Congruence Properties of G-Functions

By Hansraj Gupta.

(Received 12th February, 1934, and in revised form 22nd April, 1934. Read 3rd March, 1934.)
§ 1. Denoting the sum of the products of the first n natural numbers taken r at a time by the symbol $G(n, r)$, I have shown ${ }^{1}$ that

$$
\begin{equation*}
G(n+1, r)=G(n, r)+(n+1) G(n, r-1) \tag{1.1}
\end{equation*}
$$

with the initial values $G(n, 0)=1 ; G(n, r)=0, r>n$; and

$$
\begin{equation*}
G(n, n)=n! \tag{1.2}
\end{equation*}
$$

In general it was shown that

$$
\begin{equation*}
G(n, r)=\sum_{m=1}^{r}\left\{f_{m}(r) \cdot\binom{n+1}{2 r-m+1}\right\} \tag{1.3}
\end{equation*}
$$

where $f_{m}(r)=(2 r-m)\left\{f_{m}(r-1)+f_{m-1}(r-1)\right\}, \quad f_{0}(r)=0$,

$$
\begin{equation*}
f_{1}(r)=\frac{(2 r)!}{2^{r} \cdot r!}, \text { and } f_{r}(r)=r! \tag{1.4}
\end{equation*}
$$

Defining $G(x, r)$ by the fundamental relation:

$$
\begin{equation*}
G(x+1, r)=G(x, r)+(x+1) G(x, r-1) \tag{1.11}
\end{equation*}
$$

for all values of x, we get

$$
\begin{gather*}
G(x, r)=\sum_{m=1}^{r}\left\{f_{m}(r) \cdot\binom{x+1}{2 r-m+1}\right\}, \quad r \geqq 1 \tag{1.31}\\
=\frac{(r+1)!}{(2 r)!}\binom{x+1}{r+1} \cdot\left\{a_{1} x^{r-1}+a_{2} x^{r-2}+a_{3} x^{r-3}+\ldots+a_{r-1} x+a_{r}\right\} \tag{1.5}
\end{gather*}
$$

where the a 's are positive or negative integers.
§ 2. Consider the series:

$$
\begin{aligned}
\phi(n+1) & \equiv y^{-n-1}+G(-n-1,1) y^{-n-2} \\
& +G(-n-1,2) y^{-n-3}+\ldots+G(-n-1, r) y^{-n-r-1}+\ldots
\end{aligned}
$$

for $y>n$.

[^0]Multiplying both sides by $(y-n)$, we get

$$
\begin{aligned}
(y-n) \phi(n+1) & =\sum_{r=0}^{\infty}\{G(-n-1, r)-n G(-n-1, r-1)\} y^{-n-r} \\
& =\sum_{r=0}^{\infty}\left\{G(-n, r) y^{-n-r}\right\} \equiv \phi(n)
\end{aligned}
$$

Therefore

$$
\begin{align*}
\phi(n+1)= & \frac{1}{(y-n)} \phi(n)=\frac{1}{(y-n)(y-n+1)} \phi(n-1)=\ldots \\
= & {\left[(n+1)!\binom{y}{n+1}\right]^{-1} \quad \text { because } \phi(1)=y^{-1} } \tag{2.1}\\
= & \frac{(-1)^{n}}{n!y}\left\{\binom{n}{0}-\binom{n}{1}\left(1-\frac{1}{y}\right)^{-1}+\binom{n}{2}\left(1-\frac{2}{y}\right)^{-1}-\ldots\right. \\
& \left.+(-1)^{n}\binom{n}{n}\left(1-\frac{n}{y}\right)^{-1}\right\} \tag{2.2}
\end{align*}
$$

Comparing the coefficients of y^{-n-r-1}, we get

$$
\begin{equation*}
n!G(-n-1, r)=\sum_{k=0}^{n-1}\left\{\binom{n}{k} \cdot(-1)^{k} \cdot(n-k)^{r+n}\right\} \tag{2.3}
\end{equation*}
$$

or
$(n-1)!G(-n-1, r)=\sum_{k=0}^{n-1}\left\{\binom{n-1}{k} \cdot(-1)^{k} \cdot(n-k)^{r+n-1}\right\}$.
In particular, $G(-2, r)=1 ; G(-3, r)=2^{r+1}-1$;

$$
2!G(-4, r)=3^{r+2}-2.2^{r+2}+1
$$

§3. We will now establish some general congruences connected with the G-Functions. In what follows p will denote an odd prime, and i, j, any integers positive, negative or zero.

Consider the product $P \equiv(x+1)(x+2)(x+3) \ldots(x+i)(x+i+1) \ldots(x+i+j)$. Evidently $P \equiv \sum_{r=0}^{i+j}\left\{G(i+j, r) x^{i+j-r}\right\}$. And if $y=x+i$, then

$$
\begin{aligned}
P= & (y-i+1)(y-i+2)(y-i+3) \ldots(y-1) y \cdot(y+1) \ldots(y+j) \\
= & \left\{y^{i}-G(i-1,1) y^{i-1}+G(i-1,2) y^{i-2}-\ldots+(-1)^{r} G(i-1, r) y^{i-r}+\ldots\right. \\
& \left.\quad+(-1)^{i-1} G(i-1, i-1) y\right\} \\
& \quad .\left\{y^{j}+G(j, 1) y^{j-1}+G(j, 2) y^{j-2}+\ldots+G(j, k) y^{j-k}+\ldots+G(j, j)\right\} \\
= & \sum_{r=0}^{i+j-1}\left\{[r] y^{i+j-r}\right\}
\end{aligned}
$$

where

$$
\begin{gathered}
{[r]=G(j, r)-G(i-1,1) G(j, r-1)+\ldots+(-1)^{k} G(i-1, k) G(j, r-k)+\ldots} \\
+(-1)^{r} G(i-1, r), \text { and }[0]=1 .
\end{gathered}
$$

Comparing the coefficients of the powers of x, we get
$G(i+j, r)=\binom{i+j}{r} i^{r}+[1]\binom{i+j-1}{r-1} i^{r-1}+\ldots+[k]\binom{i+j-k}{r-k} i^{r-k}+\ldots+[r]$.
In view of (2.1), this result holds for all integral values of i, j.
I. Putting $i=1$, and $j=p-1$, we have

$$
[r]=G(p-1, r)
$$

Therefore,

$$
\begin{align*}
& G(p, r)=\binom{p}{r}+G(p-1,1) \cdot\binom{p-1}{r-1}+G(p-1,2) \cdot\binom{p-2}{r-2}+\ldots \\
& +G(p-1, r-2) \cdot\binom{p-r+2}{2}+G(p-1, r-1) \cdot\binom{p-r+1}{1}+G(p-1, r) \\
& \text { whence }(r-1) G(p-1, r-1)=\binom{p}{r}+G(p-1,1) \cdot\binom{p-1}{r-1}+\ldots \\
& +G(p-1, r-2) \cdot\binom{p-r+2}{2} . \tag{3.2}
\end{align*}
$$

Putting $r=2,3,4, \ldots, p-1$ in (3.2) and remembering that $\binom{p}{r} \equiv 0(\bmod . p), 1 \leqq r \leqq p-1$, we have

$$
G(p-1, k) \equiv 0(\bmod . p), k \leqq p-2
$$

This is Lagrange's Theorem.
II. Also putting $r=p$, we have

$$
(p-1) G(p-1, p-1) \equiv 1(\bmod . p)
$$

Thus

$$
(p-1)!\equiv-1(\bmod . p)
$$

This is Wilson's Theorem.
III. Putting $i=p$ in (3.1), we have for all integral values of j, $G(p+j, r) \equiv G(j, r),(\bmod . p), \quad 0<r \leqq p-2 ;$
and $\quad \equiv G(j, r)+(-1)^{p-1} G(p-1, p-1) G(j, r-p+1),(m o d . p), r \geqq p-1 ;$

$$
\begin{equation*}
\equiv G(j, r)-G(j, r-p+1),(\bmod . p), r \geqq p-1 \tag{3.31}
\end{equation*}
$$

In particular $G(p-2, r) \equiv 1(\bmod p), r \leqq p-2$.
For $r=p-2$, we get $G(p-2, p-2) \equiv 1(\bmod . p)$;
or

$$
\begin{equation*}
(p-2)!\equiv 1(\bmod \cdot p) \tag{3.32}
\end{equation*}
$$

Thus (3.3) covers Wilson's Theorem. It covers also Lagrange's Theorem as is seen by putting $j=-1$.

As another remarkable case of (3.3), we have

$$
\begin{equation*}
G(p-3, r) \equiv 2^{r+1}-1,(\bmod . p) ; 0<r \leqq p-2 \tag{3.33}
\end{equation*}
$$

When $r=p-2$, we get $2^{p-1} \equiv 1(\bmod . p)$, which is a particular case of Fermat's Theorem.

When $0 \leqq j<r$, we have

$$
\begin{equation*}
G(p+j, r) \equiv-G(j, r-p+1),(\bmod . p) \tag{3.34}
\end{equation*}
$$

where we take $G(j,-k)=0$ when j and k are integers $j \geqq 0, k>0$, and $G(0,0)=1$.

Putting $i=p$ and $j=-1$ in (3.1),

$$
G(p-1, r) \equiv(-1)^{r} G(p-1, r)\left(\bmod . p^{2}\right), 2 \leqq r \leqq p-2 .
$$

If $r=2 k+1$, we get

$$
\begin{equation*}
G(p-1,2 k+1) \equiv 0\left(\bmod \cdot p^{2}\right), 1 \leqq k \leqq \frac{p-3}{2} \tag{3.35}
\end{equation*}
$$

In particular $G(p-1, p-2) \equiv 0,\left(\bmod . p^{2}\right), p \geqq 5$.
This is Wolstenholme's Theorem.
§4. Proof of Fermat's Theorem: If a is prime to p,

$$
a^{\phi\left(p^{u}\right.} \equiv 1\left(\bmod \cdot p^{u}\right)
$$

where $\phi\left(p^{u}\right)$ denotes as usual the number of integers less than and prime to p^{u}.

We have $G(p-j-1, r) \equiv G(-j-1, r)(\bmod . p), 0<r \leqq p-2$. Hence

$$
\begin{aligned}
(j-1)!G(-j-1, p-j) & \equiv(j-1)!G(p-j-1, p-j)(\bmod . p), 2 \leqq j<p \\
& \equiv 0(\bmod . p)
\end{aligned}
$$

Putting $j=2,3,4, \ldots, p-1$ in succession, we get
$2^{p-1}-1 \equiv 0(\bmod . p) ; \quad$ therefore $2^{p-1} \equiv 1(\bmod . p)$,
$3^{p-1}-\binom{2}{1} 2^{p-1}+1 \equiv 0(\bmod . p) ; \quad$ hence $3^{p-1} \equiv 1(\bmod p)$.
Let $a^{p-1} \equiv 1(\bmod . p), a=2,3,4, \ldots, i-1 ; i \leqq p-1$.
Then $(i-1)!G(-i-1, p-i) \equiv 0(\bmod . p)$, so that by (2.3)

$$
\begin{gathered}
i^{p-1}-\binom{i-1}{1}(i-1)^{p-1}+\binom{i-1}{2}(i-2)^{p-1}-\binom{i-1}{3}(i-3)^{p-1}+\ldots \\
+(-1)^{i-1} \equiv 0(\bmod . p)
\end{gathered}
$$

or
$i^{p-1} \equiv\binom{i-1}{1}-\binom{i-1}{2}+\binom{i-1}{3}-\ldots+(-1)^{i-1}\binom{i-1}{i-2}+(-1)^{i} \equiv 1(\bmod . p)$.

Hence by inductive reasoning, we have

$$
a^{p-1} \equiv 1(\bmod . p), \quad a<p .
$$

For values of $a>p$ and prime to it, we have

$$
a^{p-1} \equiv a^{\prime p-1} \equiv 1(\bmod . p) \text { where } a \equiv a^{\prime}(\bmod . p), \quad a^{\prime}<p
$$

This proves the theorem when $u=1$.
When $u>1$, we have

$$
\begin{aligned}
a^{\phi\left(p^{u}\right)} & \equiv a^{p^{u-1}(p-1)} \equiv\left(a^{p-1}\right)^{p^{u-1}} \\
& \equiv(k p+1)^{p^{n-1}}, \text { since }(a, p)=1, \\
& \equiv 1\left(\bmod . p^{u}\right), \text { for }\binom{p^{u-1}}{r} \equiv 0\left(\bmod . p^{u-1-a}\right)^{1}
\end{aligned}
$$

where $r \equiv 0\left(\bmod . p^{a}\right)$ and $\neq 0\left(\bmod . p^{a+1}\right)$.
In general if $(a, n)=1$,

$$
a^{\phi(n)} \equiv 1(\bmod . n) .
$$

For if $n=p_{1}^{a} p_{2}^{\beta} p_{3}^{\gamma} \ldots p_{i}^{k} \ldots p_{n}^{u}=\Pi\left(p_{i}^{k}\right)$,
then

$$
a^{\phi(n)} \equiv a^{h \phi\left(p_{i}^{k}\right)} \equiv 1\left(\bmod . p_{i}^{k}\right), h=\phi\left(p_{1}^{\alpha}\right) \cdot \phi\left(p_{2}^{\beta}\right) \ldots \phi\left(p_{n}^{u}\right) / \phi\left(p_{i}^{k}\right) .
$$

§ 5. Theorem. The a's in (1.5) are each $\equiv 0$ (mod. p), where $r+1<p<2 r$.
Proof. Because $r \leqq p-2$, we have $G(p+j, r) \equiv 0(\bmod . p),-1 \leqq j \leqq r-1$. Therefore $(2 r)!G(p+j, r) \equiv 0\left(\bmod . p^{2}\right)$;
or $(r+1)!\binom{p+j+1}{r+1}\left\{\begin{array}{c}a_{1}(p+j)^{r-1}+a_{2}(p+j)^{r-2}+a_{3}(p+j)^{r-3}+\ldots \\ \left.+a_{r}\right\} \equiv 0\left(\bmod , p^{2}\right)\end{array}\right.$ $\left.+a_{r}\right\} \equiv 0\left(\bmod . p^{2}\right)$.
Since $\quad(r+1)!\binom{p+j+1}{r+1} \equiv 0(\bmod . p), \quad$ and $\neq 0\left(\bmod . p^{2}\right) ; \quad$ when $-1 \leqq j \leqq r-1$, we must have $a_{1} j^{r-1}+a_{2} j^{r-2}+a_{3} j^{r-3}+\ldots$. $+a_{r-1} j+a_{r} \equiv 0(\bmod . p)$, for $j=-1,0,1,2, \ldots, r-1$.
r being $\leqq p-2$, this congruence has more than. $(r-1)$ incongruent roots, therefore $a_{k} \equiv 0(\bmod . p), \quad 1 \leqq k \leqq r$.
§6. Theorem. In [1.3], $f_{m}(r) \equiv 0(\bmod . p), m=1,2,3, \ldots, 2 r-p+1$; where $r+1<p<2 r$.
Let $p=2 k-1$, then

$$
\begin{aligned}
G(p-1, k) & \equiv f_{1}(k)\binom{p}{2 k}+f_{2}(k)\binom{p}{2 k-1}+\ldots+f_{k}(k)\binom{p}{k+1}, \\
& \equiv f_{2}(k),(\bmod . p)
\end{aligned}
$$

[^1]But $G(p-1, k) \equiv 0(\bmod . p)$, for $k<p-1$;
hence $\quad f_{2}(k) \equiv 0(\bmod . p)$.
Also $\quad f_{1}(k) \equiv 1.3 .5 . \ldots(2 k-1) \equiv 0(\bmod . p)$.
Thus the theorem holds when $r=k=\frac{p+1}{2}$.
Suppose the theorem holds when $k \leqq r \leqq t-1<p-2$,
so that $f_{s}(t-1) \equiv 0(\bmod . p), s=1,2,3, \ldots, 2 t-p-1$.
Since $\quad f_{l}(t)=(2 t-l)\left\{f_{l}(t-1)+f_{-}(t-1)\right\}$,

$$
f_{l}(t) \equiv 0(\bmod . p), l=1,2,3, \ldots, 2 t-p-1
$$

Also when $l=2 t-p, 2 t-l \equiv 0(\bmod . p)$, therefore $f_{-p}(t) \equiv 0(\bmod . p)$.
Again $t \leqq p-2$, so that $G(p-1, t) \equiv 0(\bmod . p)$.
But $G(p-1, t) \equiv f_{2 t-p+1}(t)(\bmod . p)$, therefore $f_{2 t-p+1}(t) \equiv 0(\bmod . p)$.
Thus $f_{l}(t) \equiv 0(\bmod . p), l=1,2,3, \ldots, 2 t-p+1$.
The theorem is now proved by induction.
For $r \geqq p-1$, we can prove that $f_{m}(r) \equiv 0(\bmod . p) m=1,2,3, \ldots, p-2$.
§ 7. Theorem. For odd values of $r \geqq 3$,

$$
(2 r)!G(j, r) \equiv 0\left(\bmod \cdot j^{2}(j+1)^{2}\right)
$$

We have
$(2 r)!G(j, r)=(r+1)!\binom{j+1}{r+1}\left\{a_{1} j^{r-1}+a_{2} j^{r-2}+a_{3} j^{r-3}+\ldots .+a_{r}\right\}$.
Let p be an "odd prime" $>\left|a_{1}-a_{2}+a_{3}-a_{4}+\ldots+a_{r}\right|$, also $>2 r$ and $\left|a_{r}\right|$.

Then $G(p-1, r) \equiv 0\left(\bmod . p^{2}\right)$, so that

$$
a-a_{2}+a_{3}-a_{4}+\ldots+a_{r} \equiv 0(\bmod . p)
$$

This can only be if $a_{1}-a_{2}+a_{3}-a_{4}+\ldots+a_{r}=0$.
Hence $(j+1)$ must be a factor of $a_{1} j^{r-1}+a_{2} j^{r-2}+a_{3} j^{r-3}+\ldots+a_{r}$. This proves the theorem so far as $(j+1)^{2}$ is concerned.
Again $G(p, r)=G(p-1, r)+p G(p-1, r-1)$,

$$
\equiv 0\left(\bmod . p^{2}\right)
$$

Therefore $\quad a_{r} \equiv 0(\bmod , p)$, for which it is necessary that $a_{r}=0$.
This proves the theorem completely.

[^0]: 1 "Sums of Products of first n natural numbers taken r at a time." Journal of the Indian Math. Society, Vol. XIX, Part II, pp. 1.6.

[^1]: ${ }^{1}$ Lemma 1 in my paper on "A Theorem of Gauss," to be published in the next number of these Proceedings.

