Congruence Properties of G-Functions

By Hansras GUPTA.

(Recetved 12th February, 1934, and in revised form 22nd April, 1934,
Read 3rd March, 1934.)

§1. Denoting the sum of the products of the first » natural numbers
taken r at a time by the symbol @ (n, 7), I have shown! that

Gn+1,7)=Gn, N+ n+1)G(nr—1), (1.1)
with the initial values G (#,0)=1; G(n,7)=0,r>n; and
G(n,n)=mn! ‘ (1.2)
In general it was shown that
n+1

Gn,r) = z{fm ). <2r—m+l>}’ (1.3)

where f,(r)=@r—m){f(r— 1)+ foo1(r — 1)}, fo(r)=0,
fey =20 and g0 = (14)

Defining G (z,7) by the fundamental relation:
G+ 1,7n=G0C(x,r)+ (x+ 1) Gz, r — 1), (1.11)

for all values of z, we get

G(m,r):mél{fm(r).< z+1 )} r=1; (131

2r—m 41
_ (r+ 1! fx+1
(2r)! \r+1

where the a’s are positive or negative integers. (1.6)

> Aoy 2r a2 4az e 4L L a2 +a);  (L.5)

§2. Consider the series :

p(m+ )=y "1 +G@(—n—11)y"*
+G(—n—1,2)y 3 4. +G(—n—1,r)y -1y |
for y > n.

1 ¢“Sums of Products of first » natural numbers taken 7 at a time.” Jowrnal of the
Indian Math. Society, Vol. XIX, Part II, pp. 1-6.
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Multiplying both sides by (y — =), we get
(y—n)d(n +1)= E{G(—n—-l )=—nG(—n—1,7r— 1)}y,

8

Z {G(—n )y =4 (n).

Therefore

Bt )= T ) = e 1)¢<n—1>—
= [(n + 1)! <n—‘1}/— l>]_1 because ¢ (1) = y~?, (2.1)
S
= () (-2 (2.2)

Comparing the coefficients of y="7""1, we get

n!G@(—n—1,7) n_: [< > (— 1)k, (n-—-k)”f”}, (2.3)
?;—1)! G(—n—l,r){z;{(” PR NCRICE k)f+n—1} L ea

In particular, G(— 2,7) =1; G(—3,7r) = 2r+1—1;
2! G(—4,r)=38r+2_2.2r+24 1,

§3. We will now establish some general congruences connected with
the G-Functions. In what follows p will denote an odd prime, and
i, j, any integers positive, negative or zero.
Consider the product P = (z+1)(x+2)(z+3) ... (x+i)(x+i+1)... (x+i4j).
i+i
Evidently P = E] {G(@ 47, ryx+i-7. And if y = x + 1, then
r=0
=@@—1+Dy—i+2)(g—i+3)..(y—-Dy.(y+1)... (¥ +j),
={y'—G—1, 1)y 4+GE—-1, 2y 2 —. .. +(=1YQ(—1,7r)yi""+ ...
+(—=1)"*G (i—1,i—1)y}
APHGG, DY IO, 2y L GG R Y TR L 4G, )
i+j—1 o
= Z iy
where
[r1=G 7 —GGE—1L1)GG,r—D+ ...+ (—1FGE—1L,kGQ,r—k +...
+(— 1Y@ (e—l 7) a.nd[O]——l
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Comparing the coefficients of the powers of z, we get
Q(i+j,7) = <" +7>¢r+ [1](‘+7‘1>¢f—1+ . +[k]<7'+'7_k>i’—"+ [ (3.0)
r r—1 r—k
- In view of (2.1), this result holds for all integral values of ¢, j.

I. Putting:=1, and j = p — 1, we have

[rl=G(p —1,7).
Therefore,

G(p,r)=<2:>+G(p—1,1).<€ii>+g(z,_1,2)_(2:

+G(p—1,7—2). <p" + 2) + G(p—l,r—l).(/p_r + 1')+G(p—1,r),

_§>+

pum—A
/7

2 1
whence('r—l)G'(p—-—l,r-—1)=<2:>+G(p—1,1).<€:i>.|_,,,
+G(p—1,r—2).<p_;+2>. (8.2)

Putting »r=2,3,4,...,p—1 in (3.2) and remembering that
(f)sO(mod.p), 1=r=<9p-—1, we have
G(p—-1,k)=0(mod. p), k= p—2.
This is Lagrange’s Theorem.
IT. Also putting » = p, we have
(p—1G(p—1,p — 1)=1(mod. p).

Thus (p —1)! = — 1 (mod. p).
This is Wilson’s Theorem.

III. Putting 7 = p in (3.1), we have for all integral values of j,

Gp+4,1=G@,7), (mod.p), 0<r =p —2; (3.3)
and =G, N+ (=1 1G(p—1,p—1) G(j, r—p+1), (mod. p), r=p—1;
=Gy, r)-G@,r—p+1), (mod.p), r=p— 1. (3.31)
In particular G(p — 2,7)=1(mod. p), r<p — 2. (3.32)
For r=p— 2, weget G(p — 2, p— 2)=1 (mod. p);
or (p — 2)! = 1 (mod. p).
Thus (3.3) covers Wilson’s Theorem. It covers also Lagrange’s
Theorem as is seen by putting j = — 1.
As another remarkable case of (3.3), we have
Gp—3,r)=2rt1 — 1, (mod.p); 0 <r=p—2. (3.33)
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When 7 = p — 2, we get 271 =1 (mod. p), which is a particular case
of Fermat’s Theorem.
When 0 =< j < 7, we have

Gp+j,r)=— G(j,r—p+1), (mod. p); (3.34)

where we take G (j, — k) =0 when j and k are integers j = 0, k> 0,
and G (0, 0) = 1.
Putting s = p and j = — 1 in (3.1),

Gp—1,7r)=(—1YG(p —1,r)(mod. p?), 2<r<p—2.
If r=2k+ 1, we get
G(p—1,2k+1)=0 (mod. p?), 1 < kgf’_;3. (3.35)

In particular G (p — 1, p — 2) =0, (mod. p?), p = 5.
This is Wolstenholme’s Theorem.

§4. Proof of Fermat’s Theorem: If a is prime to p,
a*® =1 (mod. p),

where ¢ (p*) denotes as wusual the number of integers less than and
prime to p¥.
We have G(p—j—1,r)=G(—j — 1,r) (mod. p), 0 <r < p—2.

Hence

(G—D!1G(—j—1,p—j)=@G—-1)! G(p—j—1, p—j) (mod. p), 2<j < p;
= 0 (mod. p).

Putting j = 2,3, 4, ....,p — 1 in succession, we get

27-1 — 1 =.0 (mod. p); therefore 2?-1=1 (mod. p),
3p~1_ ( f > 2?-1 4+ 1 =0 (mod. p); hence 3?~!=1 (mod. p).

Let a?»~'=1(mod.p), a =2,3,4,....,2—1; 1<p—1.
Then (¢ — 1)! G (— 7 — 1, p — ¢) = 0(mod. p), so that by (2.3)

N R [T G T 2p-—(*5 PIEE
+ (—1))7'= 0 (mod. p),

or

p—1= <'L '1— 1> - <7’ '; 1) + <i ; 1>—. cee (—l)i*1<z:;) + (=1)i=1 (mod. p).
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Hence by inductive reasoning, we have
a?~1=1 (mod. p), a<op.
For values of ¢ > p and prime to it, we have
a?P~l1=a'?"1 =1 (mod. p) where a = a’ (mod. p), a’ < p.
This proves the theorem when % = 1.
When « > 1, we have )
at?™) = 2% " re-1) = (ap—l)p"—l,

= (kp + 1)*" 7!, since (a, p) =1,
-1
1 (mod pu), for <pt; > =0 (mod. pu-l—a)l

I

where r = 0 (mod. p*) and = 0 (mod. p=+1),
In general if (a, n) =1,
a*® =1 (mod. n).
For if n=pipipl....p¢ .. ..pt =11 (pH),
then @™ = gh®) = 1 (mod. P b= ¢(p}) . ¢ (P§)-. .. b (P (p}).

§5. TuEoREM. The a’sin (1.5) are each = 0 (mod. p),
where r + 1 < p < 2r.

Proof. Because r<p—2, wehave G(p+7,7) =0 (mod. p), —1=j=r—1.
Therefore (27)! G (p + j, r) = 0 (mod. p?);

p+j+1

L G LY Y
+ a,} = 0 (mod. p?).
+i+1
r+1
—1Zj=r—1, we must have a5 14+ ayj 2 +agj 34 ....
+a,_1j+a,=0(mod.p), for j=—-1,0,1,2, ....,r—1.
r being =< p — 2, this congruence has more than (r — 1)
incongruent roots, therefore q; =0 (mod. p), 1=k

Since (r + 1)! (10 > =0 (mod. p), and == 0 (mod. p?); when

§6. ToeorEM. In[L1.3),f,(r)=0(mod.p),m=1,2,3,....,2r—p+1;
where r 4+ 1<p<2r, ‘
Let p = 2k — 1, then

¢ -1 B =fi®(5)+ 0 (" )+ +hw (),
= f, (k), (mod. p).

1Lemma 1 in my paper on ‘A Theorem of Gauss,” to be published in the next
number of these Proceedings.
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But G(p—1,k)=0(mod.p), fork<p —1;
hence f2(k) = 0 (mod. p).
Also Hi(k)=1.8.5..... (2k — 1) = 0 (mod. p).

Thus the theorem holds when » = & :p_—;l .

Suppose the theorem holds when k <r <t —1<p — 2,

so that f,({—1)=0 (mod.p), s=1,2,3,....,2t—p — 1.
Since ft) =@ —D{fiE—1) +f_ (¢~ 1)}
fi(ty=0 (mod.p), 1=1,2,3,....,2—p—1.

Also when | = 2t—p, 2t—1=0 (mod. p), therefore f _, (f) =0 (mod. p).
Again ¢t < p — 2, so that G'(p — 1, £) = 0 (mod. p).

But G(p — 1, t) = for—p41 (1) (mod. p), therefore fy,_, ., (¢) = 0 (mod. p).
Thus f;(!)=0 (mod.p), I=1,2,3, ...., 2t —p + 1.

The theorem is now proved by induction.

For r = p—1, we can prove that f,,(»)=0 (mod. p) m=1,2,3,...,p—2.

§7. THEOREM. For odd values of r = 3,
(2r)! G (4, r) =0 (mod. j2(j + 1)?).

We have
.  + 1 . . .
A e i L e
Let p be an “odd prime” >|a; —ax+a3—ay+ ....+a,],

also > 2r and |a,!.
Then G(p — 1, r) =0 (mod. p2), so that
a —az+a3—a;+ .... + a, =0 (mod. p).
This can only be if a; —as 4+ as—ag+ .... +a,=0.
Hence (j + 1) must be a factor of @, 57~ + aj" "2 + a3 ~*+.... + a,.
This proves the theorem so far as (j + 1)? is concerned.
Again G (p,r)=G(p—1,7r)+pG(p — 1,r — 1),
= 0 (mod. p2?).

Therefore a,=0 (mod, p), for which it is necessary that

a, = 0.

This proves the theorem completely.
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