
12 First-Class Modules

You can think of OCaml as being broken up into two parts: a core language that

is concerned with values and types, and a module language that is concerned with

modules and module signatures. These sublanguages are strati�ed, in that modules can

contain types and values, but ordinary values can't contain modules or module types.

That means you can't do things like de�ne a variable whose value is a module, or a

function that takes a module as an argument.

OCaml provides a way around this strati�cation in the form of �rst-class modules.

First-class modules are ordinary values that can be created from and converted back

to regular modules.

First-class modules are a sophisticated technique, and you'll need to get comfortable

with some advanced aspects of the language to use them e�ectively. But it's worth

learning, because letting modules into the core language is quite powerful, increasing

the range of what you can express and making it easier to build �exible and modular

systems.

12.1 Working with First-Class Modules

We'll start out by covering the basic mechanics of �rst-class modules by working

through some toy examples. We'll get to more realistic examples in the next section.

12.1.1 Creating First-Class Modules

In that light, consider the following signature of a module with a single integer variable:

open Base;;
module type X_int = sig val x : int end;;
module type X_int = sig val x : int end

We can also create a module that matches this signature:

module Three : X_int = struct let x = 3 end;;
module Three : X_int

Three.x;;
- : int = 3

A �rst-class module is created by packaging up a module with a signature that it

satis�es. This is done using the module keyword.

https://doi.org/10.1017/9781009129220.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.014

210 First-Class Modules

(module <Module> : <Module_type>)

We can convert Three into a �rst-class module as follows:

let three = (module Three : X_int);;
val three : (module X_int) = <module>

12.1.2 Inference and Anonymous Modules

The module type doesn't need to be part of the construction of a �rst-class module if

it can be inferred. Thus, we can write:

module Four = struct let x = 4 end;;
module Four : sig val x : int end

let numbers = [three; (module Four)];;
val numbers : (module X_int) list = [<module>; <module>]

We can also create a �rst-class module from an anonymous module:

let numbers = [three; (module struct let x = 4 end)];;
val numbers : (module X_int) list = [<module>; <module>]

12.1.3 Unpacking First-Class Modules

In order to access the contents of a �rst-class module, you need to unpack it into an

ordinary module. This can be done using the val keyword, using this syntax:

(val <first_class_module> : <Module_type>)

Here's an example:

module New_three = (val three : X_int);;
module New_three : X_int

New_three.x;;
- : int = 3

12.1.4 Functions for Manipulating First-Class Modules

We can also write ordinary functions which consume and create �rst-class modules.

The following shows the de�nition of two functions: to_int, which converts a (module

X_int) into an int; and plus, which returns the sum of two (module X_int):

let to_int m =
let module M = (val m : X_int) in
M.x;;

val to_int : (module X_int) -> int = <fun>

let plus m1 m2 =
(module struct
let x = to_int m1 + to_int m2

end : X_int);;
val plus : (module X_int) -> (module X_int) -> (module X_int) = <fun>

https://doi.org/10.1017/9781009129220.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.014

12.1 Exposing types 211

You can also unpack a �rst-class module with a pattern match, which lets us write

to_int more concisely:

let to_int (module M : X_int) = M.x;;
val to_int : (module X_int) -> int = <fun>

With these functions in hand, we can nowwork with values of type (module X_int)

in a more natural style, taking advantage of the concision and simplicity of the core

language:

let six = plus three three;;
val six : (module X_int) = <module>

to_int (List.fold ~init:six ~f:plus [three;three]);;
- : int = 12

12.1.5 Richer First-Class Modules

First-class modules can contain types and functions in addition to simple values like

int. Here's an interface that contains a type and a corresponding bump operation that

takes a value of the type and produces a new one:

module type Bumpable = sig
type t
val bump : t -> t

end;;
module type Bumpable = sig type t val bump : t -> t end

We can create multiple instances of this module with di�erent underlying types:

module Int_bumper = struct
type t = int
let bump n = n + 1

end;;
module Int_bumper : sig type t = int val bump : t -> t end

module Float_bumper = struct
type t = float
let bump n = n +. 1.

end;;
module Float_bumper : sig type t = float val bump : t -> t end

And we can convert these to �rst-class modules:

let int_bumper = (module Int_bumper : Bumpable);;
val int_bumper : (module Bumpable) = <module>

12.1.6 Exposing types

You can't do much with int_bumper because it's fully abstract, so we can't take

advantage of the fact that the type in question is int, which makes it impossible to

construct or really do anything with values of type Bumper.t.

let (module Bumper) = int_bumper in
Bumper.bump 3;;

Line 2, characters 15-16:

https://doi.org/10.1017/9781009129220.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.014

212 First-Class Modules

Error: This expression has type int but an expression was expected of

type

Bumper.t

To make int_bumper usable, we need to expose that the type Bumpable.t is actually

equal to int. Below we'll do that for int_bumper, and also provide the corresponding

de�nition for float_bumper.

let int_bumper = (module Int_bumper : Bumpable with type t = int);;
val int_bumper : (module Bumpable with type t = int) = <module>

let float_bumper = (module Float_bumper : Bumpable with type t =
float);;

val float_bumper : (module Bumpable with type t = float) = <module>

The addition of the sharing constraint has exposed the type t, which lets us actually

use the values within the module.

let (module Bumper) = int_bumper in
Bumper.bump 3;;

- : int = 4

let (module Bumper) = float_bumper in
Bumper.bump 3.5;;

- : float = 4.5

We can also use these �rst-class modules polymorphically. The following function

takes two arguments: a Bumpablemodule and a list of elements of the same type as the

type t of the module:

let bump_list
(type a)
(module Bumper : Bumpable with type t = a)
(l: a list)

=
List.map ~f:Bumper.bump l;;

val bump_list : (module Bumpable with type t = 'a) -> 'a list -> 'a
list =

<fun>

In this example, a is a locally abstract type. For any function, you can declare a

pseudoparameter of the form (type a) which introduces a fresh type named a. This

type acts like an abstract type within the context of the function. In the example above,

the locally abstract type was used as part of a sharing constraint that ties the type B.t

with the type of the elements of the list passed in.

The resulting function is polymorphic in both the type of the list element and the

type Bumpable.t. We can see this function in action:

bump_list int_bumper [1;2;3];;
- : int list = [2; 3; 4]

bump_list float_bumper [1.5;2.5;3.5];;
- : float list = [2.5; 3.5; 4.5]

Polymorphic �rst-classmodules are important because they allow you to connect the

types associated with a �rst-class module to the types of other values you're working

with.

https://doi.org/10.1017/9781009129220.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.014

12.2 Example: A Query-Handling Framework 213

More on Locally Abstract Types

One of the key properties of locally abstract types is that they're dealt with as abstract

types in the function they're de�ned within, but are polymorphic from the outside.

Consider the following example:

let wrap_in_list (type a) (x:a) = [x];;
val wrap_in_list : 'a -> 'a list = <fun>

The type a is used in a way that is compatible with it being abstract, but the type of

the function that is inferred is polymorphic.

If, on the other hand, we try to use the type a as if it were equivalent to some concrete

type, say, int, then the compiler will complain.

let double_int (type a) (x:a) = x + x;;
Line 1, characters 33-34:

Error: This expression has type a but an expression was expected of

type int

One common use of locally abstract types is to create a new type that can be used

in constructing a module. Here's an example of doing this to create a new �rst-class

module:

module type Comparable = sig
type t
val compare : t -> t -> int

end;;
module type Comparable = sig type t val compare : t -> t -> int end

let create_comparable (type a) compare =
(module struct
type t = a
let compare = compare

end : Comparable with type t = a);;
val create_comparable :

('a -> 'a -> int) -> (module Comparable with type t = 'a) = <fun>

create_comparable Int.compare;;
- : (module Comparable with type t = int) = <module>

create_comparable Float.compare;;
- : (module Comparable with type t = float) = <module>

This technique is useful beyond �rst-class modules. For example, we can use the

same approach to construct a local module to be fed to a functor.

12.2 Example: A Query-Handling Framework

Now let's look at �rst-class modules in the context of a more complete and realistic

example. In particular, we're going to implement a system for responding to user-

generated queries.

This system will use s-expressions for formatting queries and responses, as well

as the con�guration for the query handler. S-expressions are a simple, �exible, and

human-readable serialization format commonly used in Base and related libraries. For

https://doi.org/10.1017/9781009129220.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.014

214 First-Class Modules

now, it's enough to think of them as balanced parenthetical expressions whose atomic

values are strings, e.g., (this (is an) (s expression)). S-expressions are covered

in more detail in Chapter 21 (Data Serialization with S-Expressions).

The following signature for a module that implements a system for responding to

user-generated queries. Here, we use Base's Sexp module for handling s-expressions.

Note that we could just as easily have used another serialization format, like JSON, as

discussed in Chapter 19 (Handling JSON Data).

module type Query_handler = sig

(** Configuration for a query handler *)
type config

val sexp_of_config : config -> Sexp.t
val config_of_sexp : Sexp.t -> config

(** The name of the query-handling service *)
val name : string

(** The state of the query handler *)
type t

(** Creates a new query handler from a config *)
val create : config -> t

(** Evaluate a given query, where both input and output are
s-expressions *)

val eval : t -> Sexp.t -> Sexp.t Or_error.t
end;;

Implementing s-expression converters by hand is tedious and error-prone, but hap-

pily, we have an alternative. ppx_sexp_conv is a syntax extension which can be used

to automatically generate s-expression converters based on their type de�nition. We'll

enable ppx_sexp_conv by enabling ppx_jane, which brings in a larger family of syntax

extensions.

#require "ppx_jane";;

Here's an example of the extension in action. Note that we need the annotation

[@@deriving sexp] to kick o� the generation of the converters.

type u = { a: int; b: float } [@@deriving sexp];;
type u = { a : int; b : float; }

val u_of_sexp : Sexp.t -> u = <fun>

val sexp_of_u : u -> Sexp.t = <fun>

sexp_of_u {a=3;b=7.};;
- : Sexp.t = ((a 3) (b 7))

u_of_sexp (Core.Sexp.of_string "((a 43) (b 3.4))");;
- : u = {a = 43; b = 3.4}

The same annotations can be attached within a signature to add the appropriate type

signature.

module type M = sig type t [@@deriving sexp] end;;
module type M =

https://doi.org/10.1017/9781009129220.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.014

12.2 Implementing a Query Handler 215

sig type t val t_of_sexp : Sexp.t -> t val sexp_of_t : t -> Sexp.t

end

12.2.1 Implementing a Query Handler

Now we can construct an example of a query handler that satis�es the Query_handler

interface. We'll start with a handler that produces unique integer IDs, which works by

keeping an internal counter that's bumped every time a new value is requested. The

input to the query in this case is just the trivial s-expression (), otherwise known as

Sexp.unit:

module Unique = struct
type config = int [@@deriving sexp]
type t = { mutable next_id: int }

let name = "unique"
let create start_at = { next_id = start_at }

let eval t sexp =
match Or_error.try_with (fun () -> unit_of_sexp sexp) with
| Error _ as err -> err
| Ok () ->
let response = Ok (Int.sexp_of_t t.next_id) in
t.next_id <- t.next_id + 1;
response

end;;

We can use this module to create an instance of the Unique query handler and interact

with it directly:

let unique = Unique.create 0;;
val unique : Unique.t = {Unique.next_id = 0}

Unique.eval unique (Sexp.List []);;
- : (Sexp.t, Error.t) result = Ok 0

Unique.eval unique (Sexp.List []);;
- : (Sexp.t, Error.t) result = Ok 1

Here's another example: a query handler that does directory listings. Here, the con�g

is the default directory that relative paths are interpreted within:

module List_dir = struct
type config = string [@@deriving sexp]
type t = { cwd: string }

(** [is_abs p] Returns true if [p] is an absolute path *)
let is_abs p =
String.length p > 0 && Char.(=) p.[0] '/'

let name = "ls"
let create cwd = { cwd }

let eval t sexp =
match Or_error.try_with (fun () -> string_of_sexp sexp) with
| Error _ as err -> err
| Ok dir ->

https://doi.org/10.1017/9781009129220.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.014

216 First-Class Modules

let dir =
if is_abs dir then dir
else Core.Filename.concat t.cwd dir

in
Ok (Array.sexp_of_t String.sexp_of_t (Core.Sys.readdir dir))

end;;

Again, we can create an instance of this query handler and interact with it directly:

let list_dir = List_dir.create "/var";;
val list_dir : List_dir.t = {List_dir.cwd = "/var"}

List_dir.eval list_dir (sexp_of_string ".");;
- : (Sexp.t, Error.t) result =

Ok

(yp networkd install empty ma mail spool jabberd vm msgs audit root

lib db

at log folders netboot run rpc tmp backups agentx rwho)

List_dir.eval list_dir (sexp_of_string "yp");;
- : (Sexp.t, Error.t) result = Ok (binding)

12.2.2 Dispatching to Multiple Query Handlers

Now, what if we want to dispatch queries to any of an arbitrary collection of handlers?

Ideally, we'd just like to pass in the handlers as a simple data structure like a list.

This is awkward to do with modules and functors alone, but it's quite natural with

�rst-class modules. The �rst thing we'll need to do is create a signature that combines

a Query_handler module with an instantiated query handler:

module type Query_handler_instance = sig
module Query_handler : Query_handler
val this : Query_handler.t

end;;
module type Query_handler_instance =

sig module Query_handler : Query_handler val this : Query_handler.t

end

With this signature, we can create a �rst-class module that encompasses both an

instance of the query and the matching operations for working with that query.

We can create an instance as follows:

let unique_instance =
(module struct
module Query_handler = Unique
let this = Unique.create 0

end : Query_handler_instance);;
val unique_instance : (module Query_handler_instance) = <module>

Constructing instances in this way is a little verbose, but we can write a function

that eliminates most of this boilerplate. Note that we are again making use of a locally

abstract type:

let build_instance
(type a)
(module Q : Query_handler with type config = a)

https://doi.org/10.1017/9781009129220.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.014

12.2 Dispatching to Multiple Query Handlers 217

config
=
(module struct
module Query_handler = Q
let this = Q.create config

end : Query_handler_instance);;
val build_instance :

(module Query_handler with type config = 'a) ->

'a -> (module Query_handler_instance) = <fun>

Using build_instance, constructing a new instance becomes a one-liner:

let unique_instance = build_instance (module Unique) 0;;
val unique_instance : (module Query_handler_instance) = <module>

let list_dir_instance = build_instance (module List_dir) "/var";;
val list_dir_instance : (module Query_handler_instance) = <module>

We can nowwrite code that lets you dispatch queries to one of a list of query handler

instances. We assume that the shape of the query is as follows:

(query-name query)

where query-name is the name used to determine which query handler to dispatch the

query to, and query is the body of the query.

The �rst thing we'll need is a function that takes a list of query handler instances

and constructs a dispatch table from it:

let build_dispatch_table handlers =
let table = Hashtbl.create (module String) in
List.iter handlers
~f:(fun ((module I : Query_handler_instance) as instance) ->
Hashtbl.set table ~key:I.Query_handler.name ~data:instance);

table;;
val build_dispatch_table :

(module Query_handler_instance) list ->

(string, (module Query_handler_instance)) Hashtbl.Poly.t = <fun>

Next, we'll need a function that dispatches to a handler using a dispatch table:

let dispatch dispatch_table name_and_query =
match name_and_query with
| Sexp.List [Sexp.Atom name; query] ->
begin match Hashtbl.find dispatch_table name with
| None ->
Or_error.error "Could not find matching handler"
name String.sexp_of_t

| Some (module I : Query_handler_instance) ->
I.Query_handler.eval I.this query

end
| _ ->
Or_error.error_string "malformed query";;

val dispatch :

(string, (module Query_handler_instance)) Hashtbl.Poly.t ->

Sexp.t -> Sexp.t Or_error.t = <fun>

This function interacts with an instance by unpacking it into a module I and then

using the query handler instance (I.this) in concert with the associated module

(I.Query_handler).

https://doi.org/10.1017/9781009129220.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.014

218 First-Class Modules

The bundling together of the module and the value is in many ways reminiscent

of object-oriented languages. One key di�erence is that �rst-class modules allow you

to package up more than just functions or methods. As we've seen, you can also

include types and even modules. We've only used it in a small way here, but this

extra power allows you to build more sophisticated components that involve multiple

interdependent types and values.

We can turn this into a complete, running example by adding a command-line

interface:

open Stdio;;
let rec cli dispatch_table =

printf ">>> %!";
let result =
match In_channel.(input_line stdin) with
| None -> `Stop
| Some line ->
match Or_error.try_with (fun () ->
Core.Sexp.of_string line)

with
| Error e -> `Continue (Error.to_string_hum e)
| Ok (Sexp.Atom "quit") -> `Stop
| Ok query ->
begin match dispatch dispatch_table query with
| Error e -> `Continue (Error.to_string_hum e)
| Ok s -> `Continue (Sexp.to_string_hum s)
end;

in
match result with
| `Stop -> ()
| `Continue msg ->
printf "%s\n%!" msg;
cli dispatch_table;;

val cli : (string, (module Query_handler_instance)) Hashtbl.Poly.t ->

unit =

<fun>

We'll run this command-line interface from a standalone program by putting the

above code in a �le, and adding the following to launch the interface.

let () =
cli (build_dispatch_table [unique_instance; list_dir_instance])

Here's an example of a session with this program:

$ dune exec -- ./query_handler.exe
>>> (unique ())
0
>>> (unique ())
1
>>> (ls .)
(agentx at audit backups db empty folders jabberd lib log mail msgs

named
netboot pgsql_socket_alt root rpc run rwho spool tmp vm yp)
>>> (ls vm)
(sleepimage swapfile0 swapfile1 swapfile2 swapfile3 swapfile4

swapfile5

https://doi.org/10.1017/9781009129220.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.014

12.2 Loading and Unloading Query Handlers 219

swapfile6)

12.2.3 Loading and Unloading Query Handlers

One of the advantages of �rst-classmodules is that they a�ord a great deal of dynamism

and �exibility. For example, it's a fairly simple matter to change our design to allow

query handlers to be loaded and unloaded at runtime.

We'll do this by creating a query handler whose job is to control the set of active

query handlers. The module in question will be called Loader, and its con�guration is

a list of known Query_handler modules. Here are the basic types:

module Loader = struct
type config = (module Query_handler) list [@sexp.opaque]
[@@deriving sexp]

type t = { known : (module Query_handler) String.Table.t
; active : (module Query_handler_instance) String.Table.t
}

let name = "loader"

Note that a Loader.t has two tables: one containing the known query handler

modules, and one containing the active query handler instances. The Loader.t will

be responsible for creating new instances and adding them to the table, as well as for

removing instances, all in response to user queries.

Next, we'll need a function for creating a Loader.t. This function requires the list

of known query handler modules. Note that the table of active modules starts out as

empty:

let create known_list =
let active = String.Table.create () in
let known = String.Table.create () in
List.iter known_list
~f:(fun ((module Q : Query_handler) as q) ->
Hashtbl.set known ~key:Q.name ~data:q);

{ known; active }

Now we can write the functions for manipulating the table of active query handlers.

We'll start with the function for loading an instance. Note that it takes as an argument

both the name of the query handler and the con�guration for instantiating that handler

in the form of an s-expression. These are used for creating a �rst-class module of type

(module Query_handler_instance), which is then added to the active table:

let load t handler_name config =
if Hashtbl.mem t.active handler_name then
Or_error.error "Can't re-register an active handler"
handler_name String.sexp_of_t

else
match Hashtbl.find t.known handler_name with
| None ->
Or_error.error "Unknown handler" handler_name String.sexp_of_t

| Some (module Q : Query_handler) ->

https://doi.org/10.1017/9781009129220.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.014

220 First-Class Modules

let instance =
(module struct
module Query_handler = Q
let this = Q.create (Q.config_of_sexp config)

end : Query_handler_instance)
in
Hashtbl.set t.active ~key:handler_name ~data:instance;
Ok Sexp.unit

Since the load function will refuse to load an already active handler, we also need

the ability to unload a handler. Note that the handler explicitly refuses to unload itself:

let unload t handler_name =
if not (Hashtbl.mem t.active handler_name) then
Or_error.error "Handler not active" handler_name
String.sexp_of_t
else if String.(=) handler_name name then
Or_error.error_string "It's unwise to unload yourself"

else (
Hashtbl.remove t.active handler_name;
Ok Sexp.unit

)

Finally, we need to implement the eval function, which will determine the query

interface presented to the user. We'll do this by creating a variant type, and using the

s-expression converter generated for that type to parse the query from the user:

type request =
| Load of string * Sexp.t
| Unload of string
| Known_services
| Active_services

[@@deriving sexp]

The eval function itself is fairly straightforward, dispatching to the appropriate

functions to respond to each type of query. Note that we write <:sexp_of<string

list>> to autogenerate a function for converting a list of strings to an s-expression, as

described in Chapter 21 (Data Serialization with S-Expressions).

This function ends the de�nition of the Loader module:

let eval t sexp =
match Or_error.try_with (fun () -> request_of_sexp sexp) with
| Error _ as err -> err
| Ok resp ->
match resp with
| Load (name,config) -> load t name config
| Unload name -> unload t name
| Known_services ->
Ok ([%sexp_of: string list] (Hashtbl.keys t.known))

| Active_services ->
Ok ([%sexp_of: string list] (Hashtbl.keys t.active))

end

Finally, we can put this all together with the command-line interface. We �rst create

an instance of the loader query handler and then add that instance to the loader's active

table. We can then launch the command-line interface, passing it the active table.

https://doi.org/10.1017/9781009129220.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.014

12.3 Living Without First-Class Modules 221

let () =
let loader = Loader.create [(module Unique); (module List_dir)] in
let loader_instance =
(module struct
module Query_handler = Loader
let this = loader

end : Query_handler_instance)
in
Hashtbl.set loader.Loader.active
~key:Loader.name ~data:loader_instance;

cli loader.active

The resulting command-line interface behaves much as you'd expect, starting out

with no query handlers available but giving you the ability to load and unload them.

Here's an example of it in action. As you can see, we start out with loader itself as the

only active handler.

$ dune exec -- ./query_handler_loader.exe
>>> (loader known_services)
(ls unique)
>>> (loader active_services)
(loader)

Any attempt to use an inactive query handler will fail:

>>> (ls .)
Could not find matching handler: ls

But, we can load the ls handler with a con�g of our choice, at which point it will be

available for use. And once we unload it, it will be unavailable yet again and could be

reloaded with a di�erent con�g.

>>> (loader (load ls /var))
()
>>> (ls .)
(agentx at audit backups db empty folders jabberd lib log mail msgs

named
netboot pgsql_socket_alt root rpc run rwho spool tmp vm yp)
>>> (loader (unload ls))
()
>>> (ls .)
Could not find matching handler: ls

Notably, the loader can't be loaded (since it's not on the list of known handlers) and

can't be unloaded either:

>>> (loader (unload loader))
It's unwise to unload yourself

Although we won't describe the details here, we can push this dynamism yet further

using OCaml's dynamic linking facilities, which allow you to compile and link in new

code to a running program. This can be automated using libraries like ocaml_plugin,

which can be installed via OPAM, and which takes care of much of the work�ow

around setting up dynamic linking.

https://doi.org/10.1017/9781009129220.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.014

222 First-Class Modules

12.3 Living Without First-Class Modules

It's worth noting that most designs that can be done with �rst-class modules can be

simulated without them, with some level of awkwardness. For example, we could

rewrite our query handler example without �rst-class modules using the following

types:

type query_handler_instance =
{ name : string
; eval : Sexp.t -> Sexp.t Or_error.t };;

type query_handler_instance = {

name : string;

eval : Sexp.t -> Sexp.t Or_error.t;

}

type query_handler = Sexp.t -> query_handler_instance;;
type query_handler = Sexp.t -> query_handler_instance

The idea here is that we hide the true types of the objects in question behind the

functions stored in the closure. Thus, we could put the Unique query handler into this

framework as follows:

let unique_handler config_sexp =
let config = Unique.config_of_sexp config_sexp in
let unique = Unique.create config in
{ name = Unique.name
; eval = (fun config -> Unique.eval unique config)
};;

val unique_handler : Sexp.t -> query_handler_instance = <fun>

For an example on this scale, the preceding approach is completely reasonable, and

�rst-class modules are not really necessary. But the more functionality you need to hide

away behind a set of closures, and the more complicated the relationships between the

di�erent types in question, the more awkward this approach becomes, and the better it

is to use �rst-class modules.

https://doi.org/10.1017/9781009129220.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.014

