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How Can It Be True?

4.1 Introduction

After Chapter 3 showed the ubiquity of the failure of proper rigidity for non-
compact locally symmetric manifolds, in this chapter we begin to examine the
problem for closed manifolds. Rather than seriously engaging the question of
how to prove the Borel conjecture, we focus on how it can possibly be true.

After all, every method for distinguishing manifolds is a potential obstacle
that needs to be overcome. For example, in Chapter 3 we saw the import of
characteristic classes, so a major focus of this chapter must be about why it is
that (e.g. what are some mechanisms for) the characteristic classes of a manifold
homotopy-equivalent to K\G/Γ must be the same as those of K\G/Γ (if we are
in the compact case). This is essentially the topic of the Novikov conjecture1

and it will be the main focus of this chapter and the next.
But there are invariants not at all related to the characteristic classes that can

be used to distinguish manifolds.2 The classical example is the theory of lens
spaces: lens spaces are quotients of the sphereS2n−1/Zk whereS2n−1 is thought
of as the unit sphere of Cn, and Zk acts via a unitary representation on Cn. Each
representation is a sum of irreducible one-dimensional representations, and to
obtain a quotient manifold we assume that each of the irreducible pieces has Zk
acting freely, i.e. can be described as rotation by a primitive root of unity. These
are called the rotation numbers in the definition of the lens space. A lens space

1 It is important to note that Novikov was not at all thinking about the Borel conjecture when
formulating his problem. It arose very naturally in the course of his work on the topological
invariance of rational Pontrjagin classes as we will see in §4.5 below.

2 Recall that in the situation of simply connected manifolds, the Browder–Novikov theorem (see
the notes from Chapter 3) tells us that, beyond homotopy type, the G/Top characteristic class
is a complete invariant (so that ordinary characteristic classes only lose a finite amount of
information).
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80 How Can It Be True?

might be denoted by Lensk(a1, . . . ,an) or some such similar notation where the
ai are integers prime to k, and denote the rotation numbers.

Changing the order of the ai is costless. Changing ai to −ai is an equivalence
of the underlying real representation, but not the complex one, and changes the
natural orientation on the manifold. But one can do this an even number of
times and keep the orientation.

If we just care about the underlying manifold, we can change the group action
by multiplying all of the rotation numbers by the same s prime to k. Usually
we will assume that we preserve an identification of the fundamental group
with Zk , i.e. that we have a fixed homotopy class of maps to K(Zk,1) that we
are preserving, equivalently that we are interested in conjugacy of the group
actions.

The number of π1 and orientation preserving homotopy types among lens
spaces in a fixed dimension is ϕ(k) (the Euler ϕ function) – with the homo-
topy type being determined by the product of the rotation numbers.3 How-
ever,diffeomorphism (or homeomorphism, in this case) is exactly equivalent
to orientation-preserving real linear equivalence, i.e. the changes we described
above – according to a beautiful and deep theorem of de Rham (see Cohen,
1973).

In dimension 3, all orientable manifolds have trivial tangent bundles, and
there is no more tangential information to be had.4 (In higher dimensions,
the Pontrjagin classes do distinguish some lens spaces from each other – they
are essentially symmetric functions in the squares of the rotation numbers,
but there aren’t enough of these to determine these numbers themselves (see
Milnor, 1966).

There are two essentially different proofs of this theorem; that is, proofs based
on different principles: de Rham’s original argument that it is now natural to
view from the point of view of algebraic K-theory; and another argument, due
to Atiyah, Bott, and Milnor (see (Atiyah and Bott, 1967), 1968) that involves
(equivalence classes of) quadratic forms associated to the lens spaces defined
either in terms of spaces that they bound (cobordism theory) or via some
measure of how lopsided (around 0) the spectrum of some self-adjoint operators
are (“spectral asymmetry”) (Atiyah et al., 1975a,b).

Both of these proofs pose challenges to the Borel conjecture; we will discuss

3 A pair of lens spaces can be compared by a map that preserves their fundamental groups.
Orienting them both, we can ask the degree of this map. A form of the Borsuk–Ulam theorem
tells us that this degree is prime to k – the congruence class is independent of the map, and is
the ratio of the product of the rotation numbers defining the two lens spaces.

4 Actually, it is possible for the normal invariant of map between oriented 3-manifolds to be
nontrivial, because of the extra information that goes beyond the tangent bundle itself – but
this is information only at the prime 2, and it always vanishes for homotopy equivalences.
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4.2 The Hirzebruch Signature Theorem 81

the Atiyah–Bott–Milnor argument later in the chapter, and de Rham’s challenge
in the next.

Let’s start with the Novikov conjecture, the response to the challenge of
characteristic classes.

4.2 The Hirzebruch Signature Theorem

Before discussing how the Borel conjecture can be true, it is worth asking, along
the same lines, how the Poincaré conjecture can be true? After all, over S4k

there are an infinite number of vector bundles – distinguished by the Pontrjagin
class pk . Why aren’t these the Pontrjagin classes of homotopy spheres?

The answer is given by the Hirzebruch signature theorem that gives a
homotopy-theoretic interpretation of a certain combination of characteristic
classes.

Definition 4.1 If M4k is a closed oriented manifold, then the signature of
M is defined as the signature of the quadratic (i.e. symmetric bilinear) form
H2k(M;Q) ⊗ H2k(M; Q) → H4k(M;Q) → Q; that is, it is the difference in
dimensions between a maximal positive-definite subspace of H2k(M;Q) and a
negative-definite subspace.

Note that Poincaré duality tells us that this quadratic form is non-singular.
Such a form (over a field) can be diagonalized – and the signature is the number
of positive eigenvalues – the number of negative ones.

By its definition it just depends on the oriented homotopy type of M .

Theorem 4.2 ((Hirzebruch, 1995)) There are homogeneous graded polyno-
mials Lk(p1, . . . , pk) in the Pontrjagin classes, so that

Lk(p1, . . . , pk) = 22k(22k − 1)Bk/(2k)!pk + terms involving the lower classes,

(where Bk is the kth Bernoulli number) so that L = 1 + L1 + · · · + Lk + · · · is
multiplicative for sums of bundles, and

sign (M4k) = 〈Lk(p1, . . . , pk), [M]〉,
where we have denoted by pi the Pontrjagin classes of the tangent bundle of M .

The last statement is what gives the theorem its name, the Hirzebruch sig-
nature theorem. Hirzebruch actually gives a formula for the L from which the
first statement follows.

Note that signature depends on orientation, exactly as the right-hand side
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82 How Can It Be True?

does. An immediate consequence of the formula is that a manifold that is stably
parallelizable (i.e. with trivial normal bundle) has signature equal to 0.

Another significant consequence of the theorem is that if N → M is an r-
sheeted cover (not necessarily connected or regular), then sign (N) = rsign (M),
as the tangential information is the same for a manifold and its cover, just the
fundamental classes are multiplied.

The signature can be defined for spaces more general than topological man-
ifolds.5 For example, for manifolds with boundary, the relevant quadratic form
can be defined, but it has a torsion subspace that should be removed. In that
case, for example, signature is not multiplicative in finite coverings.

Wherever one has Poincaré duality, there are signatures. And in all cases,
one can ask the question about multiplicativity in finite covers.

For L2-cohomology, the ∗ operator often gives rise to a form of Poincaré
duality. For instance, for infinite regular covers, this gives rise to a generalization
of multiplicativity: the L2-signature (which is a kind of normalized signature
of covers6) equals the signature of the base.7 On the other hand, there are
other complete manifolds where L2-cohomology is self-dual not coming from
covering spaces, and then one can define signature-type invariants which need
not be multiplicative.

Intersection homology provides another example: for interesting classes of
spaces such as compact complex algebraic varieties, it gives a form of Poincaré
duality.8

Finally, whenever one has a representation ρ : π1(X) → U(n), there is an
associated flat bundle on x4k , and a Hermitian form H2k(X; ρ) ⊗ H2k(X; ρ) →
C, and hence a signature9 ∈ Z. A rather surprising consequence of the Atiyah–
Singer index theorem is that for X a manifold, sign ρ(X) = nsign (X).

We shall see later (as a consequence of controlled topological ideas) that this
is indeed a consequence of the fact that the Poincaré duality is a local state-

5 Aside from dimension 4, topological manifolds with trivial tangent bundle can be smoothed.
And signature is multiplicative in finite covers of closed topological manifolds, as the reader
should be able to prove by the end of the chapter.

6 And in the residually finite case, is a limit of normalized signatures of finite covers, à la Lück.
7 This is due to Atiyah, and resembles the statement we discussed in Chapter 3 about Euler

characteristic, but it is somewhat deeper than it. The result about Euler characteristic is a
statement about finite complexes, but this is one about manifolds. Atiyah’s proof was based on
the ideas of the Atiyah–Singer index theorem.

8 Which can sometimes, e.g. in the work of Cheeger on the Hodge theory of Riemannian
pseudomanifolds and the work of many on the Zucker conjecture, be interpreted in L2 terms.

9 In the Hermitian setting, there is not much of a difference between a Hermitian form and a
skew-Hermitian form: you can go from one to the other by multiplying by i. As a result one
can get get signature-type invariants in dimension 2mod 4. We will not see this playing a direct
role for closed manifolds of dimension 4k + 2 – but this does play a role in the
Atiyah–Bott–Milnor story for lens spaces of dimension 1mod 4.
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ment10 and thus is true in the intersection homology and topological manifold
settings as well.

Remark 4.3 (On the proofs) There are essentially two different proofs of
the signature theorem. The original proof (Hirzebruch’s) deduces the theorem
axiomatically from three properties of signature:

(1) Signature is cobordism invariant, i.e. if M = ∂W (where M and W are
compact), then sign (M) = 0.

(2) Multiplicativity sign (M × N) = sign (M)sign (N).
(3) sign (CP2k) = 1.

Then the result follows essentially from the work of Thom on cobordism
theory. (As Hirzebruch (1971) writes: “How to prove it? After conjecturing
it I went to the library of the Institute for Advanced Study (June 2, 1953).
Thom’s Comptes Rendus note had just arrived. This completed the proof.”)
This method11 remains important in purely topological settings. Often it is
important to make use of quantities over the form Ω∗(?) ⊗Ω∗(∗) Z, where Ω∗(?)
is the homology theory whose chains are maps of oriented manifolds in “?”,
and which is viewed as a module over Ω(∗) by multiplication and Z is viewed
as a module over Ω(∗) by means of the signature (or some other invariant of
manifolds, on some occasions).

These considerations, systematically employed12 by Sullivan (and the key to
his analysis of the structure of F/Top , for example) exist embryonically already
in this work of Hirzebruch.

Moreover, the π–π theorem, at the core of the flexibility results in Chapter 3,
gives a starring role to cobordism and “?” of the form K(π,1). (Please pause
and think this through.)

All that being said, this method is hard to apply to the flat bundle result
mentioned above. For example, naively, one runs into the fact that no multiple of
S1 with a nontrivial flat complex line bundle with non-root of unity monodromy
bounds in a way that extends (flatly) over the surface: the bordism group of
manifolds equipped with flat bundles is huge.

The other main method for proving the Hirzebruch signature theorem was
motivated by it – it goes via the Atiyah–Singer index theorem. Here sign (M)
or a twisted cousin of it is viewed as the index of an elliptic operator on M , and
such an index can be calculated cohomologically.

Originally, this wasn’t a completely disjoint proof in that the first proof of
10 And is thus true in the intersection homology setting for varieties (or Witt spaces).
11 Of spending time (at IAS or) in libraries.
12 Or exploited?
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84 How Can It Be True?

the index theorem went via cobordism theory (see Palais, 1965). However,
subsequently two different proofs of the signature theorem have been found –
one K-theoretic (Atiyah and Singer, 1968a, 1971) and one via study of the heat
equation (see Atiyah et al., 1975a,b; Gilkey, 1984). The K-theoretic perspective
shall play a large role starting in Chapter 5 and will be discussed further there,
but consequences of the index theorem shall already play an interesting role in
this chapter, and the heat equation approach is also relevant to our story (e.g.
in §4.9).

For now, so we can return to our story, let us be content with observing
that the Hirzebruch theorem answers the question with which we started this
section. If Σ is a homotopy sphere, then its signature is 0 (it has no middle
cohomology at all), and so, since the coefficient of pk in Lk is nonzero, we
conclude that pk must be 0 and none of those bundles we feared actually arise
as tangent bundles of homotopy spheres.

4.3 The Novikov Conjecture

In the 1960s, Novikov (1966) suggested a generalization of one of the key
consequences of the Hirzebruch theorem.

Conjecture 4.4 (Novikov conjecture; most primitive form) Suppose that α ∈
Hi(BΓ;Q) and let M be a closed oriented manifold of dimension 4k + i, f :
M → K(Γ,1) a map, then the quantity

sign α(M, [M]) = 〈 f ∗(α) ∪ Lk(M), [M]〉 ∈ Q
is an oriented homotopy-invariant.

To see its implication for the Borel conjecture, suppose that M and M ′

are closed aspherical manifolds with the same fundamental group Γ. Then
if h : M ′ → M is a homotopy equivalence, and h∗(pi(M)) � pi(M ′), then
h∗(Li(M)) � Li(M ′) and we can find a cohomology class in the cohomology of
M ′ which equals that of M which equals that of K(Γ,1) that pairs nontrivially
on this difference (using Poincaré duality) and get a contradiction.

For many purposes the following equivalent dual formulation is useful:

Conjecture 4.5 (Novikov conjecture; dual formulation) Suppose M is a closed
oriented n-manifold, and a map f : M → K(Γ,1) is given. Then

f∗(L(M) ∩ [M]) ∈ ⊕Hn−4i(BΓ;Q)
is an oriented homotopy-invariant (for manifolds with reference maps to BΓ).
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Let’s be concrete and consider the case of Γ = Z (imagining that Γ is π1M).
In that case, there is a natural homotopy class of map f : M → K(Z,1) =
S1 to use. The conjecture calls attention to the invariant of M4k+1 given by
〈 f ∗([s1]) ∪ Lk(M), [M]〉. Playing with this a little and using the Hirzebruch
formula, we see that the higher signature is given by sign f −1(∗) for any regular
value ∗.

Orientations are easily obtained from orientations on M and the circle. That
this quantity is independent of the regular value is because of the cobordism
invariance of the signature. The puzzle Novikov places before us is why this
quantity is a homotopy invariant. After all, the property of being a homotopy
equivalence is a global property, and does not descend to submanifolds – a
homotopy equivalence h : M ′ → M does not need to induce a homotopy
equivalence h|h−1 f −1(∗) : h−1 f −1(∗) → f −1(∗).
Remark 4.6 This is a key difference with the problem of homeomorphisms,
which are indeed hereditary homotopy equivalences. If h : M ′ → M is a home-
omorphism, then restricted to any U ⊂ M , h|h−1(U) : h−1(U) → U is a proper
homotopy equivalence. For hereditary homotopy equivalences, Novikov’s theo-
rem on topological invariance of rational Pontrjagin classes holds (Siebenmann,
1972).

Remark 4.7 This case of the Novikov conjecture does have a straightfor-
ward algebraic topological explanation (as was first observed,13 I believe, by
Rochlin). The cohomology of the infinite cyclic cover of M has the structure of
a module over Q[Z], a p.i.d. The linking pairing on the torsion submodule on
H2k satisfies Poincaré duality over Q, and its signature can be identified with
the invariant under discussion. However, in §4.4, we will discuss other methods
of much wider scope.

4.4 First Positive Results

We shall discuss two and a half methods that give some useful and interesting
positive information about the problem. The first is “codimension-1 splitting”
and is a high-dimensional variant of the powerful tools used in the pre-Thurston
period of three-dimensional topology. It gives very good information about
“Haken manifolds,” even in high dimensions.

It starts by trying to answer the question we asked at the end of the last
section, given that homotopy equivalence is not hereditary, why should the
13 These ideas about infinite cyclic covers are the bread and butter of knot theory.
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86 How Can It Be True?

signature of certain submanifolds be unchanged? Splitting theorems show that
the homotopy equivalence can (often) be homotoped to one which is hereditary
on codimension-1 submanifolds. This will also be a first occasion to consider
algebraic K-theory that arises as an obstruction.14

After this, we will turn to Lusztig’s thesis, which introduced a nice family of
flat line bundles on manifolds with free abelian fundamental group, and brought
the Atiyah–Singer index theorem for families to bear on the problem. Finally,
we will give a variant of the last method that gives a proof for high-genus
surfaces, not based on their Haken nature, or any family of line bundles, but
rather based on a beautiful surface fibration discovered by Atiyah and Kodaira
(and also explain why we call it half a method).

4.4.1 The Splitting Problem
The splitting problem in its simplest form supposes we have h : M ′ → M a
homotopy equivalence and V a locally separating codimension-1 submanifold
of M . The problem is to homotop h to a new map that restricts to the inverse
image of V as a homotopy equivalence.

Unfortunately the answer to this is sometimes negative (in high dimensions),
and we will build up to it by explaining first the problem where the main
obstruction to this first arose, fibering.15 During our first run we will not be
comprehensive, but will only introduce some of the dramatis personae.

It is reasonable to extend the range of the discussion of splitting to allow the
target to be a non-manifold as follows: Let Xn be a Poincaré complex; that is, a
space that satisfies Poincaré duality in a suitably strong form with respect to all
local systems.16 We suppose thatYn−1 is a locally two-sided (n−1)-dimensional
Poincaré complex, Poincaré-embedded in X . This means that there is a (perhaps
disconnected) complex Z , such that Y ∪Y is a boundary for Z , i.e. (Z,Y ∪Y ) is
a Poincaré pair, which simply means that Z with those two copies of Y satisfies
the Poincaré duality appropriate to manifolds with boundary. We insist that X
is the result of gluing together the two copies of Y .

The splitting problem can now be phrased as: given a homotopy equivalence
h : M → X and Y ⊂ X Poincaré-embedded, can we homotop h so that h is
transverse to Y ,17 and restricts to a homotopy equivalence between Y and its
inverse.
14 But we will discuss this more seriously in the Chapter 5.
15 Very closely related to the invariants introduced by de Rham in his proof of the classification

of lens spaces that we will discuss in Chapter 5.
16 Details can be found in Chapter 2 of Wall (1968).
17 Note that for transversality one does not need manifolds: a “normal structure” to the sub-object

that is a vector bundle (or perhaps somewhat weaker than that) is enough.
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One example where this is relevant is the following fibering problem:

Problem 4.8 Suppose M is a manifold with a surjection π1M → Z (i.e. a
map f : M → S1 with connected homotopy fiber). When is there a fibration
of M over the circle, i.e. a map to S1 realizing this data (e.g. homotopic to this
map)?

In the case when π1M → Z is an isomorphism, a beautiful necessary and
sufficient condition was given by Browder and Levine (1966): fibering is pos-
sible iff the associated infinite cyclic cover has finitely generated homology.
(After all, if the manifold fibers, the fiber would be homotopy equivalent to this
cover.)

The first hypothesis for the general problem should be an analogue of this
kind of finiteness. It is convenient to ask that the infinite cyclic cover, written
F, should have as cellular chain complex C∗(F) ∼ C∗ a finitely generated
projective complex.18 A space with finitely presented fundamental group and
with this property on its cellular chain complex is called finitely dominated.19

Under such conditions, we have the covering translate η : F → F, and a
homotopy equivalence M → T(η) from M to the mapping torus. This mapping
torus, (Tη), is a Poincaré complex (it is homotopy equivalent to M) and with
some effort one can show that F is too (it’s finitely dominated). Splitting this
map is part of homotoping the map to a fibration.

Theorem 4.9 (Siebenmann, 1970a; Farrell, 1971b) If f : M → S1 is a map
which is a surjection on fundamental groups, with dim M > 5, then f is
homotopic to a fibration iff the following hold:

(1) the associated infinite cyclic cover of M is finitely dominated;
(2) an obstruction that lies in Wh(π) vanishes.

If M has boundary and its boundary already fibers, the same result holds for
the problem of extending the fibration to M .

The Whitehead group Wh(π) is defined purely algebraically. Let Zπ be the
integral group ring of the group π (it consists of finite formal sums of symbols
of the form agg, where the ag are integers, and the g are elements of π – made
into a ring in the only sensible way imaginable).

GLn(Zπ) is the group of invertible n × n matrices over this ring. We can

18 This is reasonable given the special role that projective modules play in homological algebra:
checking projectivity is often much simpler than freeness – cohomological vanishing suffices
for the former, but not the latter.

19 This is equivalent to being a retract of a finite complex, just like a projective module is retract
(i.e., factor) of a free module.
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stabilize by adding an identity in the bottom right to an invertible matrix:

GLn(Zπ) → GLn+1(Zπ) → · · · whose limit is GL(Zπ).
The first algebraic K-group is defined by K1(Zπ) = GL(Zπ)/E(Zπ), where
E(Zπ) is the group generated by elementary matrices. A lemma of J.H.C. White-
head (which can be found in any introduction to K-theory) tells us that this
quotient is abelian; indeed the product of matrices AB is equivalent in K1 to
A ⊕ B and E(Zπ) is the commutator subgroups of GL(Zπ).

Finally set
Wh(π) = K1(Zπ)/(±π),

where we mod out by the obvious invertible 1 × 1 matrices (±g) where, again,
g denotes a group element in π.

Note that, if π is trivial, this group is trivial using row operations from linear
algebra (and the Euclidean algorithm). When π is finite cyclic, Wh(π) contains
the obstruction that de Rham used to distinguish homotopy equivalent lens
spaces (see Cohen, 1973. The group Wh(π) has an important part to play in the
Borel story and it is therefore important not to discuss it too early, since it also
provides a possible obstruction to homotoping maps to homeomorphism. We
will rely on a theorem of Bass et al. (1964) which tells us that Wh(zk) = 0.

The fibering theorem is an analogue of an earlier important theorem:20

Theorem 4.10 (h-cobordism) Let M be a compact manifold, dim > 4. Then
there is a one-to-one correspondence:

τ : {W | ∂W = M∪? and W deform retracts to both M and ?} ↔Wh(π).
In particular, if Wh(π) = 0, then M and “?" are (Cat)-homeomorphic. In gen-

eral, τ is called the torsion of the homotopy equivalence M → W . A homotopy
equivalence with zero torsion is called simple (see §5.5.3 for more discussion).
The h-cobordism theorem asserts that s-cobordisms, i.e. h-cobordisms where
the inclusion of one side is simple, are products, so finding s-cobordisms be-
tween M and “?” ends up being the same as finding (Cat)-homeomorphisms
between these manifolds.

Almost all homeomorphisms constructed in high-dimensional topology make
use of this theorem or ideas from its proof. In particular, the proof of the Borel
conjecture for the torus Tk depends on the Bass–Heller–Swan calculation and
the h-cobordism theorem in just this way.
20 This is due to Smale in the simply connected case and is the backbone of his proof of the

high-dimensional Poincaré conjecture. In general (for the PL and smooth categories) it is due
to Barden, Mazur, and Stallings (see Kervaire, 1969); Rourke and Sanderson, 1982). The
topological case is due to Kirby and Siebenmann.
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The condition that W has its boundary components are deformation retracts
is analogous to the finite domination of the infinite cyclic cover: it asserts the
homotopical possibility of the geometric structure (i.e., a product structure
or a fibering) we are seeking. In both cases, the obstruction lies in the same
algebraic K-group, and they arise in both cases through “handlebody theory,”
the manipulation of handles to mimic geometrically that homotopy theory
(which is a manipulation of cells) – except that one has to occasionally replace
algebraic isomorphisms by geometric moves that require (freeness in the place
of projectivity or) elementary matrices and their products.

In the presence of the h-cobordism theorem, the fibering theorem is then
directly visible as a combination of two obstructions. The first is a splitting
obstruction, which would give us a submanifold F ′ in M , homotopy equivalent
to F. When we cut M open along F, we’d then get an h-cobordism from F to
itself that also seems to involve a Wh obstruction to being a product. If it is a
product, then we have exhibited M as a fiber bundle over S1.

Actually, and this is an important point, the π–π theorem enables one to
work in reverse and prove the splitting theorem from the fibering theorem – the
theorem of Farrell. The advantage of this is that the splitting theorem is relevant
to many more manifolds and submanifolds than the fibering theorem.

In general, there are splitting theorems unrelated to fibering problems. For
simplicity we shall just state a version adequate for our current purposes21 that
incorporates the vanishing of Whitehead groups.

Theorem 4.11 Suppose M is a manifold with free abelian fundamental group
Zk , and V ⊂ M is a codimension-1 submanifold with fundamental group Zk−1.
Then if dim M > 5, any homotopy equivalence f : M ′ → M can be split along
V .

We can now use this to prove the Novikov conjecture and try to prove the
Borel conjecture.

If we are dealing with manifolds W with free abelian fundamental group Zk ,
then the Novikov conjecture is essentially the statement about the homotopy
invariance of the signatures of the inverse images of subtori Ti ⊂ Tk (for the
classifying map h : M → Tk).

The tori are inductively stacked Ti ⊂ Ti+1 ⊂ Ti+2 ⊂ · · · ⊂ Tk , so we only
have to deal with the codimension-1 situation. An important but not difficult
lemma (that is essentially the same one that arises in the three-dimensional
topology of Haken manifolds) is that we can homotop the map h : M → Tk
21 Cappell (1974a,b) gave an essentially complete theoretical analysis of this problem. In some

cases, his analysis contains a non-K-theoretic obstruction that we will return to when we
discuss group actions on aspherical manifolds and the Farrell–Jones conjecture.
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to one where h−1(Tk−1) has fundamental group Zk−1. Then we can split the
homotopy equivalence f : M ′ → M along h−1(Tk−1) till we get all the way
down to the inverse image of Ti .

So, by the homotopy invariance of signature, we have proven the Novikov
conjecture.

Except for one little point: there is a dimension condition in the theorem.
The fibering and splitting theorems do fail in low dimensions. So we should
get stuck when the codimension gets high enough.

However, for the purposes of the Novikov conjecture, this is irrelevant, by
the multiplicativity property of (higher) signatures. We can cross our manifold
by CP2 a number of times to increase dimension as much as we need, without
changing any invariants (sign (CP2) = 1) and then apply this argument.

For the Borel conjecture, it would be nice to argue inductively and get a
decomposition of a homotopy torus as resembling homotopically the product
of n copies of (S1,∗) and then invoke the Poincaré conjecture (to handle these
manifolds that inductively have boundary a sphere and are contractible). The
dimension issue arises again but surgery theory gives a way to get around this.
We will discuss the details of this later in this chapter. In the end, though, hidden
behind the surgery method is a periodicity, which is an indirect application of
the idea of crossing with CP2 still lurking behind the scenes.

4.4.2 Lusztig’s Method
Recall that we had mentioned before that for any ρ : π1(M4k) → U(n) we can
define a signature sign ρ(M) using H2k(M; ρ) thinking of ρ as defining a flat
bundle.

The simple idea in Lusztig’s (1972) was to do this in a family. Concretely,
Lusztig considered n = 1, so let Λ = Hom [π1(M4k),U(1)]; it is a finite union
of tori. (It is an abelian group under pointwise product.)

The idea is that, where before we thought of the signature as being an
integer, one should reconsider it as a (virtual) vector space (and the integer
as its dimension). Then, varying the construction over points of Λ, produces a
vector bundle overΛ,22 associated to M . So consider the bundle of H2k(M; ρ)s
over Λ; using an auxiliary Hermitian metric on this bundle, we can diagonalize
the family of cup product pairings and obtain a virtual bundle: the difference
between the positive and negative sub-bundles.
22 There is an oversimplification here. The family of H2k (M ; ρ) might not be a bundle, because

of jumps in dimension. The same issue arises in the Atiyah–Singer index theorem for families
where, for some values of the parameters, the dimension of kernel and cokernel might jump.
One has to introduce some perturbations to the family to obtain genuine kernel and cokernel
vector bundles. See Atiyah and Singer (1968b).
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The Atiyah–Singer theorem for families gives a formula (for the Chern
character of) sign π(M) ∈ K0(Λ). Note, by the way, that this invariant lies in
a place that is covariant in π, as both Λ and K0 are contravariantly functorial
in π.

Now sign π(M) detects exactly the higher signatures associated to products
of one-dimensional cohomology classes (or dually the image of the higher-
signature class from

⊕
H(K(π,1);Q) in

⊕(H(K(H1(π,Z)/torsion),1);Q)).
The numerology of K∗(Λ) makes this at least believable. For Zk , the space of
U(1) representations, Λ is a torus Tk , and K∗ has a Künneth formula – giving us
Cn
i copies of K0, where Cn

i is the binomial coefficient; K0 itself has a Z every
fourth dimension (just the right size for a signature).23

This method is very nice in that not only does it prove that the relevant higher
signature is a homotopy invariant, it also gives a formula that tells us why it’s
true. That is also true of the next variant that we will describe.

4.4.3 Using the Atiyah–Kodaira Fiber Bundle
A rather different verification of the Novikov conjecture is possible for surfaces
of high genus24 by making use of a different “representation.” Atiyah and
Kodaira have given a surface bundle over a surface with nonzero signature
(see, for example, Atiyah, 1969).

The method is this: one takes a product of surfaces, and inside of it a
subsurface that intersects each fiber the same way (i.e. in a fibered way). In this
way the subsurface is a – perhaps disconnected – covering space of the base
surface. If the subsurface is trivial as a class in mod 2 homology, then one can
take the branched Z/2 cover of the product along the surface. If the surface
has nontrivial Euler class (e.g. its self-intersection is nontrivial integrally, or
equivalently the cup square of its Poincaré dual is nontrivial), then it turns out
that the signature of the total space of the branched cover is nontrivial.25

The details don’t matter. What matters is this bundle whose total space has
nonzero signature although the base does not. We denote the base of this bundle
by Σ and the bundle itself by π.

Suppose now that we have f : M4k+2 → Σ2 a manifold with a map to a
surface, we can define

sign ( f ) := sign ( f ∗ π).
23 Actually, there’s a Z every second dimension, but the ones that arise in 2mod 4 don’t come up

for these signature operators. Had we worked in KO, they wouldn’t be observed.
24 Note that, for any genus, we can reduce the Novikov conjecture to the special cases of Z and
Z2 since all the cohomology of the surface is pulled back from one of these groups.

25 These calculations can be done using the equivariant form of the signature theorem (Atiyah
and Singer, 1968b).
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Cobordism invariance of signature and its multiplicative properties show
that this invariant of f only depends on the class that (M, f ) represents in
Ω4∗+2(Σ2) ⊕Ω∗(∗) Q, which is f∗(Lk(M) ∩ [M]) ∈ H2(Σ;Q). In other words26

sign ( f ) = C〈 f ∗[Σ] ∪ L4k(M), [M]〉,
where C is determined by setting f = id .

A by-product is that we now know the Novikov conjecture for high-genus
surfaces by a homotopy-invariant formula (just as we had achieved for the case
of Z in §4.3).

4.5 Novikov’s Theorem

Gromov observed that the Atiyah–Kodaira example can be used to simplify27

the proof of Novikov’s theorem on topological invariance of rational Pontrjagin
classes.

Theorem 4.12 If f : M ′ → M is a homeomorphism between smooth mani-
folds, then f ∗(p(M)) = p(M ′) ∈⊕ H4i(M ′;Q).

Of course, we will prove the equivalent that f ∗ (L(M)) = L(M ′). We will
first describe the argument if f is PL following Thom, Milnor, Rochlin, and
Schwartz. Without loss of generality, we will assume that the dimension of M
is odd, since we can cross M with an odd-dimensional sphere, without loss of
information.

We would like to give a PL-invariant calculation of 〈L(M), c〉 for any ho-
mology class c. Note that its Poincaré dual is odd-dimensional. According to
Serre’s thesis, for every odd-dimensional cohomology class PD(c), there is a
nonzero multiple NPD(c) and a map f : M → S2r−1 multiple (which is unique
up to homotopy after a further multiple) so that NPD(c) = f ∗([S]).

We define L(M) to be the unique cohomology class with

〈L(M), c〉sign ( f −1(∗))/N,
where f is the map to the sphere defined above associated to the Poincaré dual
of c, and ∗ is a regular value for f . Using cobordism invariance, this is well
defined and linear, defining a unique rational cohomology class – which, if M
is smooth, the Hirzebruch formula identifies with the usual L-class.
26 Atiyah deduces this and a stronger formula from the index theorem for families, but our point

here is to point out that this example is somewhat different from the Lusztig example, although
one can unify them.

27 Although it still does make use of a key trick of Novikov, the audacious introduction of
fundamental group into a simply connected problem.
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Regular values exist by Sard’s theorem in the smooth category; in the PL
category, they exist for a less deep reason. Choosing triangulations so that f is
locally affine, any point in the interior of a top simplex is a regular value. If we
knew transversality in the topological category (which is indeed true, thanks to
Kirby and Siebenmann), we could complete the argument in Top , as well, but
that is a deeper result than Novikov’s theorem.

What we have to prove is this:

Lemma 4.13 If h : U → M × Ri is a homeomorphism between smooth
manifolds, then sign (M) = 〈L(U), h∗[M]〉.

We shall actually make use of the fact that f is a hereditary homotopy
equivalence: that is, f is a proper homotopy equivalence restricted to any open
subset of the target.

Without loss of generality we will assume i is even, i = 2l. We note that there
is a product of Atiyah–Kodaira bundles π × π × · · · × π over Σ × Σ × · · · × Σ
the product of l-surfaces. This bundle can be used for proving the Novikov
conjecture for the fundamental class of a product of these surfaces.

Note that the punctured manifold (Σ×Σ×· · ·×Σ−p) immerses28 inR2l . Then
M×(Σ×Σ×· · ·×Σ−p) immerses in M×R2l . We pull back the Atiyah–Kodaira
bundle over this manifold and would like to take the signature of its total space
(to recover sign (M)). This is slightly tricky, because we are in a noncompact
situation, so we have to see that the signature is what we expect it to be (now
defined using signature where we mod out by the torsion). This is fairly easy
because the bundle is trivialized at∞ (which is the neighborhood of p – so we
know that the homotopy type at infinity is that of M × S2l−1 × Fiber, and can
calculate the effect29 of gluing or removing a plug of the form M ×D2l ×Fiber.

Now for U we can pull back using the homeomorphism h to obtain a home-
omorphic smooth manifold, and associated bundles, etc. Since everything is
proper homotopy equivalent to the other side, we get the same total signature.
However, on computing the signature of this total manifold we get (a nonzero
multiple of) 〈L(U), h∗[M]〉.

The executive summary is that we find a codimension-2l signature by com-
puting the signature of an associated 2l-dimensional bundle over the manifold!

28 This is not at all obvious, but it follows from immersion theory (often called Smale–Hirsch
theory): any parallelizable open manifold immerses in Euclidean space of the same dimension.
This can be found in almost any treatment of h-principles, since it’s the prototype of such a
theorem.

29 If one glues two manifolds with boundary together along their complete boundary, one obtains
the sum of the signatures, and the signature of M × D2l × Fiber is zero. This formula is called
Novikov additivity.
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This is the trick of §4.4 for some cases of the Novikov conjecture, and it suffices
for the current application to Novikov’s theorem.

4.6 Curvature, Tangentiality, and Controlled Topology

Out goal in this section is to introduce the idea of doing topology with control
and explain the proof of the following theorem:30

Theorem 4.14 (Ferry and Weinberger, 1991) Suppose W is a complete non-
positively curved manifold and f : W ′ → W is a homotopy equivalence which
is a homeomorphism outside of a compact set. Then f is tangential, i.e. f pulls
back tangent bundles (in a way compatible with the identification given by the
homeomorphism outside of some larger compact set).

This implies31 that W ′ × R3 is homeomorphic to W → R3 so it’s definitely
progress. In §4.7, we will see this, as well as why this result implies the Novikov
conjecture for π1W .

The use of the rel∞ condition was discussed in the “morals” section (§3.8)
of Chapter 3. Without it, the theorem would be highly false, as we’ve seen.

A key role in the proof is played by the following important theorem due to
Ferry:32

Theorem 4.15 (Ferry (1979)) Let Mn be a compact topological manifold,
endowed with a metric. Then there is an ε > 0 such that if f : M → N
is a continuous map to a connected manifold of dimension less than n, with
diam ( f −1(n)) < ε for all n ∈ N , then f is homotopic to a homeomorphism.

The ε is related to the size of the smallest handle in a handle decomposition
of M , so if M is noncompact, we can sometimes guarantee that the theorem
holds anyway. There are also ε–δ statements that describe how far, in some
sense, f has to be moved to make it into a homeomorphism. We’ll need both
kinds of refinement below when we apply the theorem.
30 This was strongly inspired by earlier work of Kasparov proving the Novikov conjecture for

π1W (see §8.5) by analytic methods.
31 This is a little white lie: the method of proof gives this improvement. Tangentiality by itself

would not control what dimensional Euclidean space we’d need to cross with to obtain
isomorphism. To get this dimension down to three, it’s important that the tangentiality be
“compatible with an identification of Spivak fibrations” so that one obtains vanishing normal
invariant – not just the image of this under the map [W/∞ : G/Top ] → [W/∞ : BTop],
which is the assertion of the theorem. Once one has this, the π–π theorem quickly gives the
homeomorphism.

32 Actually, Ferry originally proved it for n > 4, but it’s since been shown to be unconditional
through advances in low-dimensional topology (the largest being the solutions of the three-
and four-dimensional Poincaré conjectures by Perelman and Freedman).
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Figure 4.1 Proof of the Poincaré conjecture from Ferry’s theorem.

This statement is of the form “an almost homeomorphism” is “almost a home-
omorphism.” Statements of this general type are sometimes trivial, sometimes
trivially false, sometimes nontrivially false, and sometimes true, nontrivial, and
useful. This theorem is of the fourth sort. To appreciate it, we shall give two
examples:

Example 4.16 (Ferry⇒ Poincaré) Let Sn be the usual round n-sphere. And
let ε be the epsilon guaranteed by Ferry’s theorem. Let Σ be any homotopy
n-sphere. I claim (assuming that Σ is a manifold!) that it is possible to build a
map f : Sn → Σ where all point inverses have diameter less than ε.

Pick a point p and a neighborhood homeomorphic to Rn. We map the com-
plement of the ε/2 north polar ice cap in Sn homeomorphically to a ball in
this neighborhood. The rest of Σ is contractible, so the map restricted to the
ε/2-sphere around the north pole extends inwards (as a homotopy equivalence,
although this is irrelevant to the application of Ferry’s theorem) over the ice cap
to Σ (lying entirely in the complement of the neighborhood of p; see Figure 4.1).

Let’s examine the point inverses. If q lies in the neighborhood of p, then its
inverse image f −1(q) is a single point, and has diameter equal to 0. If q lies
outside the neighborhood, then its inverse image is constrained to lie in the ε/2
polar ice cap, and hence has diameter less than ε. Ferry’s theorem then asserts
that f is homotopic to a homeomorphism.

This proof shows the remarkable versatility of Ferry’s theorem as a tool: the
huge unexplored region in the range manifold is here shrunk to be in the ε/2
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polar ice cap, while the small coordinate chart around one point is expanded to
be almost the whole sphere. It feels like a talk by a weak student who spends
almost his full hour explaining trivialities, leaving only a couple of minutes
to the whole essence of the matter! Nevertheless, in topology, Ferry’s theorem
says that this works! Of course, there’s a price – the continuity of the map from
the domain to the range.

Example 4.17 (Ferry⇒ a virtual Borel conjecture) Let V be a homotopy Tn;
then we shall see that every sufficiently large cover33 of V , say with covering
group (Z/k)n for k large, is homeomorphic to the torus Tn.

Let f : Tn → V be a homotopy equivalence. Let’s consider the map it
induces between universal covers. Note that there is a universal bound C for
all point inverses (for the map is automatically proper, and the bound for point
inverses for one fundamental domain of the Zn-action works for all points by
equivariance). Let ε be an ε appropriate to the torus T. Suppose that k > 2C/ε,
then we can identify the (Z/k)n cover of T with T, and we now have a map
from T to a cover of V with point inverses of diameter less than ε. (The extra
factor of 2 is to be in the range that the map from Rn → Tn is a local isometry.)

Remark 4.18 (On circularity) Of course, if the Poincaré conjecture and a
virtual Borel conjecture for the torus were used in the proof of Ferry’s theorem,
this would be a circular argument. (Even so, the above should convince that the
theorem is not vacuous!)

There are probably three different arguments for this theorem. They all go via
the α-approximation theorem of Chapman and Ferry, which I will not describe
– but its essential difference is that it measures sizes over the target, not the
domain.

The original proof (Chapman and Ferry, 1979) is based on modifying the
proof of a weaker version of the theorem, Siebenmann’s CE-approximation
theorem (Siebenmann, 1972). That theorem asserts:

Theorem 4.19 (CE-approximation) A map f : M → X between manifolds is
a limit of homeomorphisms (in the compact open topology) iff it is CE, i.e. if
all f −1(x) are null-homotopic in arbitrarily small neighborhoods, i.e. iff f is a
hereditary homotopy equivalence.

This in turn used Kirby’s torus trick, the basic tool in triangulation theory
and requires a virtual Borel conjecture for tori. This argument would be indeed
circular.
33 That is, associated with any subgroup that intersects a metric ball of sufficiently large radius

(depending on the original homotopy equivalence) only in the identity.

https://doi.org/10.1017/9781316529645.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316529645.005


4.6 Curvature, Tangentiality, and Controlled Topology 97

There is another proof, due to Quinn (1979, 1982b, 1982c, 1986), that is
based on a controlled h-cobordism argument. This seems like it’s essentially
a generalization of the way the Poincaré conjecture was proved. However, the
analogue of the fact that Wh(e) = 0 is more difficult in the controlled situation
and Quinn’s proof uses the torus trick. This can be avoided by more recent
methods of calculating.

However, finally, there is a third proof that is based on combining two
approaches. The first is an engulfing argument (based loosely on Stallings’s
proof of the Poincaré conjecture, rather than Smale’s) due to Chapman (1981)
that reduces the α-approximation theorem to the CE-approximation theorem.

The CE-approximation theorem itself has an amazing extension to the sit-
uation where X is not assumed to be a manifold (and is hence very useful
for proving that spaces are manifolds!) due to R.D. Edwards (it is the goal –
achieved – of Daverman, 2007). In any case, Edwards’s proof is purely geomet-
ric and does not rely on any algebraic tools, neither torus trickery nor surgery.
So, finally – using this combination – this argument for the second application
does not have to be viewed as circular.

Thus, the least generous view one could have is that Ferry’s theorem somehow
is a form of the Poincaré conjecture, but in liberating that problem from the
sphere, we have obtained an extremely useful tool and perspective on the
problem of homotoping maps to homeomorphisms. And, indeed, there certainly
are many other arguments in the spirit of the ones above based on Ferry’s
theorem that are far from circular; indeed, much of the work on the Borel
conjecture since the 1980s has this flavor (but are much more involved; see
Chapter 8).

Now let us return to the proof of the main theorem of this section. For
simplicity, we will first sketch our argument for W compact, where the result
is actually considerably simpler – although not much simpler from the point of
view that we adopt!34 We first note that the salient feature of the tangent bundle
to a manifold is that it is a bundle of Rns – given a section – over a manifold, so
that around the 0-section, the fiber direction is the same as the base direction.
(In the smooth case, the exponential map sets up such an isomorphism.)

As a result, for an aspherical manifold W = Ŵ/Γ, we can consider the
following quotient as a model for the tangent bundle:

TW ≈ (Ŵ × Ŵ)/Γ.

While we are used to saying “the universal cover” of a space, this notion actually

34 The compact case was earlier proved by Farrell and Hsiang (1981) and doesn’t need any
version of Ferry’s theorem.
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Figure 4.2 The moving family of universal covers as a tangent bundle.

requires a choice of base point, and as we vary the base point, this can indeed
be a nontrivial bundle (see Figure 4.2).

In this model, the differential of the map f : W → W ′ (at the point w)
is the lift of f to the universal cover Ŵ → Ŵ (based at the points w and
f (w), respectively). Notice that this map has bounded size point inverses (as
in the case of the torus above). At this point let us use the Riemannian tangent
bundle and the exponential map to a map TWw → Ŵ . The fibers are now
Euclidean spaces, and, using non-positive curvature, the point inverses are still
of bounded size: as geodesics spread apart in non-positive curvature, the inverse
of the exponential map is Lipschitz.

Now we apply Ferry’s theorem to the family of maps TWw → Ŵ ′ to get a
family of homeomorphisms.

In the closed case, one can actually “go all the way to ∞" and get an
isomorphism between the ideal sphere bundles.35 However, in the noncompact
case we cannot do this, since we must interpolate between the “infinitesimal
isomorphism” on tangent spaces coming from the homeomorphism outside of
a compact, and the process we do in neighborhoods of points in Ŵ . As a result,
Ferry and Weinberger (1991) instead argue about isotoping the family of balls
of radius R, namely B (R,w), in TWw to embeddings around f (w) in Ŵ ′.

Finally, as explained in §3.3, tangentiality is slightly less than we would
want: we need the map to not change the identification of spherical fibrations
guaranteed to us by Atiyah’s theorem. This is essentially achieved by ensuring

35 This method is due to Farrell and Hsiang (1981) and is reminiscent of one of the key steps in
Mostow’s (1968) proof of his rigidity theorem for closed hyperbolic manifolds.
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that the isotopies are covered by homotopies that do not distort the function
at∞.

4.7 Surgery, Revisited

In Chapter 3, we discussed surgery in the special case where there are no
obstructions, the π–π situation. In that case, the discussion ended up being
essentially homotopy-theoretic, and the main results were the structure of clas-
sifying spaces, and therein lay the differences between the various categories.

We shall now discuss the case of closed manifolds and in a purely topological
setting where the results seem to be in their most perfect form. The reader should
treat these results as truths coming from on high: we shall not explain why they
are true or take the form that they do.

On the other hand, since the moral of Chapter 3 was that functoriality is
critical to our program, the reader should not object to a presentation of surgery
theory in which functoriality plays a central role.

Let M be a compact manifold with ∂. We define the structure set:

S(M) =
{(M ′, ∂M ′, f ) | f : (M ′, ∂M ′) → (M, ∂M) a simple homotopy

equivalence which restricts to a homeomorphism on the ∂}/s-cobordism.

For manifolds, s-cobordism, thanks to the h-cobordism theorem (see §4.4), is
the same thing as being a product. However, to get the best properties of S(M),
it is convenient to allow in some non-manifolds in the definition of S(M).

Definition 4.20 A homology manifold is a finite-dimensional absolute neigh-
borhood retract, (ANR)36 X so that, for all x, and all i,

Hi(X,X − x) � Hi(Rn,Rn − 0).

Such an X satisfies Poincaré duality (in the noncompact sense), and therefore
so does every open subset. A good example is the suspension of a homology
sphere.37 The cone points are the only non-manifold points, but they satisfy the
hypothesis of the definition as their links are homology spheres.

Definition 4.21 A space X has the disjoint disk property (DDP) if, for any

36 we are including this hypothesis in the definition of homology manifold, which is not a fully
standard decision.

37 A homology sphere here is a closed manifold with the Z-homology of the sphere. Thanks to
the Poincaré conjecture, such a space is the sphere (if dim > 1) iff it is simply connected.
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f ,g : D2 → X and any ε > 0, there are perturbations, f ′ and g′, such that
d( f , f ′) > ε and d(g,g′) < ε and f ′(D2) ∩ g′(D2) = �.

Note that manifolds of dimension 5 all satisfy DDP (as do many other
spaces that are not homology manifolds). The DDP fails for the suspension
example: any twoD2s that go through a cone point, but whose boundaries map
nontrivially in π1(link) cannot be moved disjoint from the cone point.

Indeed DDP can fail quite dramatically: Daverman and Walsh gave an exam-
ple (a ghastly homology manifold) of a homology manifold and a nice curve,
so that every singular 2-disk it bounds contains an open set.

Edwards’s theorem is a CE-approximation theorem for DDP homology man-
ifolds:38

Theorem 4.22 (See Daverman, 2007) A map f : M → X from a manifold to a
homology manifold with the DDP is a limit of homeomorphisms (in the compact
open topology) iff it is CE, i.e. all f −1(x) are null-homotopic in arbitrarily small
neighborhoods, i.e. iff f is a hereditary homotopy equivalence.

A homology manifold X for which a CE map f : M → X from some
manifold exists is called resolvable. Quinn (1982a, 1987b) showed that, if
X is a connected homology manifold and it contains any resolvable open
subset (e.g. it has a manifold point), then it is resolvable! Quinn defined an
invariant I(X) ∈ Z , which is 1 iff X is resolvable. We can compute I(X) locally
from a neighborhood of any point: it is 1mod 8, and it has the property that
I(X × Y ) = I(X)I(Y ).

It turns out that using DDP homology manifolds in the definition of S(M)
above is the “right” thing to do. First of all, if ∂M � �, by Quinn’s theorem
combined with Edwards’s, we are not actually allowing any nonmanifolds in.

Secondly, we will see that even allowing in homology manifolds does not
affect the Borel conjecture: if it is true for manifolds, it is true for homology
manifolds.

And, finally, it is with this more elaborate definition that S(M) achieves its
strongest functorial properties. We begin with that last point:

Theorem 4.23 (Bryant et al., 1996) If M is a manifold, S(M) � S(M × D4).
This is an analogue of Bott periodicity. Actually, there is a version of the

Thom isomorphism theorem: S(M) � S(E) if E is an oriented D4k-bundle
over M . However, even the periodicity statement has important consequences.
Setting M = Sn we see the right-hand side is Z,39 so we “need” the sphere
38 But the version where both M and X are DDP homology manifolds would be much better!
39 [Sn × D4/∂ : F/Top ] has a Z from π4(F/Top ).
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to have nontrivial structures – seeming “counterexamples” to the Poincaré
conjecture.

ThisZ is given by (I(X)−1)/8. There is aZ′s worth of homotopy spheres that
are really determined by their local structure. Conjecturally, there is a unique
homotopy sphere for each integer. This would make a lot of sense: the proof of
the Poincaré conjecture by Smale uses the h-cobordism theorem, and starts by
choosing a small ball neighborhood of a point in a coordinate chart, using the
manifold hypothesis. For other local indices, the very first trivial step seems to
be the one that is obstructed.

In addition, note that on the right-hand side of this equation there is an
abelian group structure: the structures we are using are homeomorphisms on the
boundary. Thinking ofD4 as a cube, we can glue along faces to “add” elements,
and the usual proof that π2 is abelian shows that this is a commutative group
structure. (The elements of S(M) that correspond to manifolds are a subgroup.
The map (M ′, f ) → (I(M) − I(M ′))/8 is a group homomorphism S(M) → Z.)

Using this, we can easily finish off the proof of the Borel conjecture for the
torus we had sketched in §4.4: using periodicity there is no “low dimension” to
push past. Of course, in this view, the vanishing of S(∗) should not be viewed
as a triviality: it is – in light of periodicity – the Poincaré conjecture40 in
dimensions a multiple of 4.

A next formal point is that it then becomes reasonable to have additional
groups, namely S(M × Di) for any i. Doing this systematically leads to the
following definition for arbitrary finite CW-complexes X .

Definition 4.24 Let X be a finite complex. We define Sn(X) as S(M)where M
is any compact oriented n-manifold with boundary simple homotopy equivalent
to X . If there is none, define Sn(X) = Sn+4k(X)where 4k is large. If X is infinite,
take the limit over the finite subcomplexes of X .

Note that, thanks to periodicity, the groups Sn(?) are actually covariantly
functorial.41 After a periodicity if necessary, given f : X → Y , we can embed
the manifold for X into the manifold for Y , and get the “pushforward” of the
structure to be obtained by gluing in the annular region. Such an embedding,
after further stabilization, is unique up to isotopy. This turns the Sn(?) into
homotopy functors.

Moreover, it does not take much to imagine the meaning of Sn(Y,X) for a pair.
We have to consider manifolds with boundary whose interiors are homotopy

40 Here viewed as the vanishing of structures of the disk, which tacitly has the boundary
condition – and therefore the manifold hypothesis – built in.

41 This is completely analogous to the wrong way maps defined at the beginning of Atiyah and
Singer (1968a) using Bott periodicity (interpreted as a Thom isomorphism kind of statement).
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equivalent to Y and whose boundaries contain a piece homotopy equivalent to
X (and we work relative to the rest of the boundary).

Theorem 4.25 The Sn(?,?) are a sequence of covariant homotopy functors.
They are 4-periodic and fit into an exact sequence of abelian groups:

· · · → Sn(X) → Sn(Y ) → Sn(Y,X) → Sn−1(X) → Sn−1(X) → · · · .
If M is an oriented n-manifold, then Sn(M) � S(M).

(There is no difficulty in setting up an analogous theory for nonorientable
manifolds, and a proper theory for the noncompact situation.)

Note that, from this perspective, the “cohomological term” that we had looked
at in the π–π theorem actually is naturally a homology theory (the functoriality
flipped!); the perspectives in these two approaches to the theory are Poincaré
dual: [Mn : Z × F/Top ] � Hn(M, ∂M; L(e)), where L(e) is the homology
theory associated to Z × F/Top .

Theorem 4.26 If K(π,1) is a finite complex, then the statement that, for all n,
Sn(K(π,1)) = 0, follows from the Borel conjecture.42

(If it is a manifold, then the vanishing of all the Sn(K(π,1)) follows from the
vanishing of all of the S(K(π,1) ×Tk). Note that S(K(π,1) ×D4) is a summand
of S(K(π,1) × T4), so if there is an extra Z arising from a homology manifold,
it arises for manifolds four dimensions higher.)

The theorem follows immediately from functoriality together with the Davis
construction:43 it produces from K(π,1) an aspherical manifold M (of any large
enough dimension) that has K(π,1) as a retract, and therefore Sn(K(π,1)) is a
summand of Sn(M) = S(M) (or if one is opposed to homology manifolds, a
factor of Sn(K(π,1) × T4).

We can now think of the Borel conjecture as the statement for π torsion-free,
S(K(π,1)) = 0 (in all dimensions).44

We now note that if the Borel conjecture is true for π, and π1(Mn) → π is
an isomorphism, then we get an exact sequence:

· · · → Sn+1
(
K(π,1)) → Sn+1

(
K(π,1),M ) → Sn(M) → Sn−1(K(π,1)) → · · · ,

which becomes a homological calculation of S(M):
S(M) � Sn(M) � Sn+1(K(π,1),M) → Hn+1(K(π,1),M; L(e)),

42 The converse requires an additional statement about vanishing of Whitehead groups. We will
discuss it in Chapter 5.

43 As noticed by Davis.
44 We note that groups with torsion do not have finite-dimensional K(π, 1)s. Here we are taking

a leap of faith that all torsion free groups behave the same way as those with a finiteness
condition.
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the final isomorphism coming from the π–π theorem.
This isomorphism means that (when we take ∂) the (relevant) data comparing

M′ to M , namely the difference of the L-classes, if we were working rationally,
vanishes by the time we push further to Hn(K(π,1); L(e)). This is exactly (an
integral form of) the Novikov conjecture.

Note then the philosophy that emerges from functoriality (conditionally on
the Borel conjecture): A manifold is exactly as rigid as it is homologically
similar to K(π,1).

Note also, by a diagram chase, unconditionally, no homology in Hn(M; L(e))
that dies in Hn(K(π,1); L(e)) contributes to S(M). (The cokernel in degree n+1
only contributes conditionally on Novikov-type statements.)

Let us be a bit more explicit and go back to a more classical view of surgery.
It is high time that we mention the surgery exact sequence!45 This is an exact
sequence that looks like:

· · · → Ln+1(π) → Sn(M) → Hn(M; L(e)) → Ln(π) → · · · .

These groups, Ln(π), are called “L-groups” or “Wall groups” and have a purely
algebraic definition. They are 4-periodic, and describe the “obstruction to doing
surgery to convert a degree-1 normal map into a (simple) homotopy equiva-
lence.”46

Classically,47 this all was described as an exact sequence, valid in all cate-
gories:

· · · → Ln+1(π) → SCat(M) → [M : F/Cat] → Ln(π),

with the following understanding: S(M) is just a set with a distinguished element
(the identity); and [M : F/Cat] is just a set.48 Thus, exactness has to be
interpreted appropriately, with “distinguished element” taking the place of 0.
The map Ln+1(π) → SCat(M) is then a group action. Given M and an element
α ∈ Ln+1(π), there is a degree-1 normal map W → M × [0,1], such that, on
the bottom ∂ of W , one has a homeomorphism to M , and on the top, one has a
homotopy equivalence. In that circumstance, there is a rel ∂ surgery obstruction

45 Ordinarily (and very properly) the centerpiece of presentations of surgery theory.
46 There are different theories of surgery based on whether one wants to obtain homotopy

equivalences, and then the equivalence relation is h-cobordism; or whether one wants a simple
homotopy equivalence, and then s-cobordism is the equivalence relation. The L-groups differ
by 2-torsion in a way described by the Rothenberg sequence; see Shaneson (1969).

47 We refer to Wall (1968), Lees (1973), and Lück (2002a) for some expositions of the classical
theory.

48 Although for Cat = PL or Top , Sullivan’s H-space structure turns this into an abelian group
and the map [M : F/Cat] → Ln(π) is a homomorphism.
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of the map W → M × [0,1], which is α. The action then assigns to α the upper
boundary homotopy equivalence.49 One can show that this is well defined.

The groups Ln(π) have purely algebraic definitions. The classical definition
is given by Wall (1968), which makes it clear that L2k(π) is associated to (−1)k-
symmetric quadratic (or, better, Hermitian) forms over Zπ and that L2k+1(π)
are associated to their automorphisms. On the other hand, Ranicki (1980a,b)
gave a very nice definition50 in terms of chain complexes with duality, and
their cobordism that makes the algebraic treatment “dimension-independent”
and that is quite useful, because many more things end up directly defining
elements in L-groups, and also it is more flexible for making constructions.
Note that, by the algebraic definition, L-groups are 4-periodic. Indeed, this is
the source of the periodicity of the Sn functors.

In any case, I should describe at least what happens in the simply connected
case:

For π = e, then for n odd, Ln(e) = 0. For 4|n, we have Ln(e) � Z. The
invariant is this: If M → X is a degree-1 normal map (ignoring the bun-
dle data), then sign M = sign X is a necessary condition to be able to nor-
mally cobord f to a homotopy equivalence, since signature is both cobordism-
invariant and homotopy-invariant. The isomorphism L0(e) � Z is given by
1/8(sign M − sign X), the divisibility being a consequence of the bundle data
that we suppressed: it ultimately forces the quadratic form on the cok f ∗ to have
even numbers on the diagonal, which makes divisibility by eight automatic.

In dimensions that are 2mod 4, L2(e) � Z/2 with the isomorphism provided
by the “Arf invariant.” Here the antisymmetric bilinear form over Z is standard,
but the refinement that a quadratic form has for λ(x, x) = 2μ(x) gives rise to
an invariant L2(e) � L0,2(F2) (in the target, being characteristic 2, there is no
difference between 0 and 2mod 4).

The homotopy group isomorphism πn(F/Top ) � Ln(e) is essentially a
consequence of the Poincaré conjecture (although one needs special low-
dimensional arguments for n < 5), and perhaps makes calling the spectrum
whose homology theory we said was dual to [? : Z× F/Top ] by the name L(e)
seem less peculiar.51

The classical surgery exact sequence continues infinitely to the left, but not
49 This is an action because, for any homotopy equivalence M′ → M , we can build such a W

associated to α, with the given homotopy equivalence being the bottom boundary.
50 Strongly motivated by Chapter 9 of Wall (1968) that gives a cobordism treatment of relative

L-groups that are complicated by the fact that manifolds with boundary are always both odd-
and even-dimensional! An algebraic cobordism approach to L-groups was given first by
Mischenko, but it was somewhat buggy at the prime 2.

51 The truth lies somewhat deeper than this – and arises either from blocked surgery or from
controlled topology. This might already be clearer in the coming section. For more information
about all the classifying spaces arising in surgery theory, see Madsen and Milgram (1979)).
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to the right (unless one restricts to the setting we described: Top and including
homology manifolds).

Using the π–π theorem, we can describe what we have written as an analysis
of the map obtained by crossing with D3:

Sn(M) → Sn(M×D3,M×S2) � Hn+3(M×D3,M×S2; L(e)) � Hn(M; L(e))

(the last isomorphism is a suspension isomorphism in a generalized homology
theory) and, in these terms, Ln(π) occurs as measuring the obstruction to solving
a splitting problem. In any case, this perspective gives the normal invariants
functoriality as well, and the whole surgery exact sequence becomes functorial.
We note the special case:

· · · → Ln+1(π) → Sn(M) → Hn

(
M; L(e)) → Ln(π) → · · ·

↓ ↓ ↓ ↓
· · · → Ln+1(π) → Sn

(
K(π,1)) → Hn

(
K(π,1); L(e)) → Ln(π) → · · · .

This factors the surgery obstruction map through a universal functorial map
between two group-theoretic objects Hn(K(π,1); L(e)) → Ln(π).

This map is called the assembly map. It has several interpretations, one of
which has to do with assembling things. In §4.8 we will explain that it has
another interpretation in terms of “forgetting control” in the sense of controlled
topology. There are similar maps in algebraic K-theory and operator K-theory,
and they will occupy us in Chapter 5.

Note that the Borel conjecture can be rephrased using the assembly map as
follows:

Conjecture 4.27 If π is a torsion-free group, then the assembly map is an
isomorphism.

The Novikov conjecture then is the following:

Conjecture 4.28 If π is any group, then the assembly map is rationally an
injection.

We leave the verification that this is equivalent to the version involving higher
signatures as an exercise. (Consider the map [X : F/Top ] → Ω(X) ⊗Ω∗(∗) Q
given by [M → X] → f∗

(
L(M) ∩ [M]) − L(X) ∩ [X].52)

52 We note that the right-hand side of the equation commutes with the periodicity isomorphism.
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4.8 Controlled Topology, Revisited

Having discussed briefly one result in controlled topology and then classical
surgery theory, we would be remiss if we did not discuss their marriage. In
general, the theme of controlled topology is to redo the problems solved in
classical topology, but now with attention paid to the size of the constructions.

Size can be measured in various ways, and this theme has many incarnations
and variants: indeed, we have tacitly already used two different kinds of controls.
When discussing the Novikov conjecture, we used the fact that we had a uniform
bound on the sizes of things, but this size was not made available – we were
obliged just not to leave the category of maps that maintain that same property
of uniform boundedness: this is called bounded control. Our discussion of
Novikov’s theorem was based on epsilon control because we used the fact thatc
all point inverses become contractible in a small neighborhood of themselves.53

For stratified spaces, it is useful to use continuously controlled at ∞ tech-
niques, and in Chapter 8 we will discuss the beautiful idea of foliated control
introduced by Farrell and Jones.

In all settings, the basic idea is to:

(1) do what is classically done in topology, i.e. reduce the geometric problem
to one of algebra – so we have already seen Wh(π), L(π), etc. – so there
should be some such structure associated to the problem and it will now be
algebra associated to the “control space” as well as the fundamental groups
involved; and then

(2) actually do the algebra. This point of view is mainly due to Quinn, who
developed many consequences of it; the first nontrivial cases of the theory
were already in place in advance: notably the work of Anderson and Hsiang
(1976, 1977, 1980) and Chapman and Ferry (1979).

A simple example is this. The space of proper maps from Rn → Rn is highly
nontrivial – for example, it has Z components given by degree. If we add the
condition that d

(
x, f (x)) < C (where C is allowed to vary), then the function

space becomes contractible.
Another example is this (for the impatient, skip to the formal definition a few

paragraphs from here). If we take a homotopy equivalence f : X → Y , with

53 There is room for a distinction here: one can also study approximate control where one tries to
prove an ε–δ theorem, where one wants to move things by at most δ to a solution, willing to
assume initial data which are “ε-controlled.” Such results are called “squeezing theorems” and
the prototype might be Chapman’s proof of the α-approximation theorem: a squeezing
theorem reduces an approximate problem to an ε-controlled one – in our terminology. Quinn’s
(1979, 1982b, 1982c, 1986) papers deal with both issues, the squeezing and the ε-controlled,
simultaneously.
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X and Y polyhedral, and ask that, after taking an open cone,54 C f is still a
homotopy equivalence in the category of maps where no point is moved more
than a bounded amount (measured in CY ), then we can deduce that, for every
open set U in Y , f −1U → U is a proper homotopy equivalence. If X and Y
were manifolds of the same dimension, then f would be a uniform limit of
homeomorphisms!

Of course, the benefits of having control are not always this dramatic. Having
various controlled categories provides us with language and tools to scaffold
incremental progress towards building homeomorphisms (or other useful geo-
metric maps).

To give the idea and stay close to our roots, we will focus on the bounded
category.

Definition 4.29 Let X be a metric space. Then the bounded category Bdd(X)
is the category whose objects are spaces with maps, (Z, f : Z → X), and
morphisms consisting of continuous maps g : Z → Z ′ so that d(g f ′, f ) < C
for some C. Note that (Z, f ) and (Z, f ′) are canonically equivalent in this
category by the “identity map” if d( f , f ′) < C via the identity, and that we do
not insist that f be continuous.

Because of the last point, many metric spaces give rise to equivalent bounded
categories.

Definition 4.30 If X and Y and are metric spaces, then a map ϕ : X → Y is
a coarse quasi-isometry if (1) there are constants such that A−1d(x, x ′) − B <
d(ϕ(x), ϕ(x ′) < Ad(x, x ′) + B); and (2) ϕ(X) is C-dense in Y , i.e. every point
in Y is within C of some point of X .

Coarse quasi-isometric metric spaces clearly have equivalent bounded cate-
gories.55 As a trivial example, any bounded diameter metric space is equivalent
(i.e., coarse quasi-isometric) to a point.

A very important example is that the universal cover of a compact manifold
is coarse quasi-isometric to its fundamental group (with the word metric).
The subject of geometric group theory is largely the study of this equivalence
relation on finitely generated (or finitely presented) groups.

With the above terminology in place, it makes sense to raise questions such
as the h-cobordism problem or the surgery question in Bdd(X). If X is a point,
then this is just the old question and the obstructions involve Wh(π) and Ln(π),
54 We metrize so that the cone on a simplex is a Euclidean octant.
55 Actually, there is a looser equivalence relation that also gives isomorphisms of bounded

categories, wherein one replaces the linear upper and lower bounds by non-decreasing
functions that go to∞ (such as log and exponential).
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etc. So we will need to take the fundamental groups of the objects into account,
in particular the system of fundamental groups of inverse images of large balls
of X .56 But, for simplicity at this point, let’s stick to the simply connected case.

Given that there is freedom in choosing the X when considering the category
Bdd(X), we can try to choose the best possible model for X . For example Rn is
in some ways a better model than Zn, because every object over the former can
be replaced by one where the reference map f is continuous. We leave this an
exercise, but observe that the key property that allows this (when the underlying
space of the object is finite-dimensional) is the following:

Definition 4.31 A metric space X is uniformly contractible if there is a
function u(R) from R+ → R+ such that any point x ∈ X , the ball B(x,R)
is null-homotopic in a larger concentric ball, given by B(x,R) included in
B
(
x,u(R)) .
One example is the open cone of a compact ANR, as we leave to the reader.
Another very good (and important) example is the universal cover of a

compact K(π,1).
Indeed, uniformly contractible metric spaces generally seem like good ana-

logues of K(π,1)s. They are terminal objects in the bounded category of spaces
over X that are coarse quasi-isometric to X – just as K(π,1)s are the terminal
objects in the category of spaces that have the same 1-type as X .

Given the philosophy we have espoused in the previous chapter’s morals sec-
tion (§3.8), we should conjecture some type of bounded rigidity for uniformly
contractible manifolds.57

Conjecture 4.32 (Bounded Borel) If M is a uniformly contractible manifold,
and f : M ′ → M is a homotopy equivalence in the bounded category over M ,
then f is homotopic (in this category) to a homeomorphism.

56 As a pro-system: the fundamental groups themselves have no real meaning, but ‘system’, as we
allow larger and larger balls, does make sense.

57 Unlike the Borel conjecture itself, the following conjecture is known to be false (Dranishnikov
et al., 2003). The example is a rather pathological Riemannian manifold that is abstractly a
Euclidean space. It is based on an amazing example of Dranishnikov of a space of finite
cohomological dimension but infinite covering dimension, and requires a violation of
“bounded geometry.” For example, if M has a triangulation with all simplices of bounded size,
and a uniform bound on the valence of any vertex (or even a lower bound on injectivity radius
and bounds on curvature), such as the universal cover of a finite K(π, 1)-complex then the
methods of that paper do not apply.

This example could suggest that the Borel and allied conjectures are not as well founded for
groups of infinite cohomological dimension. However, there are many cases where the
conjectures do seem to be correct even in this setting and the question requires a lot more
thought.
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Remark 4.33 (1) With a bit of care, one can show that the CE-approximation
theorem is essentially a verification of a special case of this conjecture.

(2) Actually taking the fundamental group into account suggests a unification of
these conjectures, the bounded rigidity of a uniformly aspherical manifold.
Good examples of these are K\G/Γ for lattices – and they are indeed rigid
(in high dimensions as observed in Chang and Weinberger, 2007).

Let us consider what the surgery exact sequence should suggest for this
problem:

· · · Sn+1(M ↓ M)
= 0

→ Hlf
n+1(M; L(e)) → Ln+1(M ↓ M) → Sn(M ↓ M)

= 0
→ · · · .

So the bounded Borel conjecture asserts that bounded L-groups are a homology
theory of the control space in the uniformly contractible case.

And, indeed frequently this is the case. For example, for the cone on a finite
polyhedron this can be verified in a couple of ways. One can deduce this from
the α-approximation theorem – rather like the way the L-groups of the trivial
group are identified with the homotopy of F/Top via the Poincaré conjecture58

(Ferry, 2010). Or one can show that this is a homology theory in the space
being coned – with a codimension-1 splitting argument being used for the
critical verification of the excision (or, equivalently, the Mayer–Vietoris) axiom
(Carlsson and Pederson, 1995; Ferry and Pederson, 1995).

Versions of this principle are true for all the types of control we had men-
tioned and such results are central to controlled topology’s many geometric
consequences.

We end this section with a discussion of the following points.

Remark 4.34 (1) What to do when we don’t have (or know) a uniformly
contractible model.

(2) How to formulate a bounded Novikov conjecture.
(3) Then observe that Novikov’s theorem on topological invariance of rational

Pontrjagin classes is a special case of the latter.

(1) What can we do when we don’t have (or know) a uniformly contractible
model? This is completely analogous to the situation in ordinary surgery when
we don’t have a finite complex K(Γ,1).59 What we do there is choose a sequence
of finite complexes that approximates it. The limit is a space that we call K(Γ,1),
58 With the opposite goal in mind. When we made this identification before, the goal was to learn

about the homotopy type of F/Top , because the groups L(e) were under control. Here, the
bounded L-groups are the objects we are interested in learning about.

59 Or, indeed, whenever a category doesn’t have a terminal object. One takes a limit in a
pro-category.

https://doi.org/10.1017/9781316529645.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316529645.005


110 How Can It Be True?

but had our ideology allowed only finite complexes we wouldn’t be able to call
it a space. The homology that we use is cognizant of this fact: we take the
homology with finite chains, not the locally finite chains.

So if Z is a metric space, we can form a simplicial complex R1Z by having
the points of X (or, for technical convenience, a discrete, 1/2-dense subset of
Z) be vertices, and then adding edges when both points have distance ≤ 1,
adding 2-simplices when all three vertices have distance ≤ 1, and so on. Then
we can include this complex as a subcomplex of the same construction with 2
replacing 1, R2Z , and so on. We take the direct limit of these complexes. We
also take the limit of the locally finite homologies:

HXi(Z; L(e)) = lim Hl f
i (RnZ; L(e)).

The X in HX reminds us that we are working at a large scale: all finite-scale
phenomena have been wiped away (e.g. a cycle present at size t is killed in
Rt+1Z).

(2) In these terms, which higher signatures should we expect to be homotopy
invariant in Bdd(Z)? Exactly the pushforwards in

⊕
HX l f

n−4i(Z;Q) of L(M) ∩
[M], of course.

(Moreover, we can conjecture that there are integral versions in more refined
theories, just like the Novikov conjecture has integral refinements for torsion
free groups, as we will emphasize in Chapter 5. We will see that, frequently,
these conjectures are indeed correct.)

(3) As for Novikov’s theorem? Note that the bounded Novikov conjecture for
Rn implies Novikov’s theorem as we explained in §4.5. The map U → V × Rn
considered there is surely a bounded homotopy equivalence over Rn (as it’s a
homeomorphism). The bounded Novikov conjecture implies that the transverse
inverse image of V has the same signature as V .

4.9 The Principle of Descent

We can now reformulate the argument in §4.6 more abstractly. It shares with
the Lusztig argument the idea of taking a naive homotopy invariant and then
varying it in a family to get more information out of it.

For Zn there is an important map:

Li(Zn) → LBdd
i (e;Zn).

The left-hand side is isomorphic to a sum of n!/ j!(n − j)! copies of Li−j(Zn)
(varying j). These are essentially the simply connected parts of the surgery
obstructions you’d see along all of the codimension- j tori. The right-hand
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side we discussed in the previous section; it is just the codimension-n surgery
obstruction, and we have seen that one way to obtain this is by Ferry’s theorem.
(It is HXi(Zn; L(e)).)

This map is a “transfer.”60 If we have a normal invariant over a space with
fundamental group Zn, then when we take the universal cover it is a normal
invariant of the cover, and we can try to perform surgery on it to make it into a
bounded homotopy equivalence over Rn. This obstruction is powerful: it gave
us Novikov’s theorem in Remark 4.33(3).

Using it and projection to all of the smaller tori gives us a proof of the Novikov
conjecture for free abelian groups (although not essentially more elementary
than the ones we’ve already discussed).

Now, if W is a complete simply connected manifold with nonnegative sec-
tional curvature, the inverse of the exponential map gives a Lipschitz diffeo-
morphism:

Log: W → Rn,
and hence a map LBdd(W) → LBdd(Rn). Direct application of this map is
clearly strong enough to prove the Novikov conjecture for the fundamental
class of W/Γ for any cocompact group of isometries of W .

What we did in §4.6, though, was much stronger in that we made use of the
fact that there were “logarithm maps” at all points w of W , and made a family
of bounded surgery obstructions. These were strong enough to detect the whole
HW

(
W/Γ; L(e)) .

Setting up the formalism of these families can be done in more than one way.
Two of the most popular are: (1) blocked surgery; and (2) homotopy fixed-point
sets. Both of these depend on “spacification,” which means finding spaces
whose homotopy groups are the L-groups, normal invariants, and structure
sets, and so that the surgery exact sequence becomes the exact sequence of a
fibration. This process is similar to viewing indices as vector spaces and then
being able to associate bundles to families of operators.

There is an important difference between index theory and manifold theory
in this “spacification.” In index theory, one uses genuine families of operators.
In surgery, we do not need to. Genuinely parameterized surgery is a much more
complicated subject than we need for these purposes.

Recall that, when we discussed the Farrell fibering theorem, although we
fibered a manifold over the circle, the actual process was different: we found a
single fiber (via a splitting theorem, but never mind). In other words, we solved
a problem over a vertex in a triangulation of S1. (Solving it over other vertices
60 Transfer (for covariant functors) is generally a map that passes from an invariant of a quotient

to one of the original space (or perhaps an intermediate quotient).
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is no additional problem.) Then we cut open the circle and had to see that we
were OK over the resulting interval.

In general, in spacification, we want the families to not involve more compli-
cated objects than arise in the vertices.61 if we can. We are being conservative
in the type of difficulties that ever need to be considered. This can achieved
because when we did surgery there was no difference in the theory of closed
manifolds and manifolds with boundary if we work relative to the boundary.

And a similar method can be done with manifolds with corners.
One is thus led to consider a simplicial complex, where the k-simplices are

surgery problems that are “modeled” on Δk . In this space, Ln(π), vertices are
n-dimensional surgery problems with fundamental group π; 1-simplices are
cobordisms between such, i.e. they are (n + 1)-dimensional surgery problems
with two boundary components (labeled by 0 and 1), everything with funda-
mental group π, and the boundary of the problem determines the boundary of
the 1-simplex. And so on for defining the higher simplices. Doing this gives a
space, and πi

(
Ln(π)

)
= Li+n(π). Moreover, there are homotopy equivalences

Ω4 (Ln(π)
)
� Ln+4(π) that are an analogue of the 4-fold periodicity of L-groups.

It is worth saying a word about this equivalence, since it is the prototype of
the notion of an assembly map, and it explains the use of the word “assembly,”
which often mystifies people who see other maps that are also called assembly
maps because they somehow resemble this one. An element of Ω4(Ln(π)) (or
a vertex in a simplicial model of it) is a map from S4 into Ln(π)). So, we can
think of S4 as being triangulated, and each simplex in that triangulation being
assigned one of the defining simplices in the space Ln(π). We can “assemble”
all of these together to define a vertex in the space Ln+4(π).

Of course, if one is fibered over a base, one has this situation, but this
“blocked” theory is much simpler: it satisfies our desideratum that no object
is more complicated than which occurs already over a vertex.62 So, above, we
exactly have this from a surgery problem:

N ′ → N → W/Γ.
We can take universal covers and lift

Ñ ′ → Ñ → W,

giving the family (Ñ ′ → Ñ)×Γ W , which fibers over W/Γ. Over each Δ in W/Γ
one has the product (Ñ ′ → Ñ) × Δ (although identifications change as one
61 Except combinatorially. An object over a simplex will need the combinatorial complexity of a

simplex (at least).
62 That is, that surgery on manifolds with boundary relative to a solution on the boundary has

exactly the same type of obstruction that already arises on closed manifolds.
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moves around). This is a simplex is a space of surgery problems of the form
LBdd(W). If one thinks through all the identifications made, then one realizes
that one has detected Hi

(
W/Γ; L(e)) in Li(Γ) via the composite

Li(Γ) → H0 (W/Γ; LBdd(W)) → H0 (W/Γ; LBdd(TwW)) � Hi

(
W/Γ; L(e)),

where H0 (W/Γ; LBdd(W)) denotes the twisted cohomology of the spectrum
LBdd(W) over W/Γ and TW denotes the tangent bundle of W , called the family
bounded transfer.63

A very nice alternative description of this method is to recall the notion of
homotopy fixed set. If G is a group acting on a space X , then XG , the fixed-
point set of the action, can be thought of as the equivariant mapping space
MapG[pt : X]. There is a map of this space into a more homotopical object64

XhG = MapG[EG: X].

Unlike fixed points, that are quite sensitive to a space being acted upon,
if f : X → Y is an equivariant map that is a homotopy equivalence, then f
induces a homotopy equivalence XhG → YhG.

Moreover, there is clearly a map XG → XhG.
If one unravels the notation in the family bounded transfer, one sees that one

has the map

Li(Γ) → LBdd
i (Γ)hΓ

and thus one can interpret our proof in the non-positively curved situation as
using a homotopy fixed set for the purpose of splitting an assembly map.

In any case, these ideas lead to a method of descent, wherein a suitable Borel-
type conjecture (or maybe a little less) for Γ as a metric space gives rise to the
Novikov conjecturec for Γ itself as a group – again, these are little different
from what we did by hand in §4.6, but this interpretation, for example, makes
sense for many functors other than L, and also is now suitable for situations
where we get our bounded information from any source, not only from the
Ferry ε-map theorem.

63 This discussion ignores the aspect where we put support conditions on the homotopy
equivalence and changed the cohomological term to one with compact supports.

64 Below, EG is the universal contractible space on which G acts freely, and hG is homotopy
fixed set of the G (or Γ) action.
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4.10 Secondary Invariants

. . . And a Little More Surgery
It is time to return to lens spaces, those remarkable explicit manifolds which,
while homotopy equivalent, can frequently not be distinguished by their tangen-
tial information (say in dimension 3). Recall de Rham’s theorem that lens spaces
are only diffeomorphic65 when they are linearly so – it is time to understand
why this is.

This discussion contains embryonically one of the main keys to understand-
ing closed manifolds whose fundamental groups have torsion. If we think
functorially, the key question is:

Problem 4.35 What does S(K(π,1)) look like when π has torsion?

(Indeed, when the Novikov conjecture is true,66 we always have, rationally,
a decomposition of

Sn(M) ⊗ Q � Sn(K(π,1)) ⊗ Q × Sn+1(K(π,1),M) ⊗ Q
� Sn(K(π,1)) ⊗ Q × Hn+1(K(π,1)), (M; L(e)) ⊗ Q
� Sn(K(π,1) ⊗ Q ×

⊕
Hn±4i+1(K(π,1)M;Q).)

We shall see67 that S3(K
(
π,1)) ⊗Q is never 0 for groups with torsion68 (and

that, furthermore, S3(M) ⊗ Q is nonzero for any closed orientable manifold
whose fundamental group has torsion69). For general groups, the Farrell–Jones
conjecture (to be discussed in Chapter 8) gives a conjectural answer.70

To begin answering this, we must first consider the important case of π finite.
For finite groups, the homology term is irrelevant (rationally), so we need

to think about the L-groups. Wall (1974, 1976a) showed that, for finite groups
π, the Ln(π) are finitely generated abelian groups, with 2-primary torsion.
Moreover, the groups for n odd are finite, so we shall concentrate on n even.
Indeed, for future reference, let me go so far as to actually define these groups.71

65 Indeed, homeomorphic, although de Rham could not have known that!
66 This is a diagram chase, when one takes into account that the assembly map, as a map of

spectra, being rationally injective on homotopy groups, has a rational splitting as a map. For
integral analogues see, e.g., Weinberger et al. (2020).

67 Following Chang and Weinberger (2003).
68 But it can be 0 in the setting of groups with nontrivial orientation character.
69 This is not a formal consequence of the previous remark, as it was conditional.
70 When we discuss the equivariant version of the Borel conjecture, we will be led to a more

straightforward geometric conjecture for S
(
K(π, 1)) ⊗ Z[1/2]. However, the “correct

formula” for S(M) will then be a purely homological variation of the first summand in the
decomposition above.

71 I have always been amazed at how much is possible to do in surgery theory without a
definition of the obstruction groups, and only a modicum of their properties. However, for
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Definition 4.36 Let π be a group, and w : π → Z/2 a homomorphism (called
the orientation character). Then L2k(π,w) is the group generated by 3-tuples
(M, λ, μ), where M is a free finitely generated Zπ-module, λ : M × M → Zπ
is bilinear and nonsingular72 over Zπ, Λ is (−1)k Hermitian (the conjugacy
on Zπ generated by sending g to w(g)g−1), and μ : M → Zπ/(u − (−1)k ū)
is a quadratic refinement of λ so that μ(x + y) − μ(x) − μ(y) = λ(x, y) and
μ(ux) = ūμ(x)u for u a multiple of a group element.

An element is trivial if M contains a subspace K such that λ and μ restrict
trivially to K , and λ : K → M/K is an isomorphism.

One can define variants using projective modules rather than free, or free-
based modules, and then impose a condition on det(λ). All of these just affect
L at the prime 2, so we will not worry about them here.

Ranicki (1979a) showed that the map Ln(Zπ) → Ln(Qπ) is an isomorphism
away from 2 for any group π. Moreover, with 2 inverted in the coefficient ring,
the μ is irrelevant (i.e. determined by the λ).

So we now have a stripped-down picture of the kind of invariant we are
seeking: a Witt class of a quadratic form over Qπ.

That is a straightforward invariant to try to get: whenever the finite group π
acts on an oriented space73 X2k satisfying Poincaré duality (with orientation
properties given by w), we get such a structure on Hk(X;Q). Let 〈x, y〉 =∑〈(x∪g∗y), [X]〉g ∈ Qπ. We shall call this invariant π-sign (X) ∈ L2k(Qπ)⊗Q.

For π trivial, this invariant is trivial for k odd (every skew-symmetric form
over Q is determined by its dimension as a vector space: it is a symplectic
vector space, and every Lagrangian in it defines an equivalence to the trivial
element). For k even, L2k(Q) � Z ⊕ T , where T is an infinite sum of Z/2s and
Z/4s. The Z is just the signature of the quadratic form.

In general, we can analyze L2k(Qπ) in a few equivalent ways. The invariants
we will be discussing are representations, and therefore can be thought of as
characters – which means that we only need pay attention to cyclic groups.74 For
k = 0, we can diagonalize the quadratic form, and then consider the difference
of positive and negative definite parts [H+] − [H−] in RO(π) as an invariant.
When k is odd, and π is cyclic, we can take a complex representation and (after
multiplying by i) get a Hermitian inner product. It has a signature.

almost anything involving groups with torsion, the definitions are necessary, and hands made
dirty by calculation cannot be avoided.

72 That is, λ defines an isomorphism M → M∗ (where M∗ = Hom (M : Zπ).
73 We are reserving the right to allow X not to be a manifold, and the action not to be free – since

these affect nothing. Moreover, by allowing the modules to be projective in the definition of
the L-group, we really have a very transparent invariant.

74 Of course, the L-groups themselves are more complicated than this. The reader might wish to
think about the cases of Q8 and the symmetric groups to see various phenomena.
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Proposition 4.37 If π is a finite group that acts freely on M4k , then π-sign (M)
is a multiple of the regular representation (i.e. its character is trivial for all
g � e). If π acts freely on M4k+2, then π-sign (M) vanishes.

This can be proved in several ways. First of all, it is a consequence of the
Atiyah–Singer G-signature theorem (Atiyah and Singer, 1968b). It can also
be easily proved by cobordism considerations: bordism of free π-actions is
equivalent to Ω(K(π,1)), but after ⊗Q this is the image of Ω(∗), i.e. every
bordism class is induced from a trivial action, immediately giving the result.

Note that this proposition includes our earlier observation that signature is
multiplicative for finite covers of closed manifolds.

Now we can define a basic invariant of an odd-dimensional manifold with
finite-order fundamental group.

Definition 4.38 Suppose M2k−1 is a closed manifold with finite fundamen-
tal group π. Let W be such that km = boundary of W ; we define ρ(M) ∈
L2k(Qπ)/L2k(Q) ⊗ Q as follows. Some multiple, kM , of M bounds with fun-
damental group π · kM = ∂W :

ρ(M) = (1/k) π-sign (W) ∈ L2k(Qπ)/L2k(Q) ⊗ Q.
Remark 4.39 We have been quite cavalier in ignoring integrality and torsion
issues. With more care,75 one need not be.

For lens spaces we can make this completely explicit.
Start with the following Z/n action of a surface. Take the branched cover

of S2 branched at n points so that one gets a surface with a semifree Z/n
action, so that all n fixed points have the same tangential representation – say t
which equals rotation by 2π/n. Changing the generator gives an analogous Z/n
equivariant surface but with any rotation number one wishes. A product of k
such surfaces will give a manifold of dimension 2k with a semi-free Z/n action,
with nk isolated fixed points, all with the same given normal representation. If
we removed a deleted neighborhood of the fixed point set, and take quotients,
we obtain nk lens spaces all with our chosen set of rotation numbers. Moreover,
the ρ-invariant can be computed from the calculation for the original branched
cover using Galois invariance and multiplicativity of signatures. In any case,
the calculation is done (by another method) in Atiyah and Bott (1968) and
furthermore they explain the quite nontrivial and interesting proof that this
invariant is strong enough to distinguish the lens spaces from one another.76

75 Using the technology of assembly maps (and using calculations of equivariant Witt groups).
76 It is interesting that both this proof and de Rham’s original proof both rely on the same

number-theoretic fact: the Franz independence lemma (see Milnor, 1966; Atiyah and Bott,
1968; Cohen, 1973).
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In any case, this invariant ρ now presents a challenge to the Borel conjecture.
Using our surgical description of ρ, however, we have:

Conjecture 4.40 If Γ is torsion-free and π is finite, then L(Γ) → L(π)/L(e)
has finite image.77

Theorem 4.41 The Borel conjecture78 implies the above conjecture.

The theory of ρ-invariants is susceptible to a nice generalization by Atiyah
et al. (1975a,b) where one assigns an invariant for every finite-dimensional
unitary representation of Γ (whether finite, torsion-free, or anything at all!).

This analytic method does not have, as far as I know, a purely topological ap-
proach. It is a descendent of the above-mentioned fact that, for closed manifolds
(but not for manifolds with boundary), the signature with coefficients in any
flat unitary bundle is the same as the ordinary signature (times the dimension
of the representation).

Definition 4.42 Let D be a self-adjoint elliptic operator on an odd-dimensional
manifold. Associated to D we form the series

η(s) =
∑
|sign λ |λ−s

(summed over the nonzero eigenvalues λ of D) and, via analytic continuation,
form the real number η(0).

The η-invariant enters as a correction term from the boundary in an Atiyah–
Singer theorem for manifolds with boundary. Therefore, as we are in a situation
where relationships that hold for closed manifolds do not apply to manifolds
with boundary, the η-invariant arises – without a choice of cobounding manifold
– to give an invariant of M itself.

For M2k−1 there is a “signature operator” B on forms of even degrees (2p)
given by

Bφ = ik(−1)p+1(∗d − d∗)φ.

If α : π1M → U(n) is a unitary representation, then we can also consider B
with coefficients in the flat bundle determined by α.

Definition/Theorem 4.43 (Atiyah et al., 1975b) The invariant ρα(M) is

77 Actually, most of the 2-torsion should also not be hit, as one can see using more detailed
information about the assembly map for finite groups, i.e. the problem of which surgery
obstructions arise from problems involving closed manifolds. This is called the “oozing
problem” for historical reasons, with important contributions being Wall (1976b), Cappell and
Shaneson (1979), Morgan and Pardon (unpublished), and Hambleton et al. (1988).

78 As well as the Baum–Connes conjecture.
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defined as the difference of the η-invariants for the signature operator with
coefficients in the trivial bundle and that with coefficients in α:

ρα(M) = nηB(0) − ηBα(0).
This invariant is independent of the Riemannian metric on M . If M = ∂W so
that the flat bundle extends, then

ρα(M) = nsign (W) − sign α(W).
So, of course, all the flat bundles and APS invariants give potential obstruc-

tions to the Borel conjecture. We can turn this around and make a theorem:

Theorem 4.44 If the Borel conjecture is true for (the torsion-free group) Γ,
then, for all α, ρα is a homotopy invariant.

Remark 4.45 See Weinberger (1988b, 1989) for the details.

(1) While the numbers ρα(M) can be arbitrary real numbers if we make no
assumption about the unitary representation α (even for the circle, this is a
non-constant continuous function of the representation), the non-homotopy
invariance ρα(M ′)− ρα(M), for homotopy-equivalent manifolds, is always
an element of Q. Note that for cobordant manifolds for which the flat
bundle extends, this difference is an integer. It stands to reason, then, that
the cobordism information implicit in the Novikov conjecture could lead
to this rationality at the level of conjecture. That it is true unconditionally
is based on ideas developed through work on the Novikov conjecture.

(2) It is not hard to see that if Γ is residually finite and has torsion, then
there is an α which detects the infinitude of S3(K(Γ,1)).79 This method
actually gives more information, because ρα is an invariant of manifolds,
so it can be used to implies that the manifolds are different from each
other, not only that some given homotopy equivalence is not homotopic to
a homeomorphism.

This theorem is related, but not quite equivalent, to the following obstacle to
the surjectivity of the assembly map.

If α : Γ → U(n) is a unitary representation, then it induces a homorphism
RΓ → GLn(C), compatible with conjugation, and thus a map (by Morita in-
variance – i.e., viewing a matrix of matrices as a larger matrix with ordinary
entries) sign α : L2k(Γ) → L2k(C) = Z. By the index theorem, if the assembly
map is surjective (so that every element of L2k(Γ) comes from a closed man-
ifold), we must have sign α ≡ nsign on L2k(Γ). Note that if this weren’t true,
79 This infinitude is true even if Γ is not residually finite, as can be seen (Chang and Weinberger,

2006) using an L2-variant of the η-invariant introduced by Cheeger and Gromov (1986).
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then we could use such an element and the Wall realization theorem to give a
counterexample to the Borel conjecture.

The proof of the theorem also used the Novikov (i.e. injectivity) half of the
Borel conjecture.

In the following notes we describe a less classical invariant based on these
considerations.

4.11 Notes

In §4.1, the proof of de Rham’s theorem was based on calculations of Reide-
meister torsions of the lens spaces. The Reidemeister torsion can be defined
for any space that has an acyclic flat bundle on it. Torsions are definable more
generally when one has a situation where a finitely generated free chain com-
plex is acyclic (and, crucially, the chain groups have given bases): such as a
homotopy equivalence between finite complexes (where the chain complex of
the mapping cylinder has this nature).

The torsion measures the determinant of the underlying geometric chain
complexes. For a finite Q-acyclic complex, the torsion is essentially the al-
ternating product of the orders of the integral homology groups. Importantly
and by contrast, in non-simply connected situations the torsion is not a homo-
topy invariant. Of course, the non-homotopy invariance is often an obstacle to
calculation.

The torsion also occurs in the h-cobordism theorem (see §4.4) as the ob-
struction of an h-cobordism being a product. An h-cobordism is a manifold
that deform retracts to its boundary components. The basic obstruction to being
∂ × [0,1] is that the torsion of the inclusion of (either) one of the ∂ components
is trivial and the h-cobordism theorem asserts that (in dimension greater than 5)
this is the only obstruction.

See §5.5.3 for more discussion.
As mentioned in the body of §4.2, the Hirzebruch signature theorem has

two rather different proofs. There is the cobordism-theoretic proof and the
index-theoretic proof. Both of these are subject to extensive and important
generalization.

The cobordism-theoretic proof can be modified to allow cobordism of more
algebraic or singular objects than merely manifolds. Doing so, the Hirzebruch
theorem then becomes a calculation of where smooth manifolds fit into those
cobordism theories. One such version is to consider the bordism of “controlled
algebraic Poincaré complexes” (Yamasaki, 1987) – where control here is as
in controlled topology introduced in §§4.6 and 4.8. This turns out to be the
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H∗(X; L(R)), where X is the control space, and R is the ring (and L is the spec-
trum discussed in §4.9). Doing this gives a most satisfying proof of Novikov’s
theorem – the L-classes have been topologically defined as “the controlled
symmetric chain complex of M over M .”

The work has been hidden. As we discussed in §4.8, proving that a controlled
algebraic functor is a homology theory boils down to a statement like the α-
approximation theorem and we’ve already seen such a result of the correct level
of depth for this type of applications.

The Atiyah–Singer index theorem has had numerous extensions and variants.
Many of these are subsumed by very some general theorems (and even more
by philosophies) in the setting of noncommutative geometry and C∗-algebras.
A reference to the Connes (1994) book is surely necessary, but not sufficient.
An excellent introduction is Higson and Roe (2000).

Broadening one’s viewpoint in this way, besides enabling the proofs of the
most advanced known results on the Novikov conjecture, also significantly
expands its scope of application – as I hope will become clearer as we continue.

Section 4.4 explains two of the early approaches to the Novikov conjecture.
Probably the most misleading aspect of my treatment is viewing the vanishing

of the Whitehead group of free abelian groups as an exogenous fact, that we
just exploit, rather than an integral part of the “Borel package” of conjectures.
Indeed, for the Borel conjecture to be true, one must have such vanishing, and
one should view the vanishing of the Whitehead groups of torsion-free groups
as being completely analogous to the conjectured isomorphism statement for
L-groups that we take as the algebraic version of the conjecture in §4.7. We
will rectify this failure in Chapter 5.

Besides the h-cobordism theorem that involved K1(Zπ), one had Wall’s
1965 paper which showed how K0(Zπ) regulates whether a finitely dominated
complex is homotopy equivalent to a finite complex. Siebenmann’s 1965 the-
sis showed the bearing of Wall’s work on the question of when noncompact
manifolds are the interiors of manifolds with boundary (i.e. the compactifi-
cation problem). The first approach to the fibering problem by Farrell (1996)
had multiple obstructions involving various K-groups and a nil-type group.80

Siebenmann (1965) gave another approach to the problem where all the obstruc-
tions were unified into one – the connections between the pieces in Farrell’s
approach being given by a nonabelian generalization of the Bass–Heller–Swan
theorem (Farrell and Hsiang, 1970). Farrell (1971b) gave another very elegant
approach to fibering in his ICM talk.

80 Nil groups are Grothendieck groups of nilpotent matrices. The connection to the K-theory of
Laurent series is straightforward: if N is nilpotent over R, then I + t±1N are invertible over
R[t , t−1]. See Bass and Murthy (1967) for some calculations of these for abelian groups.
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More general splitting was developed by Cappell and applied to the Novikov
conjecture by him (Cappell, 1976a,b). It turns out that it has aspects that are
not attributable to algebraic K-groups. A consequence of Cappell’s theorem is
that the problem of being a connected sum is homotopy invariant (in dimension
greater than 4) if the fundamental group has no 2-torsion (but not in general).

Developing the relevant algebraic K-theory for amalgamated free products
by Waldhausen (1968) – motivated by the work he did on 3-manifolds, as one
of the authors of “Haken–Waldhausen theory” – was an important step in the
development of higher algebraic K-theory. In any case, this work led to con-
sideration of the “Cappell–Waldhausen class” of groups, which are accessible
from the trivial group by amalgamated free products and HNN extensions any
number (including transfinite) of times. For these, the assembly map is an
isomorphism after ⊗Z[1/2]. In low dimensions, this includes many of the fun-
damental groups that seem important, but, in light of Property (T), no high-rank
lattices in simple groups lie in this class.

On the other hand, after introducing the ideas of bounded and controlled
topology, the splitting methods return, as we split the control spaces (spaces
can be broken up into pieces much more easily than groups can) and thus this
method is implicit in many of the subsequent topological (and many of the
analytic) approaches.

An exception is Lusztig’s method. Extension of this to non-positively curved
situations (and beyond) was taken up fairly soon after by Mischenko and Kas-
parov. Mischenko, besides using infinite-dimensional bundles, also introduced
the formalism of algebraic Poincaré complexes and their cobordism to get in-
variants of manifolds (essentially elements of L(Qπ)). A useful exposition of
Mischenko’s work can be found in Hsiang and Rees (1982).

Kasparov (1988) developed an extensive new technology, KK-theory, for the
problem, which he applied to give the first proof of the Novikov conjecture
for fundamental groups of complete non-positively curved manifolds (we gave
a geometric approach in §4.6). It is fundamental for most of the subsequent
analytic results. A useful reference for Kasparov theory is Blackadar (1998).

(From a noncommutative geometry perspective, Lusztig’s method uses a
family of operators parameterized by a commutative space, and one can look
for families parameterized by a noncommutative space.)

In §4.5, the survey paper of Ferry et al. (1995) translates one of Novikov’s
papers and helps track his train of thought. Novikov’s master stroke of using
non-simply connected manifolds to get information about the topology of Rn
was commented on, for example, in Atiyah’s citation of Novikov for his Fields
Medal. The approach I took is based on the idea of Kirby’s torus trick (a
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somewhat different trick that has the same crude description) and is a variation
of one of Gromov (1993).

In the original version of the torus trick, the matter of filling in the “hole” was
accomplished using Siebenmann’s completion (or end, or boundary) theorem
in his thesis (Siebenmann, 1965). A nice aspect of using the signature of fiber
bundle approach is that this is unnecessary.

The torus trick, or alternatively controlled topology, is used in proving the
annulus conjecture and the other foundational theorems for the topological
category (see Kirby, 1969; Kirby and Siebenmann, 1977; Quinn, 2010).

It is important to realize that in the equivariant setting all of the basic tools
of the topological category that the above work fashions, dramatically fail.
Handlebody structures neither exist nor are unique; equivariant Whitehead
torsion is not topologically invariant; and transversality fails. Nevertheless, the
equivariant signature operator is a topological invariant. We will discuss these
matters in Chapter 6.

In §4.6 the Novikov conjecture for closed non-positively curved manifolds
was first proved by Mischenko (1974). Farrell and Hsiang (1981) gave a direct
geometrical proof (that includes the stable homeomorphism statement). Their
method uses the compactification of the fibers and Alexander tricks rather than
the use of the α-approximation theorem that we do. The result of this section
is the main result of Ferry and Weinberger (1991) and is a slight improvement
– from the topological perspective – of Kasparov’s result.

Kasparov’s theorem was important for the philosophical reason that it did
not seem to require a hypothesis on the quasi-isometry type of the group, while
in the closed case one immediately sees the “sphere at ∞” implicated in the
solution: an idea already present explicitly in Mostow’s work. When one has
infinite volume, there was a strong psychological presentiment that “almost
anything is possible.” Indeed, we will take up this theme in Chapter 8.

Ferry’s theorem was the solution to a problem of Siebenmann from his CE-
approximation paper. I consider it one of the high points of twentieth-century
topology. It is based on his joint result with Chapman on the α-approximation
theorem, which says, in modern terminology, that a homotopy equivalence
M ′ → M that is controlled over M is controlled homotopic to a homeomor-
phism.81

Quinn’s (1979, 1982b, 1982c, 1986) papers essentially liberated the place
where the control was being measured from the space where the problem was

81 And, here, we can have ε-δ control in this theorem. In fact, the name α-approximation means
that one can use any cover α for an open manifold, and then refine it to a β, so that
β-homotopy equivalences are α-homotopic to homeomorphisms. So, oddly enough, the α is
just the name chosen for a variable.
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solved. This simple idea has proved to be enormously important, as the many
applications in that series already showed. And there have been very many
more; we use this type of reformulation in §§4.8 and 4.9.

A homology manifold can be thought of as a space that is a controlled
Poincaré duality space, controlled over itself. This was a critical insight that led
to Quinn’s obstruction to resolution (Quinn, 1982a, 1987b), and the construction
of nonresolvable homology manifolds and their classification (Bryant et al.,
1993).

In §4.7, the topological form of surgery is decidedly less elementary than the
smooth theory, but it has the much better features described in this section.

The use of periodicity is an elaboration of the idea, which occurred first
in Shaneson (1969), of using the periodicity of L-groups to do an end-run
around the problem that low-dimensional problems cause for studying high-
dimensional problems. (He showed that there is a smooth manifold homotopy
equivalent to T2 × S3 that looks like a product of T2 with a counterexample
to the Poincaré conjecture despite the fact that one can’t really unwrap those
circles via Farrell’s theorem.) In Wall (1968) and Hsiang and Shaneson (1970),
this idea is used to prove the Borel conjecture for the torus.

Nowadays, the inclusion of periodicity into the functoriality means that we
do not have to consciously think about these issues. On the other hand, having
included homology manifolds into our structure sets, the objects we study are
even less elementary than topological manifolds. In Bryant et al. (1993), the
paper in which they were constructed, they are also classified up to s-cobordism
(under some technical conditions)82.

Homology manifolds were initially studied as places where sheaf theory
behaved similarly to the theory of manifolds, and then, later, in the Bing school
as cousins to manifolds with interesting topological properties in their own
right (e.g. being manifold factors or fixed sets of group actions). Edwards’s
theorem (and the earlier work of Cannon and Edwards on the double suspension
problem83), and Sullivan’s observation that Novikov’s theorem applies to CE
maps, made their study central to geometric topology, and Freedman’s proof of
the four-dimensional Poincaré conjecture was perhaps their crowning triumph
– showing that even those tame souls just interested in manifolds could not
ignore these spaces as pathological.

While the resolution conjecture, asserting that high-dimensional homology

82 The argument in that paper is only correct as given for homology manifolds that are
L∗(Z)-orientable, which includes any that are homotopy equivalent to a manifold. An erratum
(in preparation) will show how to deal with more general homology manifolds.

83 Is the suspension of the suspension of a homology sphere a manifold (and therefore the
sphere)? Yes.
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manifolds are all resolvable, is false (and therefore the characterization of
manifolds cannot be expressed just in terms of DDP), it is conceivable that DDP
homology manifolds are in all regards just as beautiful as manifolds. However,
the most basic properties of these spaces, e.g. whether they are topologically
homogenous, whether the h-cobordism theorem is true for them, etc., remain
open (see, e.g., Weinberger, 1995).

An ideal situation would be the true extension of the CE-approximation the-
orem to the setting of DDP homology manifolds: any CE map between ANR
homology manifolds with the DDP should be a uniform limit of homeomor-
phisms – this would lead to homogeneity and the s-cobordism theorem, but can
it really be that Edwards’s theorem is around the same depth as homogeneity?
(Surely for manifolds this isn’t the case.)

Section 4.8 had as its goal to explain in more detail how controlled topology
works, more formally and systematically than by example. I had tried once
before in Weinberger (1994). Other (more) useful references are Chapman
(1981, 1983), Quinn (1987a), Anderson et al. (1994), and Ferry and Pederson
(1995). It is possibly fair to say that the prehistory of controlled topology
began with the work of Kirby and Siebenmann on topological manifolds, and
Chapman and Ferry on the α-approximation theorem and metric criteria for
simplicity of a homotopy equivalence, but was consciously and effectively
developed by Quinn (1979, 1982b,c, 1986) and turned into a systematic tool
(wherein the control space gained its independence from the formulation of the
problem).

The bounded Borel conjecture was, I think, in the air with controlled topology
and this whole circle of problems. Its formulation using the Rips complex (i.e.
the direct limit of the nerve of coverings by bigger and bigger balls) was natural
given that uniformly contractible models do not always seem to exist. See Block
and Weinberger (1992, 1997), Gersten (1993), and Roe (1993) for early uses of
the Rips construction and its homology.

That this substitute should work out better than a uniformly contractible
model was a great surprise to me, and this was the source of the example
in Dranishnikov et al. (2008). (Although, I guess, the moral is that functo-
rial constructions that work in great generality, substituting for objects that
don’t necessarily exist, will occasionally beat those objects, even when they
do exist.) The phenomenon itself was a derivative of Dranishnikov’s (1988)
discovery that if X → Y is a CE map, then, while it induces an isomorphism
on ordinary homology, it does not necessarily induce one on non-connective
(and, in particular, periodic) homology theories, when Y has infinite covering
dimension.

In the C∗-algebra setting, Yu (1998) gave other more dramatic failures of

https://doi.org/10.1017/9781316529645.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316529645.005


4.11 Notes 125

even the coarse Novikov conjecture (discussed in Chapter 5 in the setting of
positive scalar curvature). And, even in the presence of bounded geometry,
expander graphs give rise to other examples in this setting, as we will discuss
in Chapter 8.

In §4.9, the principle of descent seems to have been developed and redis-
covered multiple times. Its job is to explain the miracle (not present in our
treatment of the torus) of how understanding, say, hyperbolic space, extremely
well is enough for the understanding of how every cohomology class of every
hyperbolic manifold (and we do not really understand very well this cohomol-
ogy!) enters as a potential obstruction to homotopy equivalence.

Besides the work of Kasparov on the Novikov conjecture mentioned above,
Gromov and Lawson (1983) used a variant in their beautiful paper on positive
scalar curvature (see Section 13 therein). Our treatment here is based on Ferry
and Weinberger’s 1995 reformulation of Ferry and Weinberger (1991); Carlsson
(1995) developed it in the guise of homotopy fixed sets (and extended its reach in
papers with Pedersen, for example Carlsson and Pederson, 1995). An excellent
explanation of its C∗-algebra version appears in Roe (1993).

The technique used here can be used to prove the Novikov conjecture for
groups of finite asymptotic dimension. This was first done by analytic methods
by Yu (1998). But methods based on the squeezing properties of a finite complex
(i.e. α-approximation type results) together with descent have been successfully
applied to give this result in Bartels (2003), Carlsson and Goldfarb (2004), and
Chang et al. (2008). A completely different topological approach (based on the
existence of appropriate acyclic completions of the EΓ) is given in Dranishnikov
et al. (2008).84

Spacification was introduced by Casson (1967) to get information about
fibering a manifold over S2. Quinn’s thesis (see Quinn, 1970) developed it sys-
tematically (see also Nicas, 1982). Other treatments can be found in Burghelea
et al. (1975), Weinberger (1994), and Cappell and Weinberger (1995).

Finally, in §4.10, W. Neumann (1979) was the first to show that, for the
case of Zn, Atiyah–Patodi–Singer invariants are homotopy invariants by means
of an explicit homotopy-invariant formula for them. In Weinberger (1985a) I
explained how the Borel conjecture implies that for torsion-free groups these
are homotopy invariant. Keswani (2000) showed how a version of the Baum–
Connes conjecture implies this as well, and therefore, for torsion-free amenable
groups, the work of Higson and Kasparov implies this conclusion.

The fact that APS invariants are homotopy invariant up to rational numbers

84 The Higson corona used in that paper is a variant of the Stone–Čech compactification. The
utility of a generalization of the boundary of hyperbolic space for rigidity purposes is a central
theme in Mostow, Tits, Gromov, and through to the present.
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was something I had worked on, off and on, for almost a decade. My final proof
(Weinberger, 1988a) used a deformation argument (whose key point was a
calculation of Farber and Levine) to reduce to subgroups of GLn with algebraic
entries. This argument ended up being only a couple of pages long. Later,
Higson and Roe (2005a,b,c, 2010) gave a more direct argument.

Mathai (1992) was the first to study the homotopy invariance properties of
the Cheeger–Gromov reduced L2-η invariant. Keswani related this to a variant
of the Baum–Connes conjecture (one true for all amenable groups, but false
for groups with Property (T)). Chang (2004) showed that the Borel conjecture
implies homotopy invariance in the torsion-free case. Chang and Weinberger
(2003) showed the non-homotopy invariance for all groups with torsion.

Given that any nontrivial torsion in π gives rise to the infinitude of S3(M),
it seems reasonable to believe that the size of S3(M) (and of similar invariants)
should be larger when the fundamental group of M has more torsion. This
has not been shown unconditionally, but, for very many fundamental groups,
lower bounds in terms of the number of orders of torsion elements (or even
on the number of conjugacy classes of torsion elements) have been given in
Weinberger and Yu (2015).

There is a general philosophy of secondary invariants that comes out of
the Novikov conjecture and, complementary to these, homotopy-invariant sec-
ondary invariants. These were explicitly introduced in Weinberger (1999b)
and are “higher ρ-invariants” (although they were implicitly used already in
Weinberger (1988a)). Like Reidemeister torsion, they require some amount of
acyclicity85 to define (and examples show that this is actually necessary). Typi-
cal places that they take values in is a quotient of S(K(Γ,1)) or of an L-group or
a some kind of homological (or K-theory) invariant related to the fundamental
group – where the quotient is determined by the type of Novikov technology
that we will discuss in Chapter 6. I am being vague about this because there isn’t
yet an overarching general theory that includes all others. Weinberger (1999b),
for example, does not deal at all with torsion issues – although some of the later
literature (Higson and Roe, 2005a,b,c; Piazza and Zenobi, 2016; Weinberger
et al., 2020) does – and the context of their definition is “up for negotiation,”
essentially in terms of what kind of acyclicity hypothesis is necessary, or what
is its source.

85 Actually the relevant acyclicity is only necessary around the middle dimension. That manifolds
with this property are special and can be more easily understood than general manifolds was
first realized by Jean-Claude Hausmann, who studied (in unpublished work sometime in the
1970s) them under the slightly less general but more geometric condition of having no
middle-dimensional handles in a handle decomposition.
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This invariant is adequate for distinguishing lens spaces after crossing with
aspherical manifolds for which the Novikov conjecture is known.

The reason that they are somewhat subtle is that, unlike higher signatures that
are signatures of appropriate submanifolds associated to cycles in K(Γ,1)-, ρ-
invariants are very definitely not cobordism invariant, and therefore it is prima
facie unclear that any higher version of an such invariant should be definable.
Interestingly, acyclicity solves this and this makes some cycles more canonical
than others, in a way that is not apparent to straightforward transversality.

The precise definition uses the fact that sufficiently acyclic manifolds are
both algebraically (tautologously) and geometrically null-cobordant86 (using
the Novikov conjecture), and that one gets an interesting invariant by comparing
these two nullcobordisms.

These invariants have a number of interesting applications. The first is that
it gives a way of showing that manifolds are not homeomorphic, not only
that a certain map is not homotopic to a homeomorphism. Nabutovsky and
I used this to show that, even among homotopy equivalent manifolds, the
homeomorphism problem can be algorithmically undecidable (Nabutovsky and
Weinberger, 1999).

Another, more recent, application is to Gromov–Hausdorff space. Recall
(Gromov, 1999) that Gromov–Hausdorff space is a compact metric space
of compact metric spaces, and that spaces are close if they can be approxi-
mately “aligned” like two fairly dense subsets of a third metric space. Gromov–
Hausdorff space and limits in it have become an important tool in comparison
differential geometry.

One can hope to find strong geometric restrictions on sets of manifolds in
Gromov–Hausdorff space that have a contractibility function.87 It turns out,
for example, that sufficiently close manifolds of this sort have the same simple
homotopy type and rational Pontrjagin classes (Ferry, 1994). However, never-
theless, there are infinite families of manifolds Mi that are pairwise distinct,
but which can all be made arbitrarily close to each other. See Dranishnikov et
al. (2020) for how this goes, and how higher ρ-invariants are used.

In this example, it is important that the contractibility function (including
the ε that describes a threshold at which balls are null-homotopic) is allowed
to vary with i. For a fixed contractibility function f , Ferry (1994) proved a

86 In some sense; for example, in the Witt cobordism sense.
87 A contractibility function for X is a function f : [0, ε) → R such that f is continuous, f (t) ≤ t

and f (0) = 0, so that for each point x in X, the ball around x of radius t in null-homotopic in
the ball of radius f (t). It is a generalization of the notion of injectivity radius for a manifold,
which corresponds to the case of the f (x) = x on [0, inj], where inj is the injectivity radius. It
is an easy exercise that, given a local contractibility function f and a dimension n, there is a δ
such that δ-close n-dimensional ANRs are homotopy equivalent.
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contrasting finiteness theorem: the number of manifolds in a precompact part
of Gromov–Hausdorff space with any specified contractibility function is finite.

The same technology that defines the higher ρ-invariant is used in Leichtnam
et al. (2000) to define higher signatures for noncompact complete manifolds
under the same type of middle-acyclicity condition at∞. (These higher signa-
tures involve the cohomology of the fundamental group of the manifold, and
nothing further about ∞. Assuming the Novikov conjecture, they are proper
homotopy invariant.) Leichtnam et al. (2002) used a variant of this idea to study
how higher signatures of closed manifolds change if one cuts them open along
submanifolds and glues back differently.
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