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§ 1. Denoting the sum of the products of the first n natural numbers
taken r at a time by the symbol G (n, r), I have shown1 that

G ( n + l,r) = G ( n , r ) + ( n + l ) O ( n , r - l ) , (1.1)

with the initial values G (n, 0) = 1; G (n, r) = 0, r > n; and

G(n,n) = n\ (1.2)

In general it was shown that

where fm(r) = (2r - m)(/»(r - 1) + /„_,(>• - 1)}, /0(r) - 0,

Defining G (x, r) by the fundamental relation:

G(x+l,r) = G(x,r) + (x + 1) G(x,r-1), (1.11)

for all values of x, we get

( l + 1 ) } (1.31)

; (1.5)

where the a's are positive or negative integers. (1.6)

§ 2. Consider the series :

^ (» + 1) = y-n-i + G(-n-1,1) y-»-*
+ G(-n - 1, 2) 2T»-3 +....+G(- n - 1, r) y-n-r-i+ # _
for y > n.

1 " Sums of Products of first »i natural numbers taken r at a time." Jmiriud of the
Indian Math. Society, Vol. XIX, Part IT, pp. 1-6.
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Multiplying both sides by (y — n), we get

(y-n) 4,(11 + 1)= £ {Q{-n-l,r)-nG(-n-l,r- l)}y-n-',
7=0

= I {#(-»,»•) !r"-'> = *(»)•
r = 0

Therefore
<£ (» + 1) = ;— l—. <f> (n) = - i —- 4> (n-1) = .. ..

(2/-n)r (y_n)(y-n+ 1) r

= [ ( » + 1 ) ' ( n + 1 ) ] ' because <£(1) = */->, (2.1)

Comparing the coefficients of y~n~T~x, we get

n\ G ( - n - I, r) = _ ^ jY £ V ( - 1)* . (n - *)'+»! , (2.3)
or

^ 1 / ^ X V ( - 1)*. (n -*) '+»-A . (2.31)

In particular, # (— 2, r) = 1; © (— 3, r) = 2--+1— 1;

2! G(—4, r) = 3'+2-2.2»-+2+ 1.

§ 3. We will now establish some general congruences connected with
the (?-Functions. In what follows p will denote an odd prime, and
i, j , any integers positive, negative or zero.

Consider the product P = (z+l)(a; + 2)(a;+3) . . . (z+i)(x+i+ 1) . . . (x+i+j).
i+i

Evidently P= 2 {G (i +j, r) xi+i~r}. And if y = x + i, then
r = 0

P = (V - * + 1) (V - i + 2) (y - i + 3). . (y - 1) y . (y + 1). .. (y + j),
(i-l,2)yi~2-. . • +{-\)rG(i-\,r)y<~r+...

j , k) y i ~ * + . . . j j

i+j-l

r = 0

where
W = G (j,r) - G (i - 1, 1) G (j, r - 1) + . .. + ( - \)*G(i - 1, k) G(j, r - k) + ..

+ ( - ! ) ' ( ? ( • - l,r), and[0]= 1.
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Comparing the coefficients of the powers of z, we get

In view of (2.1), this result holds for all integral values of i, j .

I. Putting i = 1, and j = p — 1, we have
[r] = <?(p- l , r ) .

Therefore,

whence (r - 1) Q(p - 1, r - 1) = f * \ + G (p - 1, 1) .(P ~ l \ + ...

(3.2)

Putting r = 2, 3, 4, . . . , p — 1 in (3.2) and remembering that
/ v \
( l ) = 0 (mod. £>), I ^ r g j 3 — 1, we have
\ r J

G(p ~l,k) = 0 (mod. p), k<Lp -2.
This is Lagrange's Theorem.

II. Also putting r =p, we have

{p- l)G(p- \,p - 1) = l(mod.^).

Thus (p — l)!=s — 1 {mod.p).
This is Wilson's Theorem.

III. Putting i = p in (3.1), we have for all integral values of j ,

G(p+ j , r) = G (j, r), ( m o d . p), 0<r^p-2; (3.3)
and =G(j,r) + {-\y-1G(!p-\,p-l)G{j,r-p + l), (mod.p), r

= G(j,r) - G(j,r-p+ 1), (mod.p), r ^ p - l . (3.31)

In particular G (p — 2, r) - 1 (mod. p), r ^ p — 2. (3.32)
For r = p — 2, we get G (p — 2, p — 2) = 1 (mod. p);
or (p — 2)! = 1 (mod.p).
Thus (3.3) covers Wilson's Theorem. It covers also Lagrange's
Theorem as is seen by putting j = — 1.

As another remarkable case of (3.3), we have

G (p - 3, r) = 2'+! — 1, (mod. p); 0 < r ̂  p - 2. (3.33)

https://doi.org/10.1017/S0013091500007999 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500007999


64 HANSRAJ GUPTA

When r = p — 2, we get 2P-1 = 1 (mod. p), which is a particular case
of Fermat's Theorem.

When 0 ̂  j < r, we have

G(p+j,r) = -G(j,r-p + l), (mod.p); (3.34)

where we take G (j, — k) = 0 when j and k are integers j ^ 0, k > 0,
and #(0,0) = 1.

Putting i = p and j = — 1 in (3.1),

G (p - 1 , r) = (- l ) r G (p — l , r ) ( m o d . p 2 ) , 2 ^ r ^ p - 2 .

If r = 2k + 1, we get

G{p-l,2k + l) = 0 (mod. p2), 1 ^ 4 ^ ^ - 3 . (3.35)

In particular G (p — \,p — 2) = 0, (mod. p2), p ̂  5.
This is Wolstenholme's Theorem.

§ 4. Proof of Fermat's Theorem: If a is prime to p,

O*(P" = i (mod.p"),

where <f> (pu) denotes as usual the number of integers less than and
prime to pu.

We have G (p —j — 1, r) = G (—j — 1, r) (mod.p), 0 < r ̂  p — 2.
Hence

(j—1)! # ( - i - l , f - j ) = ( j - 1 ) ! ( ? ( # - j - l , p - j ) (mod.p), 2 ̂  j
= 0 (mod.p).

Putting^ = 2, 3, 4, . . . .,p — 1 in succession, we get
2P-I — l = 0 (mod. p); therefore 2*-1 = 1 (mod. p),

3*>-i_ / 2 W P - 1 + 1 = 0 (mod.p); hence S?-1^ 1 (mod.p).

Let a"-1 = 1 (mod. p), a = 2, 3, 4, . - . . , i — 1; i 5g p — 1.

Then (i — 1)! G(— i — l , p — i) = 0 (mod. p), so that by (2.3)

+ ( — l y - ^ O (mod.p),

or
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Hence by inductive reasoning, we have
ap~x = 1 (mod. p), a <p.

For values of a > p and prime to it, we have

a p - 1 = a'p~1 = 1 (mod. p) where a = a' (mod. p), a' < p.

This proves the theorem when u = 1.
When u > 1, we have

CI<HP") = av
u~x(P-\) = (ap-1)pU~1,

~ (kp + I)"""1, since (a, p) = 1,

= 1 (mod. p"), for ( l \ = 0 (mod. y - 1 " 0 ) 1

where r = 0 (mod. pa) and ^ 0 (mod. %)a+1)-
In general if (a, n) = 1,

a*(«) = i (mod. n).

For if n = plpgpS • • • •!>* • • • -Pn = n (pf),
then o*«»> s aA*<"!> = 1 (mod. p*), h =

§ 5. THEOREM. The a's in (1.5) are eacft s 0 {mod. p),
where r + 1 < p < 2r.

Proof. Because r^p — 2, we have G(p-\-j, r) =0 (mod. p), —lSSjrg^r—1.
Therefore (2r)! (? (p + j , r) = 0 (mod. p2);

or (r + 1)! (^ +_ĵ ' + J ) {Ol (p + jT

+ ar} = 0

Since (r + 1)! (P +3 + l ) = 0 (mod. p), and sjs 0 (mod. p2); when
\ r+ 1 /

— 1 <S j ^ r — 1, we must have aa j ' " 1 + a2j
r~2 + a3j

r~3 -f- . . . .
+ ar_ij + ar = 0 (mod.^), for j = - 1, 0, 1, 2, , r— 1.

r being ^ p — 2, this congruence has more than, (r — 1)
incongruent roots, therefore ak = 0 (mod. p), 1 ^ k ^ r.

§6. THEOREM, /K [1.3],/m (r) = 0 (mod.p), m = 1, 2, 3, 2 r -
where r + I <p < 2r.
Let >̂ = 2A; — 1, then

= J2(k), (mod.p).

1 Lemma 1 in my paper on " A Theorem of Gauss," to be published in the next
number of these Proceedings.
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But G (p — 1, k) = 0 (mod. p), for k < p — 1;

hence f2 (k) = 0 (mod. p).

Also /x (&) = 1. 3. 5 (2& - 1) = 0 (mod. p).

v -4- lThus the theorem holds when r = k — - .

Suppose the theorem holds when k ^r ^ t — 1 < j» — 2,

so that / , (t — 1) = 0 (mod. p), s = 1. 2, 3, . . . . , 2t — p — 1.

Since / , (0 = (2t - I) {ft (t - 1) + / _ (t - 1)},

/ , (0 = 0 (mod. p), I = 1, 2, 3, . . . . , 21 - p - 1.

Also when I = 2t—p, 2t — l = 0 (mod. p), therefore/ _J( (£) =0 (mod. p).

Again t ^ p — 2, so that (?(^ — 1, «) = 0 (mod. ̂ ) .

But O (p — I, <) =/2(-j,+i (0 (mod. ^ ) , therefore f^-p+i (*) = 0 (mod. ̂ ) .

T h u s f , { t ) = O (mod.p), 1=1,2,3, , 2 < - p + 1.

The theorem is now proved by induction.

For rjS: p — 1, we can prove that/m(r) = O (mod.p) m = l , 2, 3 , . . . ,p — 2.

§ 7. THEOREM. .For orfcZ values of r ^ 3,

(2r)! # 0

We have

( 2 r ) ! (? 0', r) = (r + 1 ) ! ( ^ J ^ { O l j ' " 1 + a , / " 2 + a , ? ~ s + .... + ar).

Let p be an " odd prime " > | a± — a2 + a3 — a4 + . . . . + ar ),
also > 2r and \ar\.

Then G(p — 1, r) = 0 (mod. ^ 2 ) , so that

a — a2 + a3 — a4 + . . . . + ar = 0 (mod. p).

This can only be if a1 — a2 + a% — a4 + . . . . + ar = 0.

Hence (j + 1) must be a factor of axj
r~x + a2j

r~2 -f- a3^'r-3+ . . . . + ar.

This proves the theorem so far as (j + I)2 is concerned.

Again G {p, r) = G {p — 1, r) + p G (p — 1, r - 1),

= 0 (mod. pz).

Therefore ar = 0 (mod, p), for which it is necessary that

ar — 0.

This proves the theorem completely.
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