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Numerous applications, not only Earth-based, but also space-based, have strengthened the
interest of the international scientific community in using Global Navigation Satellite
Systems (GNSSs) as navigation systems for space missions that require good accuracy and
low operating costs. Indeed, already successfully used in Low Earth Orbits (LEOs), GNSS-
based navigation systems can maximise the autonomy of a spacecraft while reducing the
burden and the costs of ground operations. That is why GNSS is also attractive for applica-
tions in higher Earth orbits up to the Moon, such as in Moon Transfer Orbits (MTOs).
However, the higher the altitude the receiver is above the GNSS constellations, the poorer
and the weaker are the relative geometry and the received signal powers, respectively,
leading to a significant navigation accuracy reduction. In order to improve the achievable
GNSS performance in MTOs, we consider in this paper an adaptive orbital filter that fuses
the GNSS observations with an orbital forces model. Simulation results show a navigation ac-
curacy significantly higher than that attainable individually by a standalone GNSS receiver or
by means of a pure orbital propagation.
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1. INTRODUCTION. Although originally designed to provide position, velocity
and timing for land, maritime and air applications, Global Navigation Satellite
Systems (GNSS) have also been adopted for use in Low Earth Orbit (LEO) space
applications such as for attitude determination, time synchronisation, orbit determin-
ation, and absolute and relative position determination. Indeed, a GNSS receiver can
maximise the autonomyof a spacecraft and reduce the burden and the costs of network
operations (Miller, 2011). For the same reasons, the use of GNSS is also very appealing
for applications at higher altitudes, such as for Medium Earth Orbit (MEO),
Geostationary Orbit (GEO), and Highly Elliptical Orbit (HEO) missions, and even
for Moon Transfer Orbits (MTOs), which are the focus of this paper. In particular,
the recent stronger interest in lunar exploration in the scientific community has
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pushed companies and institutions to investigate the use of GNSS as the navigation
system for Moon missions, as it would significantly reduce the operating costs.
The first space-borne GNSS receiver flew on board the Landsat 4 spacecraft in 1982

(Bauer et al., 2006), while the first use of GNSS above the Global Positioning System
(GPS) constellation altitude up to the GEO altitude was made in 1997 during different
experiments on board the Equator-S and the DSCS-3 (Defense Satellite
Communications 3) satellites, as published in Powell et al. (1999) and Balbach et al.
(1998). In more recent papers (Capuano et al., 2013; 2014; 2015; Silva et al., 2013;
Palmerini et al., 2009), the use of GNSS as a navigation system to reach the Moon
has been analysed. In Capuano et al. (2014) we have shown some preliminary
results from the development undertaken in our laboratory of a proof of concept proto-
type Field-Programmable Gate Array (FPGA)-based GPS receiver for lunar missions.
A GNSS unfiltered navigation solution is approximately as accurate in LEO as on

the Earth; above the GNSS constellation on the way to the Moon, however, the accur-
acy of the system will decrease. Since the GNSS transmitters point towards the Earth,
the signal received by a spacecraft above the GNSS constellation will only come from
the spill over around the Earth of the signals transmitted from the main lobe or from
one of the side lobes of the satellite’s antennae patterns. In any case, the received power
at the receiver position will be considerably lower than as received by a user on the
Earth’s surface. This is partly due to the propagation range between the receiver and
the GPS satellites that is much higher (in most of the orbit) than for an Earth-based
user resulting in extra free space loss attenuation. Moreover if signals are tracked
from one of the side lobes of the GNSS antenna pattern the transmitted power is
much lower than that transmitted by the main lobe (Unwin et al., 2013). As a
result, the number of visible satellites that can be tracked above the GNSS constella-
tion drops dramatically and in some cases it may not be possible to compute a naviga-
tion solution (i.e., when there are fewer than four visible satellites). In addition, the
poor relative geometry of the GNSS satellites at very high altitude can drastically
reduce the navigation solution accuracy, due to the very limited region in the field
of view where the GNSS satellites can be observed. This results in an increased
Geometric Dilution Of Precision (GDOP) as compared to an Earth user.
On the other hand, a spacecraft is constrained to move along a certain trajectory by

the orbital forces acting on it. For these reasons the use of orbital filters, which fuse
GNSS observations and the prediction of the space dynamics leads to better solutions
than that achieved by a stand-alone GPS receiver. Orbital filters are widely used to
improve the accuracy of the navigation solution provided by GNSS receivers. This is
documented in Chiaradia et al. (2000), Habib (2013), Pardal et al. (2009) and many
others. All of themuse aKalman Filter estimator for the positioning of a satellite in LEO.
In this research, we describe the implementation of GNSS-based orbital filter for

lunar missions that uses an adaptive Extended Kalman Filter (EKF) tuned along
the MTO as function of the GNSS measurements. Firstly, we consider the use of
the GPS L1 Coarse/Acquisition (C/A) signals by modelling the observables as they
would be provided by the space-borne WeakHEO receiver prototype (Capuano
et al., 2014), an FPGA-based receiver for lunar missions under development in our la-
boratory. In addition to considering the case of GPS L1 C/A only, we also show the
performance achievable by using a dual constellation receiver that processes signals
from both GPS and from Galileo. The achieved navigation performance provided
by filtering the GNSS observations is compared to the performance obtained by
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using the corresponding non-filtered GNSS least square solution, whose accuracy
decreases as the distance from the GNSS constellation increases, becoming almost
meaningless when the spacecraft reaches the Moon altitude. Furthermore, we also
report the Doppler shift and Doppler rate estimation accuracy of the filter that can
strongly aid the GNSS signal processing module.

2. REFERENCE RECEIVER TRAJECTORY. As mentioned in the introduc-
tion, the reference trajectory of the receiver is a MTO. The initial conditions of the
MTO in the Earth Centred Inertial (ECI) reference frame, the starting date, and the
characteristics of the spacecraft assumed in the performed simulations are shown in
Table 1. The motion of the receiver is propagated by the Spirent simulation software
SimGen, which models several perturbing accelerations, such as the Earth gravitation-
al spherical harmonics up to the 21st degree and 21st order, the effect of atmospheric
drag and Solar Radiation Pressure (SRP), and the third body perturbation due to both
the Sun and the Moon (Spirent, 2012).
Figure 1 illustrates the spacecraft trajectory for the entire lunar mission, together

with the GPS constellation, that starts from the launch and ends with a selenocentric
orbit. The considered trajectory includes only theMTO, which is identified by the light
blue orbit portion.
Figure 2 displays the relation between the altitude (of the spacecraft and of the GPS

satellites) and the time of the full considered MTO. We can see that for most of the
transfer orbit the spacecraft is above the GPS constellation.

3. GNSS OBSERVATIONS MODEL. In order to reproduce correctly the GNSS
signal powers at the receiver, the SimGen software of our Spirent 8000 simulator
models the gain pattern of both the transmitting and receiving antennas. This is
required to differentiate the power level of the signals coming from the side lobes of
the transmitting antennae from the ones transmitted from the main lobe.
Information about the transmitting antenna pattern of different GPS signals

and blocks are reported in the literature: e.g. for the Block IIA in Czopek and
Shollenberger (1993), IIR in Wu (2002) and IIF in Erker et al. (2009).
Unfortunately, less detail can be found for Galileo; indeed only the gain at boresight
and at the end of the coverage of the transmitting antenna of the four Galileo In-
Orbit Validation (IOV) satellites are provided in Arenas et al. (2011). Given the
missing detailed information about the transmitting antenna patterns for both constel-
lations, we choose for this study that focuses on the orbital filtering performances (and
not specifically on the differences between antenna pattern of different blocks and con-
stellations) to adopt the GPS transmitter antenna pattern from Block II-A (illustrated
in Figure 3 as defined in Czopek and Shollenberger (1993) and provided by Spirent
(2012) to model all the transmitters for all the considered satellite signals. This simpli-
fying assumption, reasonable for the goal of this research, should be considered as an
analysis limitation for the reader who is specifically interested in the difference between
the performance of the signals transmitted by the side lobes of different GPS and
Galileo blocks. In addition, we assumed that the L1 C/A signals are transmitted by
30 GPS satellites and the E5 (E5aQ + E5bQ) signals are transmitted by all the
nominal 27 Galileo satellites.
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Regarding the receiving antenna, following Capuano et al. (2014; 2015), an antenna
gain at the receiver of 10 dBi is assumed. Such gain value during the whole trajectory
may be obtained placing more than one receiver antenna on different faces of the

Figure 1. Considered lunar mission: the MTO is the curve in light blue (image generated by
using STK).

Figure 2. Relation between altitude and time during the considered MTO. The average distance
between an Earth receiver and the GPS satellites at zenith is approximately 20,200 km, but for
99% of the travel time of a receiver flying in the defined MTO, this distance is larger.

Table 1. Initial conditions for the MTO, spacecraft characteristics and final altitude before starting the
injection into selenocentric orbit manoeuvre.

Parameter Values

ECI Initial position (km) 2395�52 �5298�28 �3022�82½ �
ECI Initial velocity (km/s) 10�19 3�58 1�72½ �
Initial altitude (km) 175
Final altitude (km) 382 912
Departure date 2nd Jul 2005 00:34:18
Mass of the spacecraft (kg) 1000
Reference surface (m2) 20

748 VINCENZO CAPUANO AND OTHERS VOL. 69

https://doi.org/10.1017/S0373463315000843 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000843


spacecraft (in such away that at least one points to the GNSS satellites), as assumed in
Capuano et al. (2014; 2015) and Palmerini et al. (2009), or by using a steerable direct-
ive antenna (Litva, 1996).
In order to compute for each satellite a realistic signal power Pr,k at the receiver,

where k denotes the satellite number, SimGen simulates for each satellite the received
GNSS signal strength using the following equation (Spirent, 2012):

Pr;k ¼ PICD þOG þ 20 × log10
R0

Rk

� �
� Ltx � Lrx ð1Þ

where PICD is the guaranteed minimum signal level on the Earth as given in GNSS
Signal In Space Interface Control Documents (SIS ICDs). OG is the “Global
Offset”. A value of +3 dB has been used to match the performance obtained when
using the simulator (transmitting PICD) with the performance obtained when real
signals are received. Since the transmitted signal powers are typically from 1 to 5 dB
higher than the minimum received signal power value (Kaplan and Hegarty, 2006),
an intermediate value of 3 dB has been chosen for both constellations. R0 is the refer-
ence range used for inverse-square variation calculation and equal to the range from an
Earth-based receiver to the GNSS satellite at zero elevation. Rk is the range from the
kth GNSS satellite to the receiver. Ltx, k is the gain from the kth GNSS satellite trans-
mit antenna in the direction of the receiver that takes into account the radiation
pattern of the antenna. Finally, Lrx, k is the gain from the receiver antenna in the dir-
ection of the kth GNSS satellite which in our paper has been considered as constant
and equal to 10 dBi.
Since the simulator only supports 12 channels for the GPS constellation and 12

channels for the Galileo constellation, a selection of the simulated satellites are per-
formed by SimGen. For a high orbit mission (where the signals are very weak), the
12 simulated satellites from each constellation are those corresponding to the 12 stron-
gest received signals (Spirent, 2012).
As stated in our previous studies (Capuano et al., 2014; 2015), for the considered

MTO, the minimum receiver sensitivity required to acquire and track at least the
four most powerful signals from the GPS satellites simultaneously is about −168
dBm (at least four satellites are required to compute the navigation solution).

Figure 3. GPS Transmitter Antenna Pattern used to simulate the antenna pattern of all considered
GNSS satellites (based on Czopek and Shollenberger (1993) for Block II-A). The boresight is at 90°.
The gain is normalised to 0 dB at boresight.
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Therefore, by considering a receiver antenna gain of 10 dBi, we are considering a re-
ceiver sensitivity of −159 dBm, taking a 1 dB margin. The received power value in
dBm Pr can also be expressed in terms of carrier-to-noise ratio C/N0, which is given
by the following equation, considering a front-end noise figure of 2 dB and assuming
an effective antenna temperature of 130 K (Van Diggelen, 2009).

C=N0 ¼ Pr þ 174 ð2Þ
Using Equation (2) the sensitivity value of −159 dBm corresponds to 15 dB-Hz.

3.1. GPS observations. For the GPS L1 C/A signals, we have used PICD =
−128·5 dBm according to (Anon., 2011).
In our simulations, the pseudorange and pseudorange rate observables from the

visible signals are modelled according to the GPS theory presented in Kaplan and
Hegarty (2006) as follows:

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xsat � xuð Þ2þ ysat � yuð Þ2þ zsat � zuð Þ2

q
þ bþ errorsρ ð3Þ

_ρ ¼ vsat � vuð Þ � aþ _bþ errors _ρ ð4Þ
In Equation (3), xsat ysat zsat½ �T denotes the position’s vector of the GPS satellite
that is transmitting the signal, xu yu zu½ �T is the user’s position vector, and b is
the receiver’s clock offset in metres. We assumed an arbitrary initial clock offset of
10 km. In Equation (4), vsat and vu are, respectively, the velocity vector of the transmit-
ting GPS satellite and of the spacecraft, _b represents the clock’s drift expressed as range-
rate bias (in m/s), and a is the Line-Of-Sight (LOS) vector from the user to the GPS
satellite. A clock drift of _b ¼ 100 m=s has been considered (note that this is a conserva-
tive value as a more precise clock such as an Oven Controlled Oscillator (OCXO) can
achieve a frequency variation of about one part in 1011 over a second, corresponding to
a range-rate bias on the order of 3 m/s (Groves, 2013). Both the position and velocity of
the GPS satellites and of the receiver are provided by Spirent’s simulator.
Pseudorange observables are affected by systematic and non-systematic errors

denoted as errorsρ in Equation (3), which can be classified into: Signal-in-Space
Ranging Error (SISRE), which includes satellite clock error and broadcast satellite
ephemeris error; atmospheric delay; multipath effect and receiver error.
According to Kaplan and Hegarty (2006), these errors can be assumed as white

Gaussian noise with a certain standard deviation (although this is not strictly true it
is sufficient for this analysis), as summarised in Table 2 and described below. The
overall error that affects pseudoranges can thus be described by the user equivalent
range error (σUERE), defined as the root sum square of the different range error contri-
butions in Table 2.
According to McDonald and Hegarty (2000), for the GPS constellation we have

considered a value of 0·5 m for the transmitter’s clock and broadcast ephemeris
errors often described as Signal-in-Space Ranging Error (SISRE) (Engel, 2008).
The residual error on pseudorange measurements due to ionospheric effect is consid-

ered only when the spacecraft is inside the atmosphere. When the receiver is located
above 1000 km, which is the edge of the ionosphere (Kaplan and Hegarty, 2006),
the GPS signals may cross the ionosphere only when they are transmitted by satellites
which are on the other side of the Earth. In this case the ionosphere layer could be
crossed twice with a consequently greater delay of the signals. However when the
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receiver is far enough from the Earth (i.e. in most parts of the MTO up to 384 400 km),
it rarely receives signals that, transmitted from GNSS satellites at MEO altitudes of
roughly 19,000–23,000 km altitude, cross the ∼19–23 times smaller ionosphere layer.
Therefore, in this study, the ionosphere delay residual of 7 m (Kaplan and Hegarty,
2006) is only modelled when the receiver is below the altitude of the ionosphere,
while when above, pseudoranges from satellites whose line of sight crosses the iono-
sphere (and thus the troposphere situated below) are discarded. Furthermore, in this
simulation, when the receiver is below the highest bound of the ionosphere the
signals never pass through the troposphere, so the troposphere is neglected.
Typical modern Earth GNSS receivers have values for the pseudorange noise and

resolution error of approximately 0·1 m or less (1σ) in nominal conditions (Kaplan
and Hegarty, 2006). However, for very weak signals such as those seen when operating
above the GPS constellation, the noise value can be much higher. The DLL (Delay
Lock Loop) code thermal noise jitter σtDLL increases as the receiver carrier to noise
density of the signal C/N0 decreases (Kaplan and Hegarty, 2006). For this reason we
have modelled the σtDLL as a function of the C/N0 andwe have added it to the constant
value of 0·1 m that conservatively takes into account other possible error sources. For
Binary Phase Shift Keying (BPSK) modulations (e.g., GPS L1 C/A and Galileo E5 in-
dividually filtered components), when a non-coherent power DLL discriminator is
used, a general expression for the thermal noise code tracking jitter is according to
Betz and Kolodziejski (2000):

σtDLL ≅ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn

2
C
N0

D 1þ 2

T
C
N0

ð2�DÞ

2
664

3
775

vuuuuut ; D � πRc

Bfe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn

2
C
N0

1
BfeTc

� �
1þ 1

T
C
N0

2
664

3
775

vuuuuut ; D � Rc

Bfe
½chips�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn

2
C
N0

1
BfeTc

� �
þ BfeTc

π � 1
D� 1

BfeTc

� �2
" #

1þ 2

T
C
N0

ð2�DÞ

2
664

3
775

vuuuuut ;
Rc

Bfe
<D<

πRc

Bfe

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð5Þ

Table 2. GPS L1 C/A code error budget. h denotes the altitude of the spacecraft, and σtDLL denotes the DLL
(Delay Lock Loop) code thermal noise jitter that depends on the received C/No

Error source 1σ error (m)

Signal-in-Space Ranging Error (SISRE) 0·5
Ionospheric delay 7 if h< 1000 km
Receiver error and resolution 0 � 12 þ σ2tDLL

� �1=2
Multipath 0·2
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where Bn is the code loop noise bandwidth expressed in Hz; D is the early-to-late cor-
relator spacing in units of chips; T is the coherent integration time in seconds; Bfe is the
double-sided front-end bandwidth in Hz; Rc= 1/Tc is the chipping rate expressed in
chips/s and C/N0 is the carrier to noise ratio in dB-Hz. In our simulations, we have
assumed a Bn = 0·5 Hz, D = 0·3 chips, T = 20 ms, Bfe= 26 MHz, Rc= 1/Tc= 1·023
Mchip/s (values chosen in order to match the current parameters setting of the
space-borne GPS-based WeakHEO receiver prototype under development in our la-
boratory (Capuano et al., 2014)).
Modern GNSS receivers obtain pseudorange rate observables by evaluating the

Doppler shift of the received frequency from the transmitted one. As stated in
Kaplan and Hegarty (2006), pseudorange rates may be computed simply by multiply-
ing the Doppler shift with the wavelength of the signal carrier. This is done here; hence,
the pseudorange rate error errors _ρ in Equation (4) is due to the error in the frequency
estimation. In particular, Doppler frequency estimations (and then pseudorange rates)
are also affected by thermal noise, which is assumed here as the only source of error.
According to (Borio et al., 2010) and assuming a standard PLL (Phase Lock Loop),
the standard deviation of the Doppler tracking jitter is

σf ¼ 1
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn

C=N0
1þ 1

2TC=N0

� �s
rad
s

� �
ð6Þ

Note that the velocity can also be obtained taking successive phase measurements
when they are available and differentiating with time, giving a more accurate
measure, which is less sensitive to the tracking loop jitter.

3.1.1. Standalone GPS L1 C/A least square positioning solution. Figure 4 high-
lights the performance of the GPS L1 C/A stand-alone receiver, in terms of 3D pos-
ition error when a least square estimator is used to compute the position from the
pseudorange observations. The 3D position error increases as the spacecraft gets
closer to the Moon, reaching peaks of more than 50 km, which clearly does not
satisfy the required positioning accuracy of less than 1 km (3σ) for a Moon mission
(Woodward and Folta, 2009).
On one hand, the increasing error trend is due to pseudorange error, which grows

because of the increasing code tracking thermal noise as shown in Figure 5 that
plots the pseudorange error as provided by one of the 12 channel outputs of the
Spirent simulator as a function of the altitude. This is mainly due to the carrier-to-
noise ratio C/N0, which becomes lower and lower as the distance from the transmitting
satellites increases. In fact the pseudorange error, in particular the code tracking
thermal jitter range error, strictly depends on the C/N0, as shown in Equation (5).
On the other hand, the very high peaks in the 3D position error are due to the corre-
sponding peaks of the GDOP as shown by comparing Figure 4 with Figure 6 that pro-
vides the GDOP as a function of altitude. In particular, such discontinuities of the
GDOP can be explained by the following two considerations. Firstly, because of the
limited number of channels supported (12 per GNSS constellation), the simulator
selects only the 12 strongest signals, without taking into account if they are transmitted
by satellites leading to a bad geometrical distribution; secondly, as explained above, a
signal may suddenly be discarded by the positioning algorithm because it starts cross-
ing the ionosphere, with a sudden impact on the GDOP.
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3.2. GPS-Galileo combined observations. In order to investigate the performance
achievable when using a GPS-Galileo combined constellation, we have chosen to
process the observables obtained from the wideband Galileo E5aQ + E5bQ pilot
signals in addition to the GPS L1 C/A signal, as done in Capuano et al. (2015).

Figure 4. 3D positioning error, for GPS C/A, as function of the altitude.

Figure 5. Pseudorange error for one of the 12 channel outputs of the Spirent simulator as a function
of the altitude. Note that different satellites are simulated at different times within a given channel.

Figure 6. GDOP as function of the altitude.
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In particular, we have selected the Galileo E5 pilot signals as their chipping rate is ten
times higher than that of the E1 signals, thus leading to a reduced tracking error in the
ranging measurements. Additionally, the use of the pilot channels enables very long
coherent integration times which is desired in very high sensitivity scenarios (as the co-
herent integration time for data channels is typically limited to one bit duration to
avoid the losses incurred by the bit transitions). Note also that once a pilot channel
is successfully tracked, it is easier to acquire and estimate the navigation data bits
from the data channel since both channels are fully synchronized.
Similarly as for GPS, the realistic power levels at the receiver position of the Galileo

E5a + E5b signals are computed by the SimGen software based on Equation (1) using
a guaranteed minimum signal level on the Earth PICD =−125 dB according to ESA
(2010).
All the other assumptions for the error budget on pseudorange and pseudorange

rate measurements from the Galileo E5a + E5b signals correspond to the same
ones presented in Section 3.1 for GPS L1 C/A, except for the error induced by
the space segment (the SISRE), which has been set to 0·65 m according to Engel
(2008).
The performances obtainable by using solely the Galileo observations as input to a

least square estimator are not reported here since they present similar characteristics to
those obtained for GPS only; however, more details about the use of the Galileo only
constellation can be found in our previous study (Capuano et al., 2015).

4. ORBITAL FILTER. The proposed orbital filter is based on the well-known
Kalman Filter (KF) algorithm (Kalman, 1960). The spacecraft dynamics model is
the system model of the filter used to predict the GNSS range and range rate measure-
ments model. Because of the highly nonlinearity of both system and measurement
model, the EKF is adopted. The continuous time system model and the measurement
model are respectively represented by:

_x tð Þ ¼ f x tð Þð Þ þ G tð Þws tð Þ ð7Þ
and

z tð Þ ¼ h x tð Þð Þ þ wm tð Þ; ð8Þ
where x(t) is the state vector, f (x(t)) is a nonlinear function of the state vector,G(t) is the
system noise distribution matrix, ws(t) is the system noise vector, z(t) is the measure-
ment vector, h(x(t)) is a nonlinear function of the state vector used to predict the ob-
servation and wm(t) is the measurement noise vector.
Table 3 shows the Kalman filter algorithm (Groves, 2013), where x̂�k is the a priori

state estimate at a time step k, x̂þk�1 is the a posteriori state estimate at a time step k− 1,
Φk�1 is the state transition matrix at a time step k− 1, P�

k is the a priori estimate error
covariance at a time step k, Pþ

k�1 is the a posteriori estimate error covariance at a time
step k− 1, Qk−1 is the discrete process noise covariance a time step k− 1, Rk is the dis-
crete measurement noise covariance at a time step k,Hk is the measurement matrix at a
time step k, Kk is the Kalman gain at a time step k, zk is the measurement vector at a
time step k, δz�k is the innovation measurement vector at a time step k and I is a unit
matrix.
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4.1. State vector and measurements vector. The state vector is composed of eight
elements; it includes the position and velocity components of the spacecraft, and the
receiver’s clock offset b and clock drift _b.

x ¼ x y z b u v w _b
	 
T ð9Þ

The measurement vector is

z ¼ ρGPS
_ρGPS

� �
ð10Þ

where ρGPS are the pseudoranges of the available GPS satellites and _ρGPS are the pseu-
dorange rates of the available GPS satellites.

4.2. Spacecraft dynamics model. Different accelerations are included in the
model by three different configurations:

1. below 9600 km from the centre of the Earth, spherical harmonics of Earth gravi-
tational potential up to 6th degree and 6th order;

2. in between 9600 km and 50 000 km, spherical harmonics up to 2nd degree and 2nd

order, the Solar Radiation Pressure (SRP) and the gravitational perturbations
due to the Sun and the Moon;

3. above 50 000 km, 1st order Earth gravity, SRP and lunar and solar third body
perturbations.

Although at low altitude the atmospheric drag has a significant effect on a satellite’s
orbit, it is not modelled since the benefit in the navigation solution’s accuracy obtain-
able by including the drag in the process is not considered worth the computational
cost required and in addition, the GNSS stand-alone performance is very accurate
in LEO.
The computation of the Earth gravitational potential and the acceleration of the

spacecraft due to a second and third perturbing mass (which in our case are the Sun
and the Moon) have been modelled according to Montenbruk and Gill (2000) while
the effect of the SRP according to Battin (1999). However, more details can be
found in Basile (2014).
Figure 7 shows the 3D position error over time if the trajectory is estimated by only

integrating the dynamics equations, thus as pure orbital propagation. A typical drift
affects the propagation reaching almost 300 km of error at the end of the MTO. It
is important to note that both the GNSS and the orbital propagator systems if
used individually provide a very coarse accuracy at the end of the MTO (see

Table 3. Extended Kalman Filter (EKF) algorithm for navigation.

Quantity Formulation

Predicted state vector x̂�k ¼ x̂þk�1þ ∫
k
k�1 f x; tð Þ dt

Predicted system noise covariance matrix P�
k ¼ Φk�1Pþ

k�1Φ
T
k�1 þQk�1

Kalman Gain matrix Kk ¼ P�
k H

T
k HkP�

k H
T
k þ Rk

� ��1

Corrected state estimate x̂þk ¼ x̂�k þKk zk � h x̂�k
� �� � ¼ x̂�k þKkδz�k

Corrected system noise covariance matrix (Joseph form) Pþ
k ¼ I � KkHkð ÞP�

k I � KkHkð ÞTþKkRkKT
k
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Figures 4 and 7). However, since the position estimation of both systems is charac-
terised by a different error distribution, their fusion can result in a significant improve-
ment of the individual accuracy (as will be shown in the results of Section 5); in fact the
GNSS measurements prevent the orbital propagation solution drifting, while the
orbital propagation smooths the GNSS solution and bridges signal outages.

4.3. Observation functions. The GNSS receiver provides nmeasurements of pseu-
dorange ρ and pseudo-range rate _ρ from n different transmitting satellites. These mea-
surements are predicted by the following observation functions of the state vector
(Kaplan and Hegarty, 2006):

ρ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xsat � x�ð Þ2þ ysat � y�ð Þ2þ zsat � z�ð Þ2

q
þ b� ð11Þ

_ρ� ¼ vsat � v�ð Þ � a� þ _b
� ð12Þ

In Equation (11), xsat ysat zsat½ �T denotes the position’s vector of the GNSS satellite
that is transmitting the signal, x� y� z�½ �T is the predicted user’s position vector,
and b− is the predicted receiver’s clock offset. In Equation (12), vsat and v− are, respect-
ively, the velocity vector of the transmitting GNSS satellite and the velocity vector of
the spacecraft, _b

�
represents the predicted clock’s drift, and a− is the predicted line-of-

sight (LOS) unit vector from the user to the GNSS satellite.
The predicted observation vector z− consists of 2n elements:

z� ¼ h x�ð Þ ¼ ρ�1 ρ�2 � � � ρ�n _ρ�1 _ρ�2 � � � _ρ�n
	 
T ð13Þ

4.4. State transition matrix computation. The state transition matrix Φ is
required to compute the predicted system noise covariance matrix. The transition
matrix can be expressed as:

Φk�1 ¼ exp Fk�1τsð Þ ≅ I þ Fk�1τsð Þ; ð14Þ
where τs= tk− tk−1 is the propagation interval, while:

Fk�1 ¼ ∂f xð Þ
∂x

����
x¼x̂þk�1

ð15Þ

As shown in Equation (14), Φ is a function of the system matrix F, which is linearized

Figure 7. Orbital propagator 3D position error over time for the full MTO.
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about the state vector estimate (see Equation (15)). To compute the system matrix F
linearized about the state vector estimate x̂þ the complex-step derivative approxima-
tion is adopted. This method has been investigated in many works (e.g. Anderson
et al., 2001; Lai and Crassidis 2006; Martins et al., 2003).

4.5. Observation matrix. The observation matrix H at a time step k is defined as
the Jacobian of the observations defined in Equations (11) and (12):

Hk ¼ ∂h xð Þ
∂x

����
x¼x̂�k

¼ ∂z xð Þ
∂x

����
x¼x̂�k

: ð16Þ

Thus, it corresponds to the following 2n× 8 matrix :

Hk ¼

ax1 ay1 az1 1 0 0 0 0
ax2 ay2 az2 1 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

axn ayn azn 1 0 0 0 0
0 0 0 0 ax1 ay1 az1 1
0 0 0 0 ax2 ay2 az2 1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 axn ayn azn 1

2
6666666666664

3
7777777777775

ð17Þ

where axj ayj azj½ �T represents the LOS vector between the receiver and the jth sat-
ellite at a time step k. Note that the dependence of the pseudorange rate on the position
is not null but it can be considered negligible; in fact for an Earth user a 1 m position
error has an impact on the psudorange rate of only ∼ 5 × 10�5m s�1 (Groves, 2013)
and then even less during most of the MTO.

4.6. Adaptivity of the filter. The accuracy of the observations strongly worsens
with the altitude along the MTO, as shown in Section 3.1.1. Therefore the covariance
matrix Rk of the measurements is tuned adaptively as a function of the GNSS mea-
surements error. The adaptive strategy adopted is illustrated in Figure 8. The code
tracking thermal noise σtDLL and the Doppler tracking jitter σf (that affect respect-
ively pseudoranges and pseudorange rates) are computed by means of the C/N0,
by using Equations (5) and (6), respectively. Once Rk is computed, as a function of
the current σUERE, the EKF provides the navigation solution by fusing the prediction
of the dynamics and the GNSS measurements. As stated previously, the GDOP can
be very high, resulting in very large position error peaks. In order to remove such
large error peaks, the orbital filter makes a check of the GDOP computed by
means of the estimated state and, if it exceeds a threshold N (a value of 1500 has
been set after tuning), the estimation will only rely on the orbital propagation.
Corresponding to GDOP peaks higher than the threshold, the measurements are
considered not reliable enough and the orbital propagator is used to bridge the con-
sequent outage. This is not statistically optimal, but for the very short time intervals
of the GDOP peaks, it provides higher accuracy. While Rk is a function of σUERE, Qk

is constant. The following results have been obtaining setting Rk and Qk as reported
in Table 4.

4.7. Frequency aiding for the GNSS receiver. A precise estimation of Doppler
shifts and Doppler rates that affect the carrier frequency can provide a precious
aiding to the signal processing engine as described in Capuano et al. (2014; 2015)
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and Silva et al. (2013). Expected Doppler shifts Δfexpected can be computed from the
estimated range rate _restimated by means of the more accurate filtered navigation solu-
tion and of the GNSS satellites ephemeris as

Δ fexpected ¼ � fT
c
� _restimated ð18Þ

where fT is the transmitted frequency (e.g. 1575·42 MHz for GPS L1) and c is the speed
of light.
In addition, expected Doppler rate _Δf expected can be computed as follows:

_Δ f expected ¼ Δ fexpected tkþ1ð Þ � Δ fexpected tkð Þ
tkþ1 � tk

: ð19Þ

5. RESULTS
5.1. GPS L1 C/A-based orbital filter performance. Figure 9 highlights the accur-

acy achievable by the implemented GPS L1 C/A-based orbital filter, in terms of 3D
position error. The maximum error is about 260 m, more than two orders of magnitude
less than the maximum error obtainedwith the stand-alone GPS receiver. For the last 5

Figure 8. Adaptive strategy.

Table 4. Adopted measurement and process covariance matrices. The symbols σρi and σ _ρi represent
respectively the root sum square of the different range error contributions (defined as σUERE) and the
Doppler tracking jitter defined in Equation (6).

Covariance Matrices Formulation (m2)

Rk= diag σρ1
2 tð Þ; σρ2 2 tð Þ; . . . ; σρn 2 tð Þ; σ _ρ1

2 tð Þ; σ _ρ2
2 tð Þ; . . . ; σ _ρn

2 tð Þ� �
Qk= diag(1, 1, 1, 1, 10−1, 10−1, 10−1, 10−1)
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hours and 45 minutes of orbit (i.e. the last portion where the error does not drift sig-
nificantly, which starts approximately at 376200 km altitude), the standard deviation
is equal to 80·5 m (1σ). Similar results have been obtained in (Silva et al., 2013), for
a MTO with a minimum C/N0 = 15 dB-Hz and with a minimum C/N0 = 10 dB-Hz.
Figure 10 displays the 3D velocity error of the GPS L1 C/A orbital filtered solution.

In the last 5 hours and 45 minutes of the MTO, the standard deviation is about 9·51
cm/s (1σ).
By considering for example one of the 12 channel outputs of Spirent (the first one)

for the last 5 hours and 45 minutes of orbit, the GPS L1 C/A orbital filtered solution
can predict the Doppler shift and Doppler rate with an error of about 0·061 Hz and
0·039 Hz/s standard deviation (1σ) respectively, as illustrated for the whole trajectory
in Figures 11 and 12.

5.2. Use of GPS-Galileo combined constellation. Figure 13 illustrates the im-
provement achievable in availability when using a GPS-Galileo combined constellation
and Figure 14 the consequent reduction of the GDOP as compared to using GPS only.
As a combined result of better availability and smaller GDOP, the performance in the
position estimation are improved too, as shown in Figure 15: during the last 5 hours
and 45 minutes of the simulation, the standard deviation of the 3D position error is
approximately 9 m (1σ), one order of magnitude less than that obtained in the single
constellation case (see Figure 9).
Figure 16 shows the velocity estimate accuracy, in terms of 3D velocity error,

improved too. In the last 5 hours and 45 minutes of trajectory, we obtained about
3·5 cm/s (1σ), much better than the GPS only-based orbital filter.
The improvements in the navigation solution lead to a better estimation of the

Doppler shift and Doppler rate as well, as shown in Figures 17 and 18, with an
error of 0·041 Hz and 0·021 Hz/s (1σ) respectively during the last 5 hours and 45
minutes of considered trajectory.
Adding GLONASS and BeiDou (as future GNSS receivers probably will do) should

further improve the GDOP.

6. CONCLUSIONS. Several studies have proved the feasibility of GNSS as a navi-
gation system for high Earth orbits and in particular for Moon missions. Although the
very weak GNSS signals at the Moon’s altitude can be processed with modern high

Figure 9. 3D normalised position error obtained with the GPS-based orbital filter.
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Figure 10. 3D normalised velocity error obtained with the GPS-based orbital filter.

Figure 11. Doppler shift estimation error for the first channel output of Spirent: GPS-based
orbital filter.

Figure 12. Doppler rate estimation error for the first channel output of Spirent: GPS-based
orbital filter.

760 VINCENZO CAPUANO AND OTHERS VOL. 69

https://doi.org/10.1017/S0373463315000843 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000843


sensitivity GNSS receivers, the accuracy of a standalone GNSS navigation solution
would be much lower than that typically required for a Moon mission. In this paper
we have investigated the use of an orbital filter, specifically designed for a MTO,
which fuses GNSS observations of pseudorange and pseudorange rate with an

Figure 14. GDOP for a single GPS constellation and for a GPS-Galileo combined constellation,
for a sensitivity of −159 dBm.

Figure 13. GNSS availability for a single GPS constellation and for a GPS-Galileo combined
constellation, for a sensitivity of −159 dBm.

Figure 15. 3D normalised position error obtained with the GPS-Galileo-based orbital filter.
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orbital forces model through an adaptive EKF. A reference trajectory and a realistic
operational scenario have been defined to reproduce a direct MTO of a Moon
mission. The positioning error achievable by using a least square estimator of the avail-
able GPS observations has been simulated to quantify what would be the accuracy of a

Figure 17. Doppler shift estimation error for the first channel output of Spirent: GPS +Galileo-
based orbital filter.

Figure 16. 3D normalised velocity error obtained with the GPS-Galileo-based orbital filter.

Figure 18. Doppler rate estimation error for the first channel output of Spirent: GPS +Galileo-
based orbital filter.
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non-filtered standalone GPS L1 C/A receiver during the whole trajectory. As expected,
once the receiver is flying above the GPS constellation, the positioning error increases
with the altitude because of a decreasing accuracy of the GNSS measurements. This is
due to weaker signals and a worsening of the relative geometry between receiver and
transmitters (higher GDOP). Without any kind of filtering tens of km error with
peaks higher than 50 km have been observed in simulation at Moon altitude, assuming
a GPS L1 C/A receiver capable of tracking signals down to −159 dBm.
The implementation of our orbital filter has been described, highlighting the im-

portance of its adaptive architecture that takes into account the decreasing accuracy
of the GNSS observations when the receiver is orbiting above the GNSS constellation
on the route to the Moon. Simulation results have shown a significant improvement of
the positioning accuracy when using the orbital filter. The peaks of the error have been
reduced to about 260 m by filtering the same GPS L1 C/A observations used for the
least square estimation. Accuracies of tens of cm/s have been obtained for the velocity
estimation. Position and velocity estimation have also been used to estimate Doppler
shift and Doppler rate; very useful to aid the signal processing module of the GNSS
receiver. The Doppler shift and Doppler rate estimation errors have a standard devi-
ation of 0·06 Hz and of 0·04 Hz/s at Moon altitude, respectively. Finally we have inves-
tigated the improvements achievable when using observations from a GPS-Galileo
combined constellation. Significant further improvements are attained in positioning,
velocity, Doppler shift and Doppler rate estimation when using the two constellations
concurrently. However, without cross-validation using real input data, the results
obtained by using the Kalman filter have to be treated cautiously. In order to validate
the system experimentally, in future works the orbital filter effectiveness will be tested
using measurements provided by our GPS L1 C/A space-borne WeakHEO receiver,
under development, specifically designed for lunar missions.
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