d > D3, then ρ(z, d) =
√
x(z, d)2 + y(z, d)2 > 0 for all z ∈ [−1, 0]. Hence,

for d > D3, there exists a diòerentiable function η(z, d) that satisûes

(3.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

η(−1, d) = 0
x(z, d) = ρ(z, d) cos(η(z, d))
y(z, d) = −ρ(z, d) sin(η(z, d))
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for z ∈ [−1, 0]. A straightforward calculation shows that

(3.2) η′(z, d) = sin2 η(z, d) − ( (n − 1)z
1 − z2 y(z, d) − f (x(z, d))

1 − z
) cos η(z, d)

ρ(z, d) .

From (1.3) there exists a real number M1 > 0 such that if ∣v∣ > M1, then v f (v) > 0.
Hence,

(3.3) f (x(z, d)) cos(x(z, d)) ≥ min{v f (v); ∣v∣ ≤ M1}
ρ(z, d) ∶= M2

ρ(z, d) .

Now we have enough information to prove the following lemma.

Lemma 3.1 _e η function satisûes

lim
d→+∞

η(0, d) = +∞.

Proof Let D4 > D3 be such that if d > D4, then ρ(z, d) ≥ M1 for all z ∈ [−1, 0].
_erefore, if i is a non-negative integer and η(z, d) = iπ, then η′(z, d) > 0. Hence,
η(ζ , d) > iπ for all ζ ∈ (z, 0]. In particular, η(ζ , d) > 0 for all ζ ∈ [−1, 0]. Let us see
that given a positive integer j, there exists d j > 0 such that if d ≥ d j , then η(0, d) > jπ.
Let j be given and z ≥ − 3

4 . Let δ > 0 be such that

(3.4) δ ≤ min{ π
6
,

1
16 jn

} and (1 − δ)2 − 15(n − 1)
16

δ > 3
4
.

By (1.3) there exists X j > 0 such that if ∣x∣ ≥ X j , then

(3.5)
f (x)
x

≥ 16 j2π + 3(n − 1)
2 cos2( π

2 − δ)
.

Since limd→+∞ ρ(z, d) = +∞, there exists a d j such that if d ≥ d j , then

ρ(z, d) ≥
X j

cos(δ) + 4M1/2
2 .

Let k be a nonnegative odd integer. If η(z, d) ∈ [ kπ
2 −δ,

kπ
2 +δ], then from (3.2), (3.4),

and (3.3),

(3.6) η′(z, d) ≥ (1 − δ)2 − 15(n − 1)
16

δ − 4M2

ρ2(z, d) ≥ 1
2
.

For η(z) ∈ [ kπ
2 + δ, (k+2)π

2 − δ], from (3.1) we have ∣x(z, d)∣ ≥ ρ(z, d)∣ cos(δ)∣ > X j .
_erefore, from (3.5), we have

(3.7) η′(z, d) ≥ 4 j2π.

Suppose η(−3/4, d) ∈ [ kπ
2 − δ, kπ

2 + δ] for some positive integer k. By (3.6), there
exists z1 ∈ [−3/4,−3/4+ 2δ] such that η(z1 , d) = δ + kπ/2. Similarly, by (3.7) there is
a z2 ∈ (z1 , z1 + π−2δ

4 j2π ), where

η(z2 , d) =
( j + 2)π

2
− δ,
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and, by (3.6), there exists z3 ∈ (z2 , z2 + 4δ), where θ(z3 , d) = ( j+2)π
2 + δ. Hence,

z3 ≤ −3/4 + (4δ + π − 2δ
4J2π

+ 4δ).

Repeating this argument j times, we see that there exists

ẑ ∈ (−3/4,−3/4 + j(8δ + π − 2δ
4 j2π

)) ⊂ (−3/4, 0)

such that η(ẑ, d) ≥ jπ. Similar arguments show that if θ(−3/4, d) ∈ [ kπ
2 +δ,

( j+2)π
2 −δ]

for some positive odd integer j, there is a

ẑ ∈ (−3/4,−3/4 + j(4δ + 2(π − 2δ)
4J2π

)) , ẑ ≤ 0,

where η(ẑ, d) ≥ jπ. _erefore, since ẑ ≤ 0 and θ is increasing in z, we have that
η(0, d) ≥ jπ for ∣d∣ ≥ d j . _is proves the lemma.

Now we prove_eorem 1.1.

Proof of_eorem 1.1 By Lemma 3.1, there exists K0 such that if k ≥ K0 is a positive
integer then there exists ek > D3 such that η(0, ek) = 2kπ. Hence u′(0, ek) = 0 for all
k ≥ K0. _at is, each

uk(x1 , . . . , xn−1 , z) ∶= u(z, ek), uk(x1 , . . . , xn−1 ,−z) ∶= uk(x1 , . . . , xn−1 , z)
deûnes a rotationally symmetric solution to the boundary value problem (1.5). _is
proves the theorem.
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