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Abstract. For certain C2 one-parameter families of endomorphisms of the circle
both endpoints of rotation intervals are rational except for a set of parameter values
of zero Lebesgue measure.

1. Introduction
Families like

(x)/fA : S1 -» Sl, HA(x) = x + c sin {2irx) + A (mod 1)

have been widely studied for their relevance to the existence of invariant circles of
various irrational rotation numbers in the KAM theory, [2]. For \c\ < \/2ir this is
a family of diffeomorphisms of the circle and these have irrational rotation numbers
for a set of parameter values A of positive Lebesgue measure. If c = 1/2TT the maps
are homeomorphisms but not diffeomorphisms and it is believed on numerical
evidence, see [5] that such parameter values have measure zero. When c> l/2ir the
maps are not homeomorphisms and may have a rotation interval rather than a
rotation number.

In this paper we deal with the endomorphisms of the circle which are not
homeomorphisms. The notion of rotation set for such maps is the generalization of
the concept of rotation number for homeomosphisms. It was introduced in [7] where
the proof that the rotation set is always an interval can also be found. The question
then arose concerning how the endpoints of rotation intervals vary when one-
parameter families of endomorphisms of the circle are considered? By analogy with
the already quoted result for diffeomorphisms (see [4]) it was conjectured that if
endpoints really vary with the parameter then at least one of them is irrational for
a set of parameter values of positive Lebesgue measure. On the other hand, the
results of [1] suggested that this measure was zero for piecewise linear maps. Our
result goes along that line. We shall prove that the endpoints of the rotation intervals
are rational for almost every parameter value for certain C2 families of maps. Indeed
these maps form a set with non-empty interior in the C2 topology.

However, this set is not dense, so it may happen that the conjecture is true for
an open non-empty set of families.

I express my thanks to M. Misiurewicz who suggested the subject of this paper
and carefully read the manuscript.
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2. Formulation of the theorem
We shall provide 2 sets of assumptions (called Version 1 and Version 2, abbreviated
to VI and V2 respectively). The claim is the same in both cases, namely that

The upper endpoint of the rotation interval is rational for almost all parameter values
in the sense of Lebesgue measure.

Version 1 is rather complicated, but general. Version 2 is much simpler, but can
only be applied to very particular families. It seems that our hypotheses indicate
the limitations of our method rather than they really describe the set of families for
which the above claim is true. In the actual proof we shall use the technical set of
assumptions, called the Local Version (LV), which will be formulated later. Version
2 can be used to produce a lot of specific examples, in particular it also comprises
the family (*) discussed in the introduction for c> 1/2TT. A reader who does not
want to go deeply into details may trace the proof in the special case of the family
(*). It is easy to verify that it satisfies V2 with a = 1/2TT arc cos (-l/2irc).

We assume that we have fixed an orientation of the circle. Everywhere we speak
of lifts we mean lifts to the coverings of S1 by R1, which agree with this orientation.

Precisely, the rotation set depends on lift, but the property whether its upper
endpoint is rational or not does not depend on which lift from the range indicated
above we have chosen. If we change the orientation fixed on S1, then the endpoints
of the rotation interval are interchanged. This is the way we extend our result onto
the lower endpoint of the rotation interval. However, for various orientations we
usually get different families of lifts and our hypotheses must be checked for either
of them separately. The family (**): x>-» A sin (2TTX) + X (mod 1), A > 1/2-JT, satisfies
VI; moreover so do families from some part of its open neighbourhood. Also observe
that the family of lifts with respect to the reversed orientation is described by the
same formula (since it is an odd function). Thus we obtain an example of a
non-empty, open set of families for which VI holds with respect to both orientations,
hence both endpoints of rotation intervals are rational almost everywhere.

We pass to the formulation of our hypotheses.
We study families of degree one maps of the circle HK : S1 -*• S1 depending on the

real parameter A. All Hx are not homeomorphisms. We write H(\, x) for HA(x) so
that, for some open interval U<=R, H maps l /xS ' -^S1 . (H is assumed at least
continuous.) Then / i : t / xR-+ i will denote a continuous family of lifts of maps H.

Our hypotheses are designed to ensure that our maps h are differentiate, non-
degenerate, increasing with parameter and one-to-one and diffeomorphisms on some
large interval. The detailed assumptions may seem a little bit artificial - it is useful
to also have in mind that they should guarantee that upper maps have exactly 1
modulo 1 interval, on which they are constant and that they increase with the
parameter for each x (see § 3 for a definition and some remarks on upper maps).

Version 1

(1) The function H is C2.
The remaining hypotheses are formulated in terms of lifts h. This dependence

on the lifts is only formal, however, since they hold for each lift once they hold
for one of them.
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We claim that for each A e U there exists aA e R such that the following
conditions are satisfied:

(2) The point aA is a strict local maximum of hK and also a strict global maximum
of hx restricted to (-00, aA].

We also demand that some )3A should exist such that for each A e U the following
hypotheses are satisfied:
(3) (a) /8A is a (not strict) maximum of AA restricted to (-00, px],

(b) M 0 A ) = M « A ) - 1 ,
(c) dhx/dx is positive on [/3A, aA).

(4) The derivative dh/dX is positive at each point (A,x)e t /xR such that ^ A S x S
ax-

iS) {d2hJAx2){aK)<Q.
After Version 1 has been formulated, we are going to present some remarks on

it. In particular, we want to explain the dependence of aA and )3A on the parameter.
See also figure 1, which shows an example of a lift hx.

j

FIGURE 1

It is clear that, since hx are lifts of maps of the circle, if there is one pair aA, )3A

satisfying VI for some A, then there are infinitely many such pairs. We shall prove,
however, that modulo 1 there is only one such pair for each parameter value. This
uniqueness will persist even if we weaken the condition (3)(b) demanding only that
h\(a\)-hx(fSx)>l. Suppose that aA satisfies the weakened assumptions and let us
try to fulfil them with another a e (aA - 1 , aA) and respectively, b. The derivative of
hx must vanish at a as well as at aA - 1 since they are local maxima. Thus it must
be aK-\<b<a<aK, otherwise (3)(c) would be violated. Since /iA(aA-l) =
h\(ax)-l, the weakened (3)(b) condition implies that either /iA(/3A) is less than
hx(a) or /iA(b) is less than M<*A -1) - both possibilities contradict (3)(a). Thus we
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have established the uniqueness modulo 1 of aA and it is trivial that aA uniquely
determines /3A. It makes sense to regard aA and /3A as functions of A. We shall prove
that these functions are C1.

Once more we only have a problem with aA, since the dependence of px on aA

is evidently C2. Let us fix some Ao in U and consider equation dh/dx = 0 denned
in 1/xR. By (5), we may use the implicit function theorem to find that, there exists
a solution x(A) denned on some neighbourhood of Ao, C

1 and unique on it. Thus
in particular x(A0) = a^. It is a little work to verify that, when we try to satisfy VI
with the weakened (3)(b) with aA = x(A), it is actually fulfilled, perhaps for A from
a still smaller neighbourhood of Ao- By the uniqueness property we have proved
above it implies that x(A) is equal to oA for A from that neighbourhood.

Now we shall write down the hypotheses of Version 2. It is similar to Version 1
and the general assumptions are the same. We assume that the dependence on the
parameter has a very particular form, which allows us to significantly simplify the
assumptions and also weaken the requirements concerning differentiability with
respect to the argument on the circle. We formulate our assumptions in terms of lifts.

Version 2

There exists a function M: R-»R such that hA(x) = M (x) + A is a family of lifts
of H (it implies in particular that M(x + 1) = M(x) + 1, so that M is an 'old map')-
We also assume the following:
(1) There is a e R such that a is a local maximum of M and a strict global maximum

of A4j(_«,iO].
(2) There is j8 e R with M(/8) = M(a) - 1 such that p is a (not strict) global maximum

of M^-acm.
We also assume a few differentiability properties of M on the interval (P, a),

namely:
(3) The function M is C2 on that interval with bounded derivatives (in fact C1

with a bounded variation of the derivative would suffice).
(4) dM/dx is positive on (P,a) and may tend to 0 only at a,
(5) There is e e (fi, a) such that dM/dx is non-increasing on (e, a).

We would like to emphasize that we have assumed nothing about the differentiabil-
ity of M outside (/3, a). This is due to the fact that we replace functions h by their
upper maps in the actual proof. We shall discuss this in detail in the next section.

3. Upper maps and the local version
The upper map w: R -* U for a given map v: R -» R being a lift of some continuous
endomorphism of the circle is defined by: u(x) = sup {v(y): y § x}. You can see this
transformation in figure 2. Note that u is non-decreasing and is a lift of some weakly
order preserving map of the circle of degree one. Such maps have a well-defined
rotation number. There is a theorem which says that the rotation number of u is
equal to the upper endpoint of the rotation interval of v. (For the proof see for
example [6].)
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y

FIGURE 2

Now we replace the lifts h of VI and V2 by their upper maps denoted by / This
explains why there is no differentiability assumed for M outside (/3, a) in V2. The
upper map is constant outside this interval. We shall furnish the set of assumptions
called the Local Version (LV) which are sufficient to guarantee that a family of
weakly order preserving maps of the circle has a rational rotation number for almost
every parameter value. It is the proof of LV that is really difficult. We shall also
show - and it is easy - that if either VI or V2 holds for a given family H then LV
holds for upper maps / provided you choose lifts h and the parameter space T
properly. T is an open interval, usually smaller than U, but we shall be able to
overcome this difficulty using some countable covering argument.

Local version

We deal with the families FA of weakly order preserving, degree one maps of the
circle depending on a real parameter A which belongs to some open inteval T. In
the natural way we obtain the mapping F:TxSl^Sl given by F(A, x) = FA (x). We
assume F to be at least continuous and by / we denote a continuous family of lifts
of maps F.

Our assumptions are formulated in terms of / They state that / should be
differentiable and increasing with the parameter and non-decreasing with respect
to the other argument. The graph of each fK should look as figure 3 shows - with
an exactly one modulo 1 flat 'shelf and with a positive slope between the shelves
tending to 0 only on one side.

Such maps have a rotation number which we denote by p(A) for each A. The
claim of LV is that the set p~'(R\Q) is of zero Lebesgue measure.
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Px

FIGURE 3

The detailed assumptions are as follows:
(1) For each A e T the rotation number p(A) is between 0 and 1. We define:

aA =min{*6[0,1]: Vye[0, 1]/A(y)s/A(x)} and

/3A=max{xe[0,l]:/A(x)=/A(aA)-l}.

Then we also have:
(2) There exists a constant a with aA < a < 1 for each A e T.

Let us define the set T:
r = {(A,x)eTx(0,l):xe()3A,aA).

(3) The function / is C2 when restricted to F with all derivatives bounded by
some constant L. We also assume that L\ T\ < \.

(4) There is such a positive constant tr that df/dk > cr on T.
(5) Let g: T^R be defined by g(A)=/A(0). Then g is C1 with dg/dA so-.
(6) There is a function y: T-» (0,1) whose value at A is denoted by -yA such that:

(a) For each A e T the derivative dfx/dx is non-increasing on (yA, aA).
(b) There exists a positive constant £ such that df/dx>£ on the set

{(A,x):/3A<x<rA}.
Now we shall give some ideas of the proof that for each A € U such that the upper

endpoint of rotation interval of A A is not an integer, there is an open interval T with
A e T c l / o n which LV is satisfied for/A being upper maps for the suitably chosen
lifts of H.

We start with any family of lifts h and we are going to adjust it in two steps in
order to obtain the 'suitably chosen' family (which is not unique). First, we can
ensure that p(/A) is between 0 and 1 - simply by replacing lifts /iA by h-K - m, where
m is the integer part of the upper endpoint of the rotation interval for ftA. If we do
it also for A sufficiently close to A, then the upper maps obtained for such lifts
satisfy (1)LV with T some neighbourhood of A). Here we have used the fact that
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p is continuous with respect to A, which was proved in [2]. The new family of lifts
will also be denoted by h.

The goal of the next adjustment is to obtain lifts for which the aK and /3A of
Version 1 or Version 2 are in the interval [0,1] (we put «A and /3A equal identically
to a and /8 in the case of Version 2). To avoid ambiguity of notations we shall mark
aK and )8A in the sense of LV with bars. It is easy to see that we can choose such
a positive number c and T an interval containing A that aA is a strict global maxi-
mum of hK restricted to (—oo, aA +c] and |aA - a A |<c /2 for all A e T (to see this
it is necessary to recall that aA is continuous in A). Next, we displace graphs of hx

for A e T by the vector v = (1 - aA - c, 1 - aA - c). Figure 4 shows what happens. The
shifted graphs define the new family of lifts also denoted by hx and it is already an
appropriate one. Such a change is equivalent to moving the point of R1, which is
mapped to 1 by the projection denning lifts h (we make the identification S1 =
{e": f eR}). It is also clear that all the properties assumed in Version 1 or Version
2 remain undisturbed. Now aA = aA and )3A = )3A so that we may remove the bars
from further notations.

PA

fy
FIGURE 4

Observe now that /A coincides with ftA on T. It allows us to verify the rest of LV
in a simple way. It is even quite obvious when we start from Version 2. Thus we
shall concentrate on VI only. The assumptions (1) and (2) follow from the above
construction. In (3)LV one needs only to prove that the derivatives are bounded.
To manage it we can take T cointained with its closure in T and then use the
compactness argument in order to obtain the boundedness of derivatives on T. We
must perhaps take T still smaller in order to obtain L\ T'\ < j . A similar argument
will also work in (4)LV and (6)(b)LV. In (5) we have g(A)=/A(aA)-l , thus
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To justify this computation recall that aA depends differentiably on A. To satisfy
(6)LV is a rather more delicate thing. By (5)V1 the second derivative of hK is negative
at aA. It is also negative on some open neighbourhood of the curve {(A, aA): A e U}
in t /xR. Also an open and convex neighbourhood w with this property can be
obtained - perhaps we must confine T and use a compactness argument. A similar
argument shows also that df/dx is separated from 0 on the complement of this
neighbourhood in T. Thus we can satisfy (6)LV putting yx =sup{x€R: (A, x)e
WnT}.

We have at least sketched the proof that it is possible to cover the set U except
for the set of parameter values corresponding to integer values of upper endpoint
of rotation interval with intervals T, on which LV is satisfied. It is an elementary
topological fact that we can choose only a countable number of such intervals,
which also cover this set (it is an open set, since p is continuous). Thus the claim
of both Version 1 and Version 2 follows immediately from the claim of LV.

The rest of this paper will be devoted to the proof of the theorem under LV
assumptions.

4. An outline of the proof of the local theorem
In § 4 we begin with a study of the very simple family of maps - namely the rotations
by 2TTX where x is a parameter. Lifts of these maps are simply translations by x on
the real line. We investigate the distribution of the orbit of 0 by the translation by
x. We show that it is related to the continued fraction representation of x

In § 6 we expand the results of the previous section on the family / It is based
on the existence of topological semi-conjugacy between maps with the same irrational
rotation number. Since the results of § 5 concern the ordering of the orbits of 0,
they are valid also for maps f, at least those with an irrational rotation number. For
any rational number u we define the set /(u) in the parameter space. The definition
is not very simple, but in essence I(u) consists of the parameters for which the
continued fraction representation of the rotation number of/ has some odd conver-
gent equal to u. We shall prove that the situation looks as shown by figure 5. We
assume that u=p/q with (/», q) = \ and the arrow means the function which
associates with every parameter value A the qth image of 0 by /A. We can see that
some upper part of /(«), called K(u), goes to (a +p — 1, p), that is under the shelf
of the graph of/ It is clear that for parameters from K(u) the rotation number
must be u. In § 6 we prove that the length of the image of K(u) by the function
marked with the arrow cannot be too small as related to the image of the whole
I(u) by the same function. If we knew that the arrow cannot distort /(«) too much,
we would obtain that K(u) is not too small as related to I(u). In § 6 we prove that
the intervals {/l(0): A € /(«)} are disjoint modulo 1 for I not exceeding q. Moreover
for i less than q they are always under the non-flat part of the graph of/A. (Suppose
for a moment that we have Version 2 with aA and /3A independent of the parameter.)
Then if the variation of \ogdfK/dx were bounded on ()3A,aA) for every A the
distortion could be estimated by a method similar to that of Denjoy's proof of the
non-existence of homtervals for diffeomorphisms of the circle with irrational rotation
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K(u)

number. This is not our case, since dfk/dx may tend to zero at aA. However it
cannot tend to zero at /3A and using this fact we prove in § 7 that the ratio |K(u)|/|/(w)|
can be reduced very widely by the arrow function but it can grow only by some
multiplicative constant. Fortunately, it suffices to prove that, independently of w,
|K(M) | / | / (U) | is not less than some positive constant w. Using this fact we finish
the proof of LV by the simple argument of showing that the set of parameter values
with irrational rotation number cannot contain points of density.

5. Continued fractions and rotation on the circle
We shall define some numerical sequences for each number x from the interval
(0,1). Some of them are closely related to the continued fraction representation.
For example, the sequence bn(x) consists of convergents to the continued fraction
expansion of x and qn(x) are denominators of irreducible fractions representing
bn(x). The nature of cn(x) is different. In fact, it describes the ordering of the orbit
of some point on the circle by the rotation by 2TTX. The main goal of this section is
to reveal relations between pure arithmetics of continued fractions and some
dynamics associated with cn(x). The idea of the use of continued fractions in this
problem is not new and was previously used to list intervals in the parameter space
corresponding to rational numbers.

Everywhere in this section we assume that x, u, v are numbers from the interval
(0,1) and that u and v are rational while x is a real number. Sometimes we shall
use expressions like 'g-sequence of x' instead of 'the sequence qn(x)\

Everywhere in this paper [ • ] denotes the integral part and {•} the fractional part.

Definition:

For any x we define the sequences an(x) and rn{x) inductively as follows:

ro(x) = x,
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When r,(x) is 0 for some i, the procedure terminates. In that case we obtain the
finite sequences, otherwise they are infinite. The a-sequence is the sequence of
partial quotients of a continued fraction representation of x.

Definition. For a given sequence an(x) we define bk(x) by

1
bk(x)=-

1

1

ak(x)
where k is assumed to be less than or equal to the length of the a-sequence. The
numbers bk(x) will be called convergents to the continued fraction representation
of x or simply convergents.

Definition. We can write bk(x) in the unique way as pk(x)/qk(x) with pk(x) and
qk(x) positive integers and co-prime. It defines the p- and g-sequences of x

Now we shall list some properties of the sequences defined above. Proofs can be
found for example in [3].

(a) These sequences are finite if and only if x is rational.
(b) The sequence qn(x) strictly increases with n for all x.
(c) The numbers qn(x) have the following property:

dist (nx, Z) < min {dist (ix, Z): 1 < i< n} where dist means the ordinary dist-
ance between subsets of R1 (dist (X, Y) = inf {|x -y\: xeX,ye Y}).

This property is in fact characteristic for qn(x) and may also be rephrased in
terms of the rotation on the circle. Namely, qn{x) are numbers of the iterations of
the rotation by which the image of some yeS1 approaches y closer than ever before.

(d) For k even xqk(x)>pk(x) and for k odd xqk(x)<pk(x) with the equality if
and only if x=pk(x)/qk(x).

(e) For any x, j€(0,1) if bj(x) = bk(x) then \j-k\<l and if j = k then the
sequences ft,(x) and b((y) are equal to the fcth place.

Definition. We define J(u) to be the set of numbers from the interval (0,1) whose
some odd convergent is equal to u.

In view of the properties (a) and (e) it means that there exists some integer k
such that the fc-sequences for all numbers in J(u) coincide. The number u belongs
to J(u) if and only if bk(u) = u for k odd.

Definition. For a given x we define its c- sequence by

Now we are going to prove some lemmas which concern the properties of sets /.

LEMMA 1. Let p/q be an irreducible fraction whose value is between 0 and 1. Suppose
also that p/q is in J{u) for some u whose q-sequence contains a number not less than
q. Then u is equal to p/q.

Proof. By the definition of J, the fe-sequence of p/q must contain u. However, the
last term of that sequence is q and the claim follows immediately from the
property (b). •
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LEMMA 2. Let y and z be numbers from the interval (0,1) such that their a-sequences
are equal to the fcth place. Ifx belongs to the interval (y, z) then its a-sequence to the
fcth place is also equal to them and rk(x) and rk(z).

Proof. The proof is inductional with respect to fc.
For i = l we have

because the integral part is a non-decreasing function. Hence a^x) = a,(y). Further
we obtain:

1 1 1
—> — s —
y x z

which, together with the above conclusion, imply that

and finally

The inductive step is analogous - in the above reasoning we have only used the fact
that ro(x) is between ro(y) and ro(z). •

LEMMA 3. For each u the set J(u) is an interval.

Proof. Suppose that s and t belong to J(u) and s < t. Consider some JCe (s, t). By
the definition of J the convergents to continued fractions of s and t are the same
as to some fcth place. The same must be true of their a-sequences by the property
(e). Now we apply the previous lemma and obtain that the a-sequence of x is also
equal to the a-sequence of s and t to the fcth place. Since their b-sequences must
be equal to the same place, bk(x) = u. •

LEMMA 4. A rational number u is always the upper endpoint ofJ(u).

Proof. If x € J(u) then bk(x) = u for some odd fc. By the property (d) it implies that
xqk(x)spk(x) and thus x<pk(x)/qk(x) = u. To show that u is really an endpoint
we choose r/s<u = p/q with rq -ps = — 1. It is a property of the Farey series (see
[3] that the numbers (pn + r)/(qn + s) are in J(u) and it is clear that they tend to
u when n grows to infinity. •

LEMMA 5. Both endpoints of J(u) are rational.

Proof. Let us regard bk( •) as a function. It is clear that for every fc it is continuous
in irrational points. The claim follows immediately.

LEMMA 6. Let us consider the irreducible fraction p/q, whose value is u. The first q
terms are the same for all sequences cn(x) with x belonging to the interior ofj(u).

Proof. We shall show that for each natural i not greater than q there exists such
natural m(i) that i(int/(n))<=(»t(i) —1, m(i)). Otherwise there would be yeJ(u)
with ioy e ftJ for some natural i0 not greater than q. We would obtain thus y = yio/io-
By Lemma 1 it follows that y=p/q. It contradicts Lemma 4.
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LEMMA 7. For each u = p/q, (p, q) = 1, and xfrom the interior ofJ(u) the following
holds:

c,(x) = cq+l(x) - p, c2(x) = cq+2(x) - p,..., c,_1(x) = c2,_1(x)-p.

Proof. We compare the sequences p + ix and (q + i)x. It is clear that [p + ix] =
ct(x)+p. The sequence (q + i)x differs very little from the sequence p + ix, because
\p + ix — (q+ i)x\ = \qx—p\. Thus for each i less than q the point p+ ix is closer to
(q + i)x than to any integer, according to the property (c). Hence for all such i
[p + ix] is equal to [(q + i)x] which immediately answers the claim. •

LEMMA 8. For each u=p/q, (p,q)=l, and x,y from the interior of J(u) the
c-sequences for x and y coincide with the 2q — lst place.

Proof, is an immediate consequence of Lemmas 6 and 7. •

LEMMA 9. Let u= p/q, (p, q) = 1, and x belong to the interior ofJ(u).

Let i,j be natural numbers with 0 < i <j < q. We consider the differences c,(x) - ct(x),
cj+l(x)-ci+1(x),..., c2q-i(x)- c2q-i+i-j(x). The claim is that sequence is not con-
stant.

Proof. We denote the difference c,(x) - c,(x) by d. Then we put z to be jx - d. Since
we have (j+m)x — d = mx + z it is enough to prove that the equality ci+m = d[z + mx]
does not hold for some natural m not greater than 2q -1 —j. We assume now that
z > JX and qx < p. The three other possible cases can be dealt with in a similar way.
In our case we take m equal to q — i, in other cases you sometimes need q -j instead
of that. We obtain that z + mx is greater than p, because \z - ix\ £ \p - qx\. The last
inequality is a consequence of property (c) since we have:

\z - ix| >dist (ix, jx + Z) = dist (Z + ix, jx)

= dist (Z, (j - i)x) > dist (Z, qx) = \p - qx\.

Hence [z + mx] is not less than p while (i + m)x — qx has been assumed to be less
than p. •

6. Orbits of 0 by functions f
Why is the investigation of such orbits useful in our problem? Recall the assumptions
of LV. They guarantee that there is a flat shelf of the graph of fK over 0. This is
illustrated by figure 3. It gives us the possibility to decide that p(A) is rational, pi q
say, knowing only the orbit of 0 by fx. Namely, if it happens that fl(0) is between
ax -1 +p and /3A +p, that is under some shelf of the graph of/A, then 0 is preperiodic
and the limit of/"(0)/n is obviously p/q. This gives us only a sufficient condition
for the rationality of the rotation number, nevertheless estimations of the measure
of p '(Q) based on it are accurate enough. Observe that (2) of LV ensures that the
shelves are not too short.

The main tool in studying the orbits of 0 are the sequences [/A(0)]. They contain
information about the ordering on the circle of orbits of the image of 0 by the
canonical projection by maps F. Since the weakly order preserving map of S1 with
irrational rotation number x is topologically semi-conjugate to the rotation by 2nx,
it is not difficult to see the following fact:
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If p(A) is irrational then [/l(0)] = c,(p(A)) for every natural I
This fact allows us to apply the results of § 5. We define sets /(«) for rational

numbers u which are analogous to J(u) from §6. Using the criterion mentioned
above shall prove that each /(«) contains a subinterval, called K(u), consisting of
parameters for which the rotation number is M. In the next section we shall estimate
the size of K{u) using the differentiability assumptions. In the present section we
prove some preliminary lemmas. The most important of them is Proposition 1.

To simplify notations we introduce functions g,,: T-> U given by g/(A) =/l(0) for
any natural i.

LEMMA 10. The functions gt are increasing.

Proof. By the assumptions (4) and (5) of LV/A(x) increases with A for any x. Recall
the function g denned in (5) of LV. It is equal to gt - 1 . So the claim holds for i = 1.
Now we assume that it holds for some i. Then we have:

g,+i(A)=/A(g,(A)) by definition.

Since _/*(x) increase with A and does not decrease with x, the function gi+j

increases provided g, is such. The claim for every i follows by the principle of
induction. D

Definition. We fix some rational u expressible by the irreducible fraction of the
form pi q. We assume that bk(u) = u for some odd k (see § 5 for the definition of
bk). First we define j(u) by j(u) = p~\int /(«)). Next, let i(u) be the set of parameters
A from T for which the equality [/A(0)] = c,(u) holds for any positive integer i less
than 2q and for any A! from j(u)\ is greater than A,. Then the set I(u) is defined
to be the union of I(M) and j(u).

The definition of I(u) is rather complicated, but the idea is simple. The /(«) is
nearly the same as p~'(J(u)). We have proved in § 5 that for numbers belonging
to the same J(u) their c-sequences have nice common properties. Now the same is
true of parameters belonging to the same I(u) and the sequences [/l(0)].

COROLLARY 10. For each u = p/q, the set l(u) is an interval whose upper endpoint
s is characterized by s = inf {A € T: A ^j(p/q)} and g,(A)eZ for some i with 1< i<
2q -1, unless s = sup T.

We are not going to prove it since it is a simple consequence of Lemmas 3 and 10.

PROPOSITION 1. Let u= p/q be as required by the definition ofl(u). Then the interiors
of gi(I(u)) are disjoint even when projected onto Si by the canonical projection.

Proof. Suppose that the claim is not true, that is there exist integers i and j , positive
and not greater than q and A,, A2 both from I(u) such that f'Xl(0) =f\2(0)-d for
some integer d. Then we also can find in /(«) the parameters Ag and Ad such that
Ag > A2> Ad and /lx(0) ^f{2(0) - d >/ld(0). Since / increases with A we obtain for
every natural m:

It implies that
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For m not greater than 2q — i — 1 the first and the last terms in this sequence of
inequalities are equal by the definition of I(u) and Lemma 8. Thus the difference
between [f£m(0)] and [/£m(0)] is d for all such m. On the other hand, for any A
in I(u) the sequence [/A(0)] to the 2q - 1st place coincides with the c-sequence for
any JC from /(«) . It leads us to a contradiction with the claim of Lemma 9.
PROPOSITION 2. Let u=p/q be as usual. Then for each integer i, positive and less
than q, and for each A in I(u) the fractional part o/g,(A) belongs to (/3A, aA).

Proof. It is a corollary to the previous proposition. The only thing to be observed
is that if for some i and A the claim were not true then g,+1(/(u)) would have to
intersect with gi(/(«)) on some open subset. (We mean the intersection modulo 1
or after projecting to S1.)

PROPOSITION 3. For u, p, q as usual and s being the upper endpoint of I(u)

gq(s)=p or s = supT.

Proof. Recall the characterization of s given in Corollary 10. Then observe that the
range of i in that condition can be confined to positive integers not exceeding q. It
follows from Lemma 7. On the other hand, Proposition 2 implies that for i less than
q the fractional part of gt(s) must belong to ()3S, as], hence g,(s) cannot be an
integer for any such i. Thus if 5 is not the supremum of the whole T then the only
possible i is q. Obviously gq(s) cannot be greater than p, otherwise there would be
s' less than s with gq(s') = p in contradiction with the characterization of Corollary
10. •

7. Estimations
Throughout this section u will always denote a rational number from the interval
(0,1), p/q will be the irreducible form of u.

We are going to estimate the length of i(u) as related to the whole /. Actually
we shall approximate i(w) by a still smaller set k defined by:

X={A6/:{g,(A)}>a},

that is K consists of these parameters whose image by gq is under the shelf of the
graph of /A for each A from T (see (2) of LV). As we have already noted at the
beginning of the previous section, for all parameters from K the p is certain to be
u.

We already know by Proposition 3 that the ratio |g,(X)|/|g,(7)| cannot be too
small, not less than a anyway. To get the similar estimation of the ratio K(u)/I(u)
we use the assumptions involving differentiability conditions for / The result of
these computations is given by Lemma 11.

Before we formulate it we introduce some notations. The numbers «, p, q are fixed
so we shall write K for K(u). The supremum of K will be denoted by s, the infimum
by r. Then, we choose some t in I(u)\K. The interval (/, r) will be denoted by W.

LEMMA 11. There exists a finite constant C, independent ofu and t chosen as described
above such that:

\&,(K)\ \K\
\gq(w)\
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Proof. The numbers z, for i = 1 , . . . , q - 1 are defined by

z,=max(l,sup^A

where the supremum is taken over x, and x2 both belonging to gi(K u W).
We are going to prove by induction with respect to i = 1 , . . . q the following fact:

—o)1"1 n zj.

The right-hand side of the above inequality will be denoted by c,. The numbers L
and <r are defined by (3) and (4) of LV while B is

sup

it is finite by (5) of LV.
For /' = 1 we obtain easily that |g,(X)|/|g,( W)|<B|X|/ | W\. Since L/a is greater

than 1 the inequality holds. Let it hold for some f < q. We denote/,(g,(0), /«(&('"))
and/,(g,(s)) by t, f, s respectively. By the mean value theorem it is easy to see that

<•> r-t \

Let the numbers Du D2, D3 be defined by:

Observe that D, and D2 and necessarily positive while D3 may be negative. We have:

We consider the interval (gI+i(r), g,+1(s)-D3) denoted by K. Then we obtain the
following relations:

\gi+l(W)\ = \r-t\ + D,, \K\ = \s-r\ + D2, \gi+l(K)\ = \K\ +D3.

First we compute

1*1
<max "DJ

by *. By the mean value theorem D2/ D2 cannot exceed

(s-r)supdf/d\ \K\ L
(r-t)infdf/d\ ~\W\a'

On the other hand, by the inductional hypothesis,

lft(«OI '
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We obtain thus:

1*1 ___/'._ L\JK\

since c, > L/cr and z, a 1. We have

\gt+1(K)\ \gi+l(K)\ \K\ _ |gi+1(K)| |K|
\gi+i(W)\ \K\ \gi+1(W)\ \gi+l(K)\-D3 "

To prove the inequality for i +1 we need only the estimation

We assume that D3 is positive and calculate it as follows:

D3 = gi+l(s)-5-Di-D2 = gl+l(s)-5-(g,+l(s)-

=fr(gM)-s-(fr(gi(r))-r)

We denote by r0 the least number from the interval (t, r) such that

Then we have;

A s j ° L|/y(ft(s))-/y(ft(r))| dy

where L stands for the upper bound of d2f/dx d\ over TxR. By the definition of
r0 we obtain for y between t and r0 that

thus

When we use this inequality we get

D3^(r0-t)L\gi+1(K)\^L(r~t)\gi+l(K)\.

Further we also obtain:

\gl+1(K)\-D3 l-L(r-tY

By (3) of LV L(r- t)<\ and we obtain

which is exactly what we need to complete the proof of the inequality for i +1.
In particular we get
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We must prove that cq can be estimated independently of u and t. First we are
going to estimate z,. Observe that, by Proposition 2, g,(Ku W) is always contained
modulo 1 in the interval (/?„ 1). We distinguish 2 cases:
(1) {gM}> y,. Then, by (6)(a) of LV, z, is 1.
(2) Otherwise, by (6)(b) of LV, the denominator of the fraction /r(x,)//,(x2) is

separated from 0 by the constant £ if only x2 is less than y, modulo 1. If it is
not the case, then this ratio does not exceed 1. Hence

for some x between xt and x2. Further, since / " ^ L we obtain

z , . < l + - ( s - O .

This estimation works in both cases.
Now we are able to estimate the product of zt. Since

it
for each j less than q, their product does not exceed

exp

In the analogous way we can estimate (l + 2L(r — t))q~1 by exp (2Lq\I(u)\). Finally
we get that cq is not greater than

B-exp{2L+-j exp (q\I(u)\).

It remains to show that g|/(w)| is bounded by some constant independent of u. It
is provided by the following lemma:

LEMMA 12. For each u,

Proof. Proof of Lemma 12:
First of all we notice that dg/dA i s cr for every natural i and parameter value A.

It is true for i = 1 by (5) of LV. Then we proceed by induction:

dgi+i _dfndgi I df
dA \dA dx dA d\

- the first term is non-negative and the second is not less than a. It implies that for
each « the length of &(/(«)) is at least a\I{u)\. The total of these lengths for »
between 1 and q is thus not less than qo~\I(u)\. On the other hand, it cannot exceed
1 by Proposition 1. The claim of the lemma follows. •

The proof of Lemma 11 is also completed. •

PROPOSITION 4. For each u if only sup (/(«))< sup T, then the ratio \K(u)\/\I(u)\
is at least ( l - a ) / ( C + l) = w.

Proof. We begin with the remark that, since the constant C of Lemma 11 does not
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depend on t, the ratio \K(u)\/\I(u)\K(u)\ is bounded by the analogous ratio of
lengths of the images by gq multiplied by the same constant C. By Proposition 3
the length of gq(K(u)) is at least \~a and the length of the whole gq (/(«)) must
be less than 1. Hence \K(u)\/(\I(u)\-\K(u)\) is not less than (1 -a)/C. After the
simple calculation the claim of the proposition follows. •

8. The completion of the proof of LV
Now we are ready to finish the proof of LV. Suppose by the contradiction that the
set S = p~l (R\Q) has positive measure and let y be its point of density. We may
assume that j><supp(7~) since by Lemma 12 p~l (sup p(T)) is at most one point
when sup p(T) is irrational. Next, we consider the sequence of intervals /„ defined
by /„ = /(62n+1(p(3'))). They all contain y and their lengths tend to zero by Lemma
12. Moreover, for n sufficiently large sup /„ <sup T and the use of the Proposition
4 results in the contradiction with the definition of y. This completes the proof of LV.

•
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